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Abstract. The paper investigates the state complexity of two opera-
tions on regular languages, known as GF(2)-concatenation and GF(2)-
inverse (Bakinova et al., “Formal languages over GF(2)”, LATA 2018),
in the case of a one-symbol alphabet. The GF(2)-concatenation is a vari-
ant of the classical concatenation obtained by replacing Boolean logic in
its definition with the GF(2) field; it is proved that GF(2)-concatenation
of two unary languages recognized by an m-state and an n-state DFA
is recognized by a DFA with 2mn states, and this number of states is
necessary in the worst case, as long as m and n are relatively prime. This
operation is known to have an inverse, and the state complexity of the
GF(2)-inverse operation over a unary alphabet is proved to be exactly
2n−1 + 1.

1 Introduction

Union and concatenation of formal languages are defined in terms of conjunction
and disjunction: a string is in K ∪ L if it is in K or in L, and a string w
is in K · L, if, for some partition w = uv, u ∈ K and v ∈ L—a disjunction of
|w|+1 conjunctions. New variants of these two operations, obtained by replacing
disjunctions with exclusive OR, have recently been proposed by Bakinova et
al. [1]. Union (K∪L) is thus replaced with symmetric difference (K4L), whereas
for concatenation (K · L), once the disjunction is replaced with exclusive OR,
the condition of the existence of a partition turns into the condition that the
number of partitions must be odd.

K · L = {w | # of partitions w = uv, with u ∈ K and v ∈ L, is non-zero }
K � L = {w | # of partitions w = uv, with u ∈ K and v ∈ L, is odd }

The latter operation is called GF(2)-concatenation, because it is actually a
weighted concatenation with weights in the GF(2) field. For example, {ε, a} ·
{ε, a} = {ε, a, aa}, but {ε, a} � {ε, a} = {ε, aa}, because two partitions of a
cancel each other. Notably, GF(2)-concatenation is invertible: for every lan-
guage L ⊆ Σ∗ with ε ∈ L, there exists a unique language L−1 ⊆ Σ∗ that
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Union Concatenation Star

Unambiguous (]) mn− 1 [6] (unamb·) m2n−1 − 2n−2 [4] (unamb∗) 3
8
2n + 1 [6]

Classical (∪) mn [9] (·) m2n − 2n−1 [9] (∗) 3
4
2n [9]

GF(2) (4) mn [2] (�) m · 2n [1] (−1) 2n + 1 [1]

Table 1. State complexity of unambiguous, classical and GF(2)-variants of union,
concatenation and star.

satisfies L � L−1 = L−1 � L = {ε}. For instance, {ε, a}−1 = a∗, because
{ε, a}−1 � a∗ = {ε}: indeed, every non-empty string in the latter GF(2)-
concatenation has two partitions. Symmetric difference is the GF(2)-union.

Using GF(2)-operations instead of the classical operations gives rise to a new
variant of formal language theory. For instance, GF(2)-grammars, defined by
Bakinova et al. [1] and subsequently studied by Makarov and Okhotin [8], are
incomparable in power to classical grammars with union and concatenation, but
still have a parsing algorithm working in time O(nω), with ω < 3, and can be
parsed by circuits of depth O((log n)2).

The family of regular languages is closed under both the GF(2)-concatenation
and the GF(2)-inversion operations. For a pair of languages recognized by an m-
state and an n-state DFA, their GF(2)-concatenation is recognized by a DFA
with m ·2n states; this number of states is necessary in the worst case, witnessed
by automata over a 2-symbol alphabet [1]. Similarly, the GF(2)-inverse of a
language recognized by an n-state DFA is recognized by a DFA with 2n + 1
states, and this bound is tight for alphabets containing at least 3 symbols [1].

To compare with the classical case, classical concatenation has state com-
plexity m2n − 2n−1, and classical Kleene star, or the quasi-inverse, has state
complexity 3

42n [9]. Another point of comparison is with unambiguous concate-
nation and unambiguous star, defined by restricting the arguments, so that each
string has a unique representation; classical operations and GF(2)-operations are
two incomparable generalizations of the unambiguous operations. Unambiguous
concatenation has state complexity m2n−1−2n−2 [4], whereas the state complex-
ity of the unambiguous star is 3

82n +1 [6]. The state complexity of unambiguous,
classical and GF(2)-variants of the three main operations on formal languages
is compared in Table 1. All results refer to the case of DFA.

The goal of this paper is to investigate the state complexity of the GF(2)-
operations in the case of a unary alphabet [1]. In general, unary state complexity
is substantially different from the case of multiple-symbol alphabets. The trade-
offs between different types of automata over a unary alphabet were studied
by Chrobak [3], Mereghetti and Pighizzini [10], Geffert et al. [5], Kunc and
Okhotin [7], Okhotin [11], and others. The state complexity of operations on
unary DFA was first investigated by Yu et al. [13], who proved that concatena-
tion is representable with mn states, and this bound is tight for relatively prime
m and n; the state complexity of star on unary languages is (n− 1)2 + 1.
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How do the GF(2)-operations stand in comparison? For the GF(2)-
concatenation of unary languages recognized by DFA with m and n states, the
results generally resemble the classical case: it shall be established in Section 2
that 2mn states are sufficient, and for relatively prime m,n, this number of states
is necessary. On the other hand, the case of GF(2)-inverse of a unary language
is substantially different from the classical case; the state complexity turns out
to be 2n−1 + 1, which is established in Sections 3–6 by determining a connection
between the states of a DFA recognizing a GF(2)-inverse and the coefficients of
a certain associated sequence of polynomials over GF(2).

2 GF(2)-concatenation

As usual, a DFA is defined as a quintuple (Σ,Q, q0, δ, F ), where Σ is the input
alphabet and Q is a finite set of states, with initial state q0 ∈ Q, transition
function δ : Q×Σ → Q and accepting states F ⊆ Q. This paper considers DFA
over a unary alphabet Σ = {a}, where the transition function defines a sequence
of states q0, q1, . . ., with qi+1 = δ(qi, a). Let j be the least number with qj = qi for
some i < j. This is the point where the automaton starts to behave periodically;
the states q0, . . . , qi−1 are called the tail, and the periodic part qi, . . . , qj−1 is
called the cycle. If the tail is empty, the automaton is called cyclic.

The known construction for GF(2)-concatenation of two given DFA, A =
(Σ,P, p0, η, E) and B = (Σ,Q, q0, δ, F ), works as follows [1]. The language
L(A) � L(B) is recognized by a DFA C with the set of states P × 2Q. In a
state (p, S), with p ∈ P and S ⊆ Q, the automaton simulates the computa-
tion of A in the first component p, while S is the set of all states reached an
odd number of times in the ongoing simulated computations of B. The initial
state of C is (p0, {q0}) if ε ∈ L(A) and (p0,∅) otherwise. Its transition function,
π : (P × 2Q)×Σ → P × 2Q, is defined on a pair (p, S) as follows. Each currently
simulated computation of B is continued, represented by the following set S′.

S′ = { q′ | the number of states q ∈ S, with q′ = δ(q, a), is odd }

If the simulated automaton A passes through an accepting state, then the tran-
sition π((p, S), a) also adds a new computation to the set S′.

π((p, S), a) =

{
(η(p, a), S′), if η(p, a) /∈ E
(η(p, a), S′4{q0}), if η(p, a) ∈ E

a state (p, S) is marked as accepting, if S contains an odd number of accepting
states of B.

F ′ =
{

(p, S)
∣∣ |S ∩ F | is odd

}
This completes the known construction, which is valid for every alphabet.

In the case of a unary alphabet, the state complexity of GF(2)-concatenation
on two unary DFA is first investigated in the special case of both automata being
cyclic, each with a unique accepting state. Under these restrictions, the state
complexity depends only on the number of states in the given automata.
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Lemma 1. Let A and B be two minimal cyclic DFA over a unary alphabet, one
with the cycle of length m and the other with the cycle of length n, and each with a
single accepting state. Then, the GF(2)-concatenation L(A)�L(B) is recognized
by a cyclic DFA with period of length 2mn

gcd(m,n) , and this is the minimal DFA for

this language.

Proof. Let A = ({a}, P, 0, η, E), with P = {0, . . . ,m− 1}, η(i, a) = i+ 1 mod m
for all i ∈ P , and E = {e}. Similarly, let B = ({a}, Q, 0, δ, F ), with Q =
{0, . . . , n− 1}, δ(i, a) = i+ 1 mod n for all i ∈ Q, and F = {f}.

Let C = (Σ,Q′, q0, π, F
′) be the DFA recognizing the GF(2)-concatenation

L(A) � L(B), with the set of states Q′ = { (p, S) | p ∈ P, S ⊆ Q }, and with
accepting states F ′ = { (p, S) | p ∈ P, f ∈ S }.

Claim. For all p ∈ P and k ∈ {1, . . . , n
gcd(m,n) − 1}, there are exactly two reach-

able subsets S1, S2 ⊆ Q with |S1| = |S2| = k and π((p, S1), a) 6= π((p, S2), a). For
k = 0 or k = n

gcd(m,n) , there is a unique reachable subset (p, S) with (p, S) ∈ Q′

and |S| = k. Accordingly, Q′ contains 2mn
gcd(m,n) reachable states.

Assume that e 6= 0. After reading ae, the automaton reaches the state (e, {0}).
From this point on, consider the states reached by the automaton after reading
repetitive blocks am. The state in the first component is rejecting until the
last symbol in the block, and hence the states in both components are cyclically
shifted by m, until the accepting state e reappears in the first component. At the
last step, a new state 0 is added to the second component, while all pre-existent
states in the second component have been shifted by m (mod n). Altogether,
the following states are visited.

π((0,∅), ae) = (e, {0})
π((e, {0}), am) = (e, {0, k1}), where k1 ≡ m (mod n)

π((e, {0, k1}), am) = (e, {0, k1, k2}) where k2 ≡ 2m (mod n), etc.

The subset continues to grow until some j-th step, with δ(kj , a
m) = 0. This

means that (j + 1)m ≡ 0 (mod n). Since j is the least such number, it must be
j = n

gcd(m,n) − 1. Therefore, π((e,∅), ajm) = (e, {0, k1, k2, . . . kj}).
From this point on, consider further computations upon reading repetitive

blocks am. The states in the second component keep cyclically shifting, and the
states 0 added in the end of each block cancel out these states in the same order
as they were added.

π((e, {0, k1, k2, . . . kj}), am) = (e, {k1, k2, . . . kj})
π((e, {k1, k2, . . . kj}), am) = (e, {k2, k3, . . . kj}), etc.

In the end, π((e, {0, k1, k2, . . . kj}), ajm) = (e,∅). Finally, after reading am−e,
the automaton returns to its initial state.

π((e,∅), am−e) = (0,∅)
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Overall, the automaton for the GF(2)-concatenation is a cycle on 2mn
gcd(m,n)

states.

Claim. The period 2mn
gcd(m,n) is minimal.

The idea of the argument is that C has a block of m+n consecutive rejecting
states, and that this block occurs only once in the automaton. ut

Theorem 1. Let A and B be any two DFA over a unary alphabet, with m
and with n states, respectively. Then, the GF(2)-concatenation L(A) � L(B) is
recognized by a DFA with 2mn states.

For relatively prime m and n, this number of states is necessary in the worst
case.

Proof (a sketch). Let A have the set of states P = {0, 1, . . . ,m − 1}, with ac-
cepting states E ⊆ P . For each state i ∈ P , define a DFA Ai by setting i in A as
the only accepting state. Then, L(A) =

⋃
i∈E L(Ai), and the union is disjoint.

Let the language be periodic starting from k, with period m− k.
Similarly, let the set of states of B be Q = {0, 1, . . . , n − 1}, with accepting

states F ⊆ Q. Let Bj be B with j as the only accepting state, so that L(B) =⋃
i∈F L(Bi). Let the periodic part begin at `, with period n− `.

Then, the desired GF(2)-concatenation can be represented as follows.

L(A)�L(B) =
( ⋃

i∈E
L(Ai)

)
�
( ⋃

j∈F
L(Bj)

)
=
( i

i∈E
L(Ai)

)
�
( i

j∈F
L(Bj)

)
=

=
i

i∈E
j∈F

L(Ai)� L(Bj)

Each of these |E| · |F | languages is periodic beginning from k+`−1, with period
2(m− k)(n− `); the proof is omitted due to space constraints. These languages
are then joined into a single automaton with at most 2mn states.

For the lower bound, Lemma 1 with relatively prime m,n provides the desired
witness languages. ut

3 Automaton for GF(2)-inverse

With respect to GF(2)-concatenation, every language L containing the empty
string is invertible, in the sense that there is a language L−1 satisfying L�L−1 =
L−1�L = {ε}. The GF(2)-inverse operation, f(L) = L−1, preserves regularity,
and its state complexity is 2n + 1 [1].

Theorem A (Bakinova et al. [1, Thm. 2]) For every language L over an
alphabet Σ, with ε ∈ L, a string w ∈ Σ∗ is in L−1 if and only if it has an
odd number of representations of the form w = w1w2 . . . wk, with k > 0 and
w1, . . . , wk ∈ L \ {ε}.
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As proved by Bakinova et al. [1], for every n-state DFA A = ({a}, Q, q0, δ, F ),
with ε ∈ L(A), the language L(A)−1 is recognized by a DFA C = ({a}, 2Q ∪
{q′0}, q′0, δ′, F ′) defined as follows. The states of C are all subsets of Q and a new
initial state q′0, Its transition function is δ′ : (2Q ∪ {q′0})×{a} → 2Q ∪ {q′0}. The
transition in the state q′0 produces a singleton state corresponding to a single
computation of A.

δ′(q′0, a) = {δ(q0, a)}

In a state S ⊆ Q, first let S′ = { q | # of states p ∈ S with δ(p, a) = q is odd }.
Then the transition is defined as follows.

δ′(S, a) =

{
S′, if |S ∩ F | is even

S′ 4 δ(q0, a), if |S ∩ F | is odd

The set of accepting states is F ′ =
{
S
∣∣ |S ∩ F | is odd

}
∪ {q′0}.

Example 1. Consider the following 5-state unary DFA.

0 1 2a 3 4a a a

a

The DFA for its inverse, constructed by the above method, is shown in Fig-
ure 1. It has a cycle of length 15 and a tail of length 2 (along with 16 unreachable
states).

In the general case, the DFA for the GF(2)-inverse L(A)−1 of an n-state DFA
A has 2n + 1 states, and it is known that this number is necessary in the worst
case, for alphabets with at least three symbols [1]. It turns out that in the unary
case it is always sufficient to use 2n−1 + 1 states.

This upper bound is easy to establish for non-cyclic automata.

Lemma 2. Let A = ({a}, Q, 0, δ, F ) be an n-state non-cyclic DFA with 0 ∈ F .
Then, the DFA for the GF(2)-inverse L(A)−1 constructed as above, has at most
2n−1 + 1 reachable states.

Proof. Indeed, no subset containing the state 0 is ever reached, since this state
is not reachable by any transitions. ut

For cyclic automata A, a deeper analysis of the automaton for its inverse is
needed, since the set of unreachable states is harder to specify. The first result to
be established is the following dependence between the membership of individual
states in the subsets.

Lemma 3. Let A = ({a}, Q, 0, δ, F ) be a cyclic DFA with Q = {0, . . . , n − 1},
δ(i, a) = i + 1 mod n for all i, and 0 ∈ F . Let C = ({a}, 2Q ∪ {q′0}, q′0, δ′, F ′)
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{0} ∅

{2}

{3} {1,4}
{0,1,2}

{0,1}

{1}

{0,2}

{0,3}
{0,1,4}

{1,2}

q0'

{2,3}

{0,2,3}

{0,1,3,4}

{2,4}

{1,3}

{0,1,2,4}

{1,2,3}
{0,1,2,3,4}

{2,3,4}

{3,4}

{4}

{1,3,4}

{0,2,4}

{0,1,3}

{1,2,4}

{0,1,2,3}
{1,2,3,4}

{0,2,3,4}

{0,3,4}

{0,4}

Fig. 1. DFA for the GF(2)-inverse of the language in Example 1.

be the DFA recognizing the GF(2)-inverse of L(A), defined as above. For each
i > 1, let Si ⊆ Q be the state of C reached upon reading the string ai.

Denote the membership of the j-th state in Si by a Boolean value Sj
i ∈ {0, 1},

with Sj
i = 1 if j ∈ Si, and Sj

i = 0 otherwise. Then, the membership of state 1
in each set Si is determined by the set Si−1 by the following formula.

S1
i =

∑
f∈F\{0}

Sf
i−1 (for i > 2)

Furthermore, the membership of 0 in Si depends on its membership in the pre-
vious n− 1 states as follows.

S0
i =

∑
f∈F\{0}

S0
i−f (for i > n+ 1)

Proof (a sketch). The formula for S1
i is directly inferred from the definition of

automata. The second formula is inferred from this one using the following two
observations: first, 0 is in Si if and only if 1 is in Si−(n−1); second, a state f is
in Si−n if and only if 0 is in Si−f . ut
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4 Polynomials for GF(2)-inverse

The subsets reached by the automaton for the GF(2)-inverse of a cyclic language
L have a useful characterization in terms of certain polynomials over GF(2).
First, based on the automaton for L, a sequence of polynomials shall be con-
structed, and then the leading coefficients of these polynomials shall correspond
to the membership of state 0 in the subsets of the automaton for L−1.

A few definitions are due. Let f(x) = an−1x
n−1 + . . .+a1x+a0 be a polyno-

mial of degree n− 1 over GF(2), with a0, . . . , an−1 ∈ {0, 1} and with an−1 = 1.
For every i > 0, let pi(x) be the polynomial obtained by taking xi modulo

f(x); this is a polynomial of degree at most n− 2. The polynomials pi(x) form
a sequence, in which the first term is p0(x) = 1, and every succeeding term is
obtained from the previous term as follows: if a polynomial pi(x) does not contain
the monomial xn−2, then the next term is pi+1(x) = x · pi(x); and if there is
a monomial xn−2 in pi(x), then the next term is pi+1(x) = x · pi(x) + f(x); in
other words, xn−1 is replaced with an−2x

n−2 . . .+ a1x+ a0.
The first n terms in the sequence {xi mod f(x)}i=0 are 1, x, x2, . . . , xn−2,

xn−1 + f(x). The form of the subsequent terms non-trivially depends on f .
A polynomial f(x) of degree n−1 is called primitive, if this sequence contains

all 2n−1 − 1 non-zero polynomials. For each n > 2, primitive polynomials are
known to exist.

For all i > 0 and j ∈ {0, . . . , n− 2}, let bi,j ∈ {0, 1} be the coefficient at the
monomial xj in pi(x). The coefficient at the term xn−2 in pi(x) depends on the
coefficients at the same term in the preceding n−1 polynomials in the sequence.

Lemma 4. For every i > n − 1, the coefficient bi,n−2 depends on the earlier
coefficients as follows, with all arithmetic in GF(2).

bi,n−2 =

n−2∑
k=0

bi−(n−1−k), n−2ak

Let A = ({a}, Q, 0, δ, F ) be a cyclic unary DFA with the set of states Q =
{0, . . . , n − 1} and with 0 ∈ F . The corresponding polynomial over GF(2) is
defined as f(x) =

∑
j∈F x

n−1−j . In the sequence of polynomials xi modulo f(x),

let bi,n−2 be the coefficient at xn−2 in the i-th polynomial. Then, by Lemma 4,
each coefficient is expressed through the preceding n− 1 coefficients as follows.

bi,n−2 =

n−2∑
k=0

(
bi−(n−1−k),n−2 · (n− 1− k

?
∈ F )

)
=

∑
j∈F\{0}

bi−j,n−2

This is the same recurrent formula as in Lemma 3.

Example 2 (continued from Example 1). For the 5-state cyclic automaton with
accepting states F = {0, 3, 4}, the corresponding polynomial is f(x) = x4 + x+
1. Then, the sequence xi modulo f(x) begins with the following polynomials.
p0(x) = 1, p1(x) = x, p2(x) = x2, p3(x) = x3, p4(x) = x+ 1, p5(x) = x2 +x, etc.
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The following table puts the subsets reachable by the automaton alongside
the polynomials in this sequence. The acceptance status of each subset is pro-
vided for reference.

i Si+2 pi(x) ai+2
?
∈ L−1

0 {2} 1 −
1 {3} x +
2 {1, 4} x2 +
3 {0, 1, 2} x3 +
4 {2, 3} x+ 1 +
5 {1, 3, 4} x2 + x −
6 {0, 2, 4} x3 + x2 −
7 {0, 1, 3} x3 + x+ 1 −
8 {1, 2, 4} x2 + 1 +
9 {0, 1, 2, 3} x3 + x −

10 {1, 2, 3, 4} x2 + x+ 1 −
11 {0, 2, 3, 4} x3 + x2 + x +
12 {0, 3, 4} x3 + x2 + x+ 1 +
13 {0, 4} x3 + x2 + 1 −
14 {0, 1} x3 + 1 +

For every i, the state 0 is in the subset Si+2 if and only if the polynomial
contains the term x3. This is not a coincidence, and this correspondence shall
now be established in the general case.

5 Upper bound for the GF(2)-inverse

The following two binary sequences turn out to be identical. First, there is the
sequence {S0

i } representing the membership of the state 0 in the subsets reached
by the automaton for the GF(2)-inverse. The other sequence is the sequence
{bi,n−2} of coefficients at xn−2.

Lemma 5. Let A = ({a}, Q, 0, δ, F ) be a cyclic DFA with Q = {0, . . . , n − 1}
and 0 ∈ F . For each i > 1, let Si ⊆ Q be the state of the automaton for the
inverse given in Section 3, reached upon reading the string ai. For each i > 1,
let pi(x) be xi taken modulo f(x) =

∑
j∈F x

n−1−j. Then, for every i > 0, the

state 0 is in Si+2 if and only if the monomial xn−2 is in pi(x).

The proof is by induction on i: the base cases are i ∈ {0, 1, . . . , n − 2}, on
which the sequences coincide. The induction step follows by Lemmata 3 and 4,
since both sequences are defined by the same formulae on the same data.

Lemma 6. Assume that the sequence {S0
i }∞i=0 has period p beginning at `, in

the sense that S0
i = S0

i+p for all i > `. Then, the sequence of states {Si}∞i=0 has
period p beginning at `.
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Lemma 7. Let A = ({a}, Q, 0, δ, F ) be an n-state cyclic DFA with 0 ∈ F . Then,
the DFA for the GF(2)-inverse L(A)−1, constructed as in Section 3, has at most
2n−1 + 1 reachable states.

Proof (a sketch). The sequence of polynomials xi modulo f(x) =
∑

j∈F x
n−1−j

contains at most 2n−1 − 1 distinct polynomials. By Lemma 5, this sequence
coincides with the sequence of state 0, and then, by Lemma 6, the sequence
of subsets has the same total length of the tail and the period. This gives the
desired upper bound on the number of states. ut

6 Lower bound for the GF(2)-inverse

The lower bound shall be established using cyclic witness languages. The follow-
ing property of GF(2)-inverses of cyclic unary languages comes useful.

Lemma 8. Let L ⊆ a∗, with ε ∈ L, be a unary language recognized by an n-state
cyclic DFA. Then, its GF(2)-inverse L−1 contains a string a`, with ` > n + 1,
if and only if the number of representations a` = a`−jaj, with a`−j ∈ L−1,
aj ∈ L \ {ε} and j < n, is odd.

The proof is by establishing the equivalence with the condition in Theorem A.
For any language L ⊆ a∗, with ε ∈ L, let αi = 1 if ai ∈ L−1, and αi = 0

otherwise. Then the condition in Lemma 8 can be written down as the following
formula.

Lemma 9. Let L ⊆ a∗ be a language, with ε ∈ L, recognized by an n-state cyclic
DFA. Then, αi =

∑
j∈F\{0} αi−j for i > n+ 1.

As in Section 4, let f(x) = an−1x
n−1+. . .+a1x+a0 be a primitive polynomial

over GF(2), with an−1 = a0 = 1 (primitive polynomials of any degree over
GF(2) are known to exist). For every i > 0, let pi(x) = bi,n−2x

n−2 + . . . +
bi,1x+bi,0 be xi modulo f(x). Since f is primitive, by definition, all polynomials
p0(x), . . . , p2n−1−2 are pairwise distinct, and then p2n−1−1 = p0(x) = 1.

It turns out that the sequence of coefficients at xn−2 has the same period as
the sequence of full polynomials.

Lemma 10. The minimal period of the sequence {bi,n−2}∞i=0 is 2n−1 − 1.

Lemma 11. The sequence {bi,n−2}∞i=0 contains all binary substrings of length
n− 1, except for (0, . . . , 0).

A cyclic automaton Af corresponding to this primitive polynomial f(x) =
an−1x

n−1+. . .+a1x+a0 is defined asAf = ({a}, Q, 0, δ, F ), with Q = {0, . . . , n−
1}, δ(i, a) = i + 1 mod n for all i, and F = {n − 1 − i | ai = 1 } (by the same
principle as in Lemma 5).

Let L = L(Af ), and consider the sequence {αi}∞i=0 defined as above. The
goal is to prove that (α2, . . . , αn) 6= (0, . . . , 0).
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Sum Concatenation Star

Unambiguous (]) 6 1
2
mn [6] (unamb·) m + n− 1 [6] (unamb∗) n− 2 [6]

Classical (∪) 6 mn [12] (·) 6 mn [13] (∗) (n− 1)2 + 1 [13]

GF(2) (4) mn (�) 6 2mn (−1) 2n−1 + 1

Table 2. State complexity of unambiguous, classical and GF(2)-variants of sum, con-
catenation and star: the case of a unary alphabet.

Lemma 12. Let L be a unary language with ε ∈ L and L 6= {ε}, a∗, which is
recognized by a DFA with n states. Then, the inverse L−1 contains a string of
length between 2 and n.

Since the sequence {αi}∞i=2 begins with something other than n−1 zeroes, by
Lemma 10, the binary substring (α2, . . . , αn) occurs somewhere in the sequence
{bi,n−2}∞i=0. By Lemma 9, the rest of the terms of the sequence {αi} are defined
by the same formula as the sequence {bi,n−2}, which makes the binary strings
α2, . . . , α2n−1 and b0,n−2, . . . , b2n−1−2 identical up to a cyclic shift. In particular,
the period of the sequence {αi}∞i=2 is 2n−1 − 1.

It remains to determine the length of the tail. Since the construction in
Section 3 produces 2n−1 + 1 states, the length of the tail is at most 2. It turns
out that it cannot be shortened, because the strings a and a2

n−1−1 have different
membership status.

Lemma 13. α1 6= α2n−1+1, and therefore the length of the tail is 2.

The following theorem has thus been established.

Theorem 2. For every n > 2, there exists a language L, with ε ∈ L, recognized
by n-state unary cyclic DFA, for which the minimal DFA recognizing its GF(2)-
inverse L−1 has 2n−1 + 1 states.

7 Future work

The results of this paper are summarized and compared to related results in
Table 2.

A problem proposed for future research is to determine the number of states
in NFA needed to represent these operations. There are two different modes of
nondeterminism involved: existential nondeterminism in NFA and parity non-
determinism in both GF(2)-operations. Intuitively, one kind of nondeterminism
cannot help implementing another kind, and the following straightforward con-
struction might actually turn out to be the best possible: first, determinize the

arguments, with a blow-up of the order e(1+o(1))
√
n lnn [3]; and then, apply the

constructions for deterministic automata presented in this paper. Could this
construction be substantially improved upon?
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