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Abstract. We present a novel framework for inspecting representations and en-
coding their formal properties. This enables us to assess and compare the in-
formational and cognitive value of different representations for reasoning. The
purpose of our framework is to automate the process of representation selection,
taking into account the candidate representation’s match to the problem at hand
and to the user’s specific cognitive profile. This requires a language for talking
about representations, and methods for analysing their relative advantages. This
foundational work is first to devise a computational end-to-end framework where
problems, representations, and user’s profiles can be described and analysed. As
AI systems become ubiquitous, it is important for them to be more compatible
with human reasoning, and our framework enables just that.

Keywords: Representation in reasoning, heterogeneous reasoning, representa-
tion selection, representational system.

1 Introduction

The aim of this work is to contribute to the development of AI systems which, similarly
to human experts, can pick effective representations for the task at hand.

The effectiveness of a representation depends on its purpose. One kind of represen-
tation may be more useful for problem solving, while another may facilitate learning,
and some may be more suitable for school children, while another may be useful for the
working professional. Thus, for a system to select representations intelligently, it needs
to take into account both the formal (structure and information) and cognitive (user and
task) aspects of representations.

This is interdisciplinary foundational work bringing together artificial intelligence,
computer science and cognitive science to devise a framework (the language and meth-
ods) for analysing and encoding the properties of representations. In this paper, we
focus on the formal properties of representations, and the analysis involved in finding a
matching representation for the given problem amongst a variety of candidate represen-
tational systems. This analysis is done in a purely structural and informational manner
(i.e., without taking into account the user and task). As we will argue, the formal prop-
erties are a foundational layer upon which the cognitive properties of representations
depend. The details of the analysis and encoding of cognitive properties, which bring
the user profile into the picture, are described elsewhere [11].
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Furthermore, we present a proof-of-concept application of our framework, where
multiple representational systems are automatically evaluated relative to a problem, by
a measure that estimates how likely each representational system is to contain all the
ingredients for finding a solution.

Automating the process of analysing and evaluating representations would lead to
a new generation of interactive computer systems which adapt intelligently to the user.
The automatic selection of effective representations could have applications ranging
from intelligent tutoring systems, to systems that aid the working scientist, to fully
automated problem-solvers.

2 The role of representation in reasoning

The advantages of particular representations over others have been extensively dis-
cussed [5, 6, 26]. Furthermore, there are evident cognitive benefits of multiple rep-
resentations over single representations [1].

Various formalisations of specific reasoning systems using a single kind of repre-
sentation have been implemented, including first order [16, 17], higher order [12, 22],
diagrammatic [14, 28, 29], among many others. A few heterogeneous reasoning sys-
tems that integrate multiple representations have also been built [2, 27], as well as
some tools for re-representing problems and knowledge across and within systems
[13, 20, 24]. Many systems designed for numerical, algebraic, and geometric comput-
ing include tools for representing data in various ways (graphs, plots, figures, diagrams,
etc.) [15, 19, 23, 25].

Moreover, in the rapidly-advancing areas of AI (i.e., machine learning), the role that
representation plays has been recognised as crucial to the effective processing of data,
and representation learning has become a rich area of research [3]. However, the gap
between the actual computations and the user’s understanding seems to be increasing as
the tools perform more effectively under more autonomous (and obscure) conditions.
To reduce this gap, it is necessary to understand what makes representations better or
worse for humans.

Some work has been done to understand the qualities of representations [4, 7]. How-
ever, to our knowledge, there is no integration of this knowledge into a framework
where representational systems can be analysed, evaluated, and selected computation-
ally, where the task and user can be taken into account. In this work we set some foun-
dations to approach the automation of representation analysis and selection.

2.1 An example

To illustrate the variety and efficacy of representations for reasoning, we first present a
problem in probability with three example solutions.

Problem (Birds). One quarter of all animals are birds. Two thirds of all birds can fly.
Half of all flying animals are birds. Birds have feathers. If X is an animal, what is the
probability that it’s not a bird and it cannot fly?
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Solution (Bayesian): Let the sample space be the set of animals. Let b represent birds,
f flying animals, and Pr the probability function. Then, the problem can be reformu-
lated, in the language of conditional probability, as follows:

Assume: Pr(b) = 1
4 , Pr(f |b) = 2

3 , Pr(b|f) = 1
2 .

Calculate: Pr(b̄ ∩ f̄)

To solve this, we start by noting the following facts:

Pr(b̄) = Pr(b̄ ∩ f̄) + Pr(b̄ ∩ f) (1)
Pr(f) = Pr(b ∩ f) + Pr(b̄ ∩ f) (2)

Pr(b̄ ∩ f) = Pr(b̄|f) Pr(f) = 1
2 Pr(f). (3)

From (2) and (3) we can show that Pr(b̄∩ f) = 1
2 Pr(b∩ f) + 1

2 Pr(b̄∩ f), from which
we obtain

Pr(b̄ ∩ f) = Pr(b ∩ f). (4)

Thus, we have the following:

Pr(b̄ ∩ f̄) = Pr(b̄)− Pr(b̄ ∩ f) from (1)

= Pr(b̄)− Pr(b ∩ f) from (4)

= (1− Pr(b))− Pr(f |b) Pr(b) from probability axioms

= 3
4 −

(
2
3

) (
1
4

)
= 7

12 . from assumptions

Solution (Geometric): In the figure below, the unit square represents the set of animals.
The regions representing birds and flying animals are drawn according to the assump-
tions.
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Solution (Contingency): We start by building a table from the two relevant classes
(birds and flying animals) and fill in the values that we are given. Next, the table is
filled in gradually, according to simple tabular constraints.

birds non-birds total
flying (2/3)(1/4) (2/3)(1/4)
non-flying 3/4− (2/3)(1/4)
total 1/4 3/4 1

The rules used to fill the rest of the table are either transferred from the problem’s
statement (e.g., half of all flying animals are birds means that top cells must have the
same values), or from probability theorems (e.g., the total probability is the sum of
the parts means that the total of each column/row must be the sum of the cells in the
corresponding column/row). It’s worth noting that to the experienced user of contin-
gency tables, the constraints corresponding to probability theorems do not need to be
explicitly invoked from probability theory, but simply recalled as tabular/arithmetic ma-
nipulations. Thus, we reach the solution when we fill in the shaded cell.

Note that there may be many solutions using the same representational system
(e.g., many Bayesian solutions, many Geometric solutions, etc.). In the next section
we present the framework for analysing these representations.

3 Representing representations

Representational systems are diverse, and their designs and specifications are heteroge-
neous. To do a comparative analysis, we need a common framework that captures the
properties that make up each representation.

Our framework is based around three concepts: representational system (RS), prob-
lem (Q), and correspondence. In the following subsections we suggest a concrete me-
thod for inspecting and encoding their properties. The result is a set of machine-readable
tables suitable for further analysis.

Table construction currently needs to be done by a human analyst, but the purpose
of such tables is that they can be processed automatically to yield a representation rec-
ommendation.

3.1 Representational system

We view representational systems as consisting of two layers implemented over a me-
dium: a grammatical layer, and an inferential layer. Broadly speaking, the grammatical
layer distinguishes the sensible from the nonsensical, and the inferential layer distin-
guishes the valid from the invalid.

The table of an RS is a structured description of the RS. It is a collection of the
most relevant properties of the RS. We encode these properties as pairs (k, v), where
k is the property kind and v is the value. For example, if an RS table has the entry
(rigorous,TRUE) this means that the RS has the property of being rigorous; and if it
has (token,+) this means that the token ‘+’ is part of the symbols used in the RS (for
examples of RS tables, see Tables 1 and 2).
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Grammar. The building blocks of an RS are called tokens. These are used to construct
expressions. The grammar of an RS allows us to distinguish between admissible and
inadmissible expressions. Although grammars can be constructed in various ways (e.g.,
by production rules [8], or by some underlying type theory [10]), our framework is
agnostic to the specific construction, but embraces type theory as a generic descriptive
tool. Thus, every token, and every admissible expression will be assumed to have a
type. However, to keep our framework flexible, we make no other assumptions about
the specific type theory that we use.

We encode the property of grammatical complexity (g-complexity in Tables 1 and 2)
using Chomsky hierarchies, which are linked to well-known classes of computational
complexity and expressiveness [9].

Inference. The medium on which an RS is implemented (e.g., a pen and paper, or a
computer interface) can be manipulated by some agent. Thus, we need a concept of
state. Broadly speaking, a state refers to the conditions of a medium at some moment
in time. Manipulations are changes of state.

The inferential layer of an RS determines how the grammatical expressions of an
RS can be manipulated validly. Borrowing from the field of computer-assisted theorem
proving, we refer to valid manipulations as tactics. Moreover, tactics are often paramet-
ric on knowledge. The knowledge encoded in an RS can be represented as a collection of

Table 1. A section of the Bayesian RS table.

kind value
types real, event
tokens Ω, ∅, 0, 1, =, +, −, ∗, ÷, ∪, ∩, \, ¯, Pr, |
g-complexity type-2
facts Bayes’ theorem, law of total probability, non-negative probabil-

ity, unit-measure, sigma-additivity, commutativity . . .
tactics rewrite, arithmetic calculation
i-complexity 3
rigorous TRUE

Table 2. A section of the Geometric RS table.

kind value
types point, segment, region, real, string
tokens $point, $segment (the prefix $ denotes a label for an actually

pictorial symbol)
g-complexity type-3
facts scale-independence of ratio, non-negative area, area-

additivity,. . .
tactics draw point, draw segment, delete, join, compare sizes
i-complexity 2
rigorous TRUE
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facts. These can be formulae (e.g., in Bayesian system Pr(x) = Pr(x∧y)+Pr(x∧¬y)),
extrinsically-imposed constraints (e.g., in contingency tables the last value of a row
must be the sum of the values of the row), or intrinsic constraints (e.g., the area of a re-
gion is the sum of the areas of its parts). Thus, tactics and facts are the main constituent
properties of an RS.

As with grammatical complexity, inferential complexity (i-complexity in Tables 1
and 2) can be measured according to known standards. The partial order induced by in-
jective embeddings of theories within one another could be a basis by which to compare
systems, but a radical simplification by flattening into 5 classes turns out to be enough
for a rough assessment of complexity. We propose the following levels (with a known
system for reference): 1 (propositional logic), 2 (decidable fractions of arithmetic/set
theory), 3 (Peano arithmetic), 4 (constructive set theory), and 5 (Zermelo-Fraenkel).

Furthermore, we include the property of rigour to describe whether the calcula-
tions/proofs are guaranteed to be exact/correct.

We described the most significant properties of RS tables. Our framework includes
more, but it is nevertheless a fixed set of kinds for every RS table. This provides a
template that can aid an analyst to generate tables, ensures consistency across different
RSs, and is sufficient for an in-depth analysis of representations. See Tables 1 and 2 for
some example RS tables.

3.2 Problems

Abstractly, a problem q is a triple (Oq, Gq, Cq) where Oq is an initial condition, Gq is
a goal condition, and Cq is a set of constraints on the paths leading from the states that
satisfy Oq to the states that satisfy Gq [21].

This definition is difficult to square with the fact that problem specifications rarely
look like such a triple. Our contention is that this is because most problems are about in-
formation recovery within a space determined by conventional information-manipulation
rules.

For example, the Birds problem above is neither explicit about the goal condition
nor about any path constraints, and we can only assume that the initial condition is what-
ever state things are when the problem is presented. However, a competent problem-
solver will find the statement what is the probability . . . informative about the type of
the answer expected (specifically, ratio, percentage, or real number or any data-type
usually used to encode probability values). In other words, the problem-solver is ex-
pected to perform type-inference to obtain the answer type. Moreover, the rest of the
problem statement will typically provide data which, under conventional interpreta-
tions, can be manipulated to recover the answer. Thus, given a problem specification q,
the information (Oq, Gq, Cq) is hidden in the specification and meant to be inferred by
the problem solver.

We call the set of paths that satisfy (Oq, Gq, Cq) the semantics of the problem.
The relation between a problem specification and its semantics is complex, because it
requires, first, an understanding of how the specification relates to the triple (deemed
problem understanding by [21]), and second, knowledge of the paths that satisfy the
triple (problem solving).
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Q tables. Similar to RS tables, Q tables encode the properties of problems (Q proper-
ties) as kind–value pairs.

The presentation of a problem requires an RS. We write q : S to denote ‘a problem
q represented under system S’. Then, a problem’s properties can be encoded similar to
representational systems (e.g., which types and tokens appear). The only difference is
that here we qualify the properties by their semantic contribution. Thus, to build a Q
table, an analyst is required to estimate the semantic contribution of properties. That
is, they need to decide on the hierarchy of the importance of each property relative to
other properties. Naturally, we do not assume full knowledge of the semantics, as this
would require complete knowledge of solutions. We only assume partial understanding
of the goal conditions, and any estimation of the relevance of different properties can
help. See Table 3 for a Q table for the Birds problem.

Table 3. A Q table for the Birds problem in its natural language representation. The colour codes
for importance relative to information content: essential (purple), instrumental (blue), relevant
(green), circumstantial (yellow), noise (red).

kind value
error allowed 0
answer type ratio
tokens probability, and, not
types ratio, class
patterns :ratio of :class are :class, probability of :class and :class
facts Bayes’ theorem, law of total probability, unit measure, additive

inverse, . . .
tactics deduce, calculate
tokens one, quarter, all, animals, birds, two, thirds, can, fly, half, flying,

X, animal, probability, cannot
related tokens times, divided by, plus, minus, equals, union, intersection,

probability, zero, . . .
# of tokens 67
# of distinct tokens 31
# of statements 5
tokens feathers
related tokens beast, animate, creature, wing, aviate, flock, fowl, dame, carnal,

being, fauna, . . .

Properties such as error allowed and answer type are at the top of the importance
hierarchy (purple/essential) because they inform us directly about the goal condition.
Specifically, answer type refers to the shape of the data (data-type) expected to appear in
any state satisfying the goal conditions, and error allowed refers to the rigour expected
out of the answer (i.e., how permissive is the goal condition).

Next (blue/instrumental) in the hierarchy are any tokens, types, patterns, facts, or
tactics with pivotal roles in the solution(s). These properties are informative about how
the paths in the state space which lead to solutions look.
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One step below (green/relevant) are things which are clearly informative about the
semantics of the problem, but which may also contain noise or just be informative as
heuristics. This now includes tokens which may not appear in the problem specification
but which may be useful along the way.

The lowest classes are either circumstances of the representation (yellow/circum-
stantial), or outright noise (red/noise)—that is, tokens that either appear in the specifi-
cation or are evoked by it,3 which contain no information about the semantics. Notice,
for example, that the Birds problem contains the statement birds have feathers which is
not used by any solution. Thus, the token ‘feathers’ is classified as noise. Any tokens
related to the zoological interpretation of the problem are taken as noise. Encoding
these explicitly may be useful to understand potential missteps or distracting data in the
specification.

Every Q table will have a fixed set of property kinds. This provides a template to
generate tables—empirically, these proved sufficient for an effective analysis of candi-
date representations in relation to the problem.

3.3 Correspondence

We have presented a framework for encoding the properties of problems and represen-
tational systems. Now we need some method for assessing the relative value of different
RS for representing a given problem. Our approach relies on the notion of correspon-
dence, which is a way of relating Q properties with RS properties. It is the fundamental
notion that we use for calculating the match of an RS to a problem.

Analogical correspondences. Different RSs are linked to each other through structure-
preserving transformations. For example, an event can be encoded as a proposition,
or as a set, or as a region in the plane. These relations between types form the basis
of more complex analogies. For example, the conjunction of two events corresponds
to the intersection of two regions, and the probability of an event corresponds to the
area of its corresponding region. Furthermore, such transformations also induce the
correspondence of facts. For example, if probability corresponds to area, then the Law
of Total Probability corresponds to Additivity of Areas. The logic and mechanisms for
reasoning through such transformations has been explored elsewhere [24]. In this work,
rather than the mechanism, we are concerned with assessing the relative value that such
transformations provide.

Q-specific correspondences. The analogical correspondences are induced by transfor-
mations between RSs (i.e., the mapping between tokens/types/facts/tactics). However,
other problem-specific information may also be valuable for assessing RSs. For exam-
ple, the error allowance of a problem informs us whether we need a rigorous RS or
whether an imprecise one is sufficient (if there are other reasons for it to be valued,
e.g., an approximate solution is sufficient for young children). Thus, correspondences
such as between the Q property error allowed = 0 and the RS property rigorous can be
included.

3 Those appearing in this example are taken from a semantic net [30].
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Correspondence tables. Currently, we assume that a catalogue of such transforma-
tions/analogies is known. Furthermore, we assume that we have a measure that esti-
mates the information loss in a correspondence. We call this the correspondence
strength.4 For example, the injection of natural numbers into real numbers is lossless,
so the strength of type natural to type real is assumed to be 1. However, any transfor-
mation from real to natural is lossy, so its strength must be less than 1 (the question of
how much exactly is up for discussion). Thus, each correspondence can be encoded as
a triple (pq, pr, s) where pq and pr are Q and RS properties, respectively, and s is the
strength.

Each correspondence between a property of q and a property of S can be seen,
roughly, as a reason why q could be represented in S. Simplistically, this could mean
that adding up the values of all correspondences between q and S might give us a score
of S. However, the reasons may not be independent, so adding them up may count
redundant correspondences multiple times. Thus, we introduce a simple calculus for
specifying correspondence in the most independent possible way (e.g., see Table 4;
more details are in Section 4.2).

Table 4. Some example correspondences encoded with operator OR.

Q property formula RS property strength
type occurrence OR type class type event 1

type ratio OR type percentage type real 1

token intersection OR token and token ∩ 1

token given OR token if token | 1

error allowed = 0 rigorous 1

error allowed = 0 NOT rigorous −1

But how can Q, RS, and correspondence tables be used for representation recom-
mendation? We present a proof-of-concept algorithm next.

4 Using the framework

Our tables give us properties of the problem and of the candidate RSs. Correspondence
tables give us explicit links between them. The task now is to exploit this information to
find correspondences which match properties of both the problem and the target RS. Not
all properties bear equal importance, thus we modulate the correspondence strength.
Combining these assigns a real value to each potential RS indicating its relevance as a
candidate RS. Algorithm 1 implements this process.

4.1 Matching correspondences

In our running example, we have a Q table for the Birds problem and four RS tables for
the representational systems: Bayesian, Geometric, and Contingency, and also an Euler

4 In future work, we will investigate how correspondences and their strength can be identified
automatically (e.g., using machine learning).
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Algorithm 1 Uses properties of problems and representational systems to rank candi-
date RSs.

LOADTABLES()
recommendations← [ ]
for each representation do
t← 0 // t is the score
for each correspondence do

propq ← PROPS(problem)
propr ← PROPS(representation)
(pq, pr, strength)← correspondence
importancecorr ← MAX(IMPORTANCE, pq)
if MATCH(propq, pq) and MATCH(propr, pr) then
t← t+ importancecorr × strength

end if
end for
if t > 0 then

APPEND(recommendations, 〈t, representation〉)
end if

end for
return SORTED(recommendations)

RS table.5 They are accompanied by a table of correspondences between properties. Al-
gorithm 1 accesses these tables, and then iterates over the RSs to find correspondences
linking the problem to the RS.

Suppose the first candidate representation for the Birds problem is Bayesian. Thus,
we consider the Bayesian RS table and the Birds problem Q table. Next, we examine
each correspondence: a triple (pq, pr, s) where pq and pr are properties of the problem
and representation, respectively, and s ∈ [−1, 1] is the correspondence strength. We
examine if both Q table properties and RS table properties match the conditions of this
correspondence. For example, the correspondence:

(error allowed = 0, rigorous, 1)

from Table 4 matches properties in the Q table in Table 3 and those in the RS table
from Table 1. If there is no match, we disregard this correspondence.6 When they do
match—as in this example—we take the strength s and modulate it by the importance
of the matched Q property. Each importance colour band is assigned a value in the [0, 1]
interval, which we multiply by the strength of the correspondence s. Our example corre-
spondence involves the property error allowed, which is an essential (purple) property,
so is modulated by the ‘essential’ value 1. Altogether, this correspondence contributes
1× 1 = 1 to the Bayesian RS ranking score.

5 By ‘Euler’ we mean some implementation of Euler diagrams.
6 Future research includes considering the importance of question properties that remain un-

matched.
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4.2 Property formulae

The pq and pr from the correspondence triple can be property formulae expressed in a
simple calculus using binary connectives AND and OR, and the unary connective NOT.7

The property calculus allows for greater expressivity and better captures the nature of
correspondences between Q and RS properties. We see this in the correspondence:

(type occurrence OR type class, type event, 1)

where we require one (or both) of the properties specified in the pq of the correspon-
dence triple to occur in the Q table. In this situation, we do observe type class occurring
as an instrumental (blue) property. The correspondence is matched despite the absence
of type occurrence; notice that it was necessary to observe type event in the Bayesian
RS table. The matched correspondence formula involved both type class and type oc-
currence, with the match being satisfied by an instrumental (blue) property. Thus, the
correspondence strength of 1 is modulated by the ‘instrumental’ value 0.6, increasing
the Bayesian RS score by 1× 0.6 = 0.6.

4.3 Making a recommendation

Once all correspondences for a particular Q and RS are identified and modulated by
importance, we combine them to a single score. This can be done in many ways: we take
a simple sum. For the example of the Bayesian representation and the Birds problem,
the correspondence analysis gives an overall score of 9.3.

Repeating the scoring process above for each candidate RS yields the following
recommendation ranking:

Bayesian 9.3
Geometric 7.2
Contingency 5.4
Euler 1.5

We hence recommend that the Birds problem, initially posed in a Natural Language RS,
might be better attempted in the Bayesian RS. This seems a sensible recommendation.

5 Discussion and future work

So far we showed that representation selection can be encoded in a sufficiently for-
mal way to computationally analyse the underlying informationally-relevant structural
matches across domains. This is novel and exciting. We now evaluate the quality of
performance of our framework, and discuss its significance for applications and future
work.

7 AND requires that both properties appear in the property table. OR requires that at least one of
the properties appears in the property table. If both properties appear in the table, the strength
is only counted once. NOT requires that a specified property does not occur in the property
table.
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5.1 Analysing the trace

Perhaps more interesting than the resulting scores is the data that the trace of the algo-
rithm execution provides. For example, it enables an analysis about how individual cor-
respondences contribute to the total score. The high importance (essential) Q property
answer type ratio corresponds to properties type real in the Bayesian, Geometric, and
Contingency systems. However, in the Euler system it has no corresponding property.8

Similarly, the token probability corresponds to the token Pr in Bayesian, and the tactics
compare sizes and compare cell values in Geometric and Contingency, respectively, but
it has no correspondence in Euler. Thus, due to the high values for the importance of the
essential and instrumental properties, the gap between Euler and the other RSs widens.
This is expected and desirable.9

We observe that tokens in some systems (e.g., probability) can correspond to tactics
(e.g., compare sizes) without corresponding to any specific tokens. This is interesting
from the cognitive perspective, because these tokens and tactics are very different oper-
ationally. A cognitively focused analysis may be able to assess the impact of differences
of this sort.

The trace analysis has many potential applications. We envision tutoring systems
that can make specific recommendations (e.g., “maybe you can draw a region in space
to represent the class of animals”), or explainable AI systems that can justify their
decisions in a humanly-understandable manner.

Zero-weight properties. Some Q and RS properties make no contribution in terms of
correspondence scores, for example, all the circumstantial and noise properties. Never-
theless, we chose to encode them in our framework because they have potentially im-
portant effects on cognitive processes. For example, the total number of (circumstantial)
tokens may be used to estimate the cognitive cost of registering a problem specification.
Moreover, the inference power of an RS may make it more applicable from a formal
point of view, but the cost of using it may be higher from a cognitive point of view.

An analysis of the correspondence between noise properties of Q and RS may be
used for predicting human error or bias. For example, a novice user might be tempted to
represent zoological facts given in the Birds problem, but they contribute to unnecessary
cognitive costs.

5.2 Evaluating the framework and algorithm

To our knowledge, no work has been done on computationally modelling representation
selection, so we have no benchmarks by which to judge our framework or algorithm.
The execution of the algorithm presented here is a proof-of-concept application, but it
shows that given our encoding of a problem Q and various representations RSs, we can

8 In Euler diagrams the cardinality of sets is abstracted away; the size of zones is meaningless.
9 It is also noteworthy that the strength of the correspondences from probability to Pr and com-

pare sizes was set to 1 (because in principle any probability function is representable in the
Bayesian or Geometric systems), but it was set to 0.5 for Contingency because not every prob-
ability function is representable in Contingency tables.
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compute interesting measures. Moreover, the approach that we take for encoding the
description of problems, RSs and correspondences makes minimal assumptions about
them. This makes it general. So far, we have encoded 9 different RSs and various prob-
lems.

One of the main limitations of our framework is the need for an analyst to encode
the properties of Qs and RSs, the correspondence strengths, and the importance that
each Q property has relative to potential solutions. This clearly requires the analyst to
understand the complexity of a problem, and to have at least some understanding of
how a solution would look (e.g., identifying potentially instrumental facts). This poses
a problem for automation. One way of tackling this is with the help of machine learning
methods similar to the work of [18] for lemma selection.

5.3 Future work

Our framework opens up many avenues for future research. Automating the generation
of Q and RS tables and their importance is a clear goal to be achieved. We are currently
including methods for analysing the cognitive properties of representations, and want
to extend the framework to include user profiles next. We are curious to find out if rep-
resentation selection based on our framework can promote problem solving or learning
in humans, and want to incorporate it into a personalised multi-representation tutoring
system.

6 Conclusion

We have presented a novel framework for computationally selecting suitable represen-
tations. We introduced the language, data structures, and methods for encoding and
analysing the properties of problems, of representational systems, and the correspon-
dences between them.

Our proof-of-concept algorithm ranks representational systems according to a mea-
sure of suitability given a problem. The algorithm analyses the problem’s properties in
terms of their informational contribution and estimates the likelihood that the problem’s
semantics can be recovered in each candidate RS. We see this work as an exciting foun-
dation upon which we can build the machinery to analyse cognitive properties, so the
user profile may be included to calculate a recommendation.
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