
Beginners’ Quest to Formalize Mathematics:
A Feasibility Study in Isabelle

Jonas Bayer2, Marco David1, Abhik Pal1, and Benedikt Stock1

1 Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
{m.david,ab.pal,b.stock}@jacobs-university.de

2 Freie Universität Berlin, Institut für Mathematik, Arnimallee 3, 14195 Berlin,
Germany. jonas.bayer@fu-berlin.de

Abstract. How difficult are interactive theorem provers to use? We re-
spond by reviewing the formalization of Hilbert’s tenth problem in Is-
abelle/HOL carried out by an undergraduate research group at Jacobs
University Bremen. We argue that, as demonstrated by our example,
proof assistants are feasible for beginners to formalize mathematics. With
the aim to make the field more accessible, we also survey hurdles that
arise when learning an interactive theorem prover. Broadly, we advocate
for an increased adoption of interactive theorem provers in mathematical
research and curricula.

Keywords: Interactive theorem proving · Isabelle · Formalized Mathe-
matics · Hilbert’s tenth problem

1 Introduction

The challenge to formalize all of mathematics, as issued by the QED Mani-
festo [3], might have seemed unrealistic for the 1990s but recent advances in
theorem proving clearly demonstrate the feasibility of using theorem provers in
mathematical research. Examples for this are the formalization of the odd-order
theorem in Coq [9] and Kepler’s conjecture in HOL Light [10]. Even though
these tools provide the possibility of establishing mathematical truth once and
for all, mathematicians are reluctant to use interactive theorem provers to verify
the correctness of their proofs [5,6]. “Interactive theorem provers are written by
computer scientists for computer scientists,” the complaint goes, quickly followed
by a comment on their infeasibility for non-experts.

In October 2017, twelve undergraduate students who just started their uni-
versity studies were asked to verify a mathematical proof using an interactive
theorem prover. Upon initiative of Yuri Matiyasevich, whose contribution [16]
was key to solving Hilbert’s tenth problem but who had no experience with proof
assistants, the undergraduates set out to formalize the problem and its solution.
Given the interactive theorem prover Isabelle [18]3 as “relatively easy to learn,”
the Hilbert meets Isabelle project was born.

3 In rest of the paper we write “Isabelle” to also mean “Isabelle/HOL”.

ar
X

iv
:2

10
6.

12
35

1v
1 

 [
cs

.L
O

] 
 2

3 
Ju

n 
20

21



2 J. Bayer et al.

Sixteen months and many ups and downs later, the project stands close to
completion. The students have made many mistakes and the large workgroup
has shrunk, but, most importantly, they all have learned a lot. We herewith
present a feasibility study of interactive theorem provers for non-experts and
disprove the concern raised earlier. From young students to senior scientists in
mathematics, computer science, and engineering, everyone can pick up a proof
assistant to formalize their work — it will be well worth the effort!

This paper reports about the ongoing project, reviews the tools and resources
that were used, and reflects on the learning process of the group. With an em-
phasis placed on formalizing mathematics, we wish to analyze the hurdles of
becoming a proficient user of an interactive theorem prover, scrutinize our mis-
takes, and share the lessons we learned in the process. We also give a list of
suggestions to developers and future beginners to aid the interactive theorem
proving community to grow and welcome more mathematicians in the future.

Overview This paper is organized as follows: In section 2 we provide context to
the formalization. In particular, we briefly outline Hilbert’s tenth problem and
explain the background and motivations of those involved. Then in section 3
we analyze the process of formalization, identify our key mistakes, the lessons
learned from those mistakes, and things we will do differently now. The current
status of the formalization is also given in this section. Finally, based on our
experience of learning Isabelle, in section 4 we provide recommendations to the
theorem proving community and beginners interested in formalizing mathemat-
ics.

2 The Quest to Formalize

On a visit to Jacobs University Bremen one and a half years ago, Yuri Matiyase-
vich recruited students for a newly conceived research idea: to conduct a formal
verification of his solution to Hilbert’s tenth problem. In order to promote this
project, he gave a series of talks on the problem, its negative solution, and related
questions [13,14]. These got a collection of students curious and before long, a
research group was formed. The project was co-initiated by Dierk Schleicher who
supported, mentored, and supervised the workgroup.

However, neither Yuri Matiyasevich nor Dierk Schleicher had any previous
experience with interactive theorem provers. Coq [4] was known as a well es-
tablished, yet difficult to learn proof assistant, but Yuri Matiyasevich ultimately
suggested Isabelle. Supposedly with a less steep learning curve and better doc-
umentation, this choice manifested. Thus began the quest to formalize.

Hilbert’s tenth problem and the MRDP theorem Hilbert’s tenth problem
comes from a list of 23 famous mathematical problems posed by the German
mathematician David Hilbert in 1900 [12]. Hilbert’s tenth problem asks about
Diophantine equations, which are polynomial equations with integer coefficients:



Beginners’ Quest to Formalize Mathematics 3

Does there exist an algorithm that determines if a given Diophantine equation
has a solution in the integers? [16] The Matiyasevich–Robinson–Davis–Putnam
theorem (also known as the MRDP theorem, DPRM theorem, or Matiyasevich’s
theorem) finished in 1970 by Yuri Matiyasevich [15], which states that every
recursively enumerable subset of the natural numbers is the solution set to a
Diophantine equation, implies a negative solution to Hilbert’s tenth problem.

For the proof, one first needs to develop the theory of Diophantine equations.
This entails showing that statements such as inequalities, disjunctions, or con-
junctions of polynomial equations can be represented in terms of Diophantine
polynomials. Then, as the first major step in the proof, one shows that exponen-
tiation also has such a Diophantine representation. Next, after developing the
notion of a recursively enumerable set using a Turing-complete model of compu-
tation (for instance using register machines), one shows that this computation
model, which accepts exactly the elements of recursively enumerable sets, can
be arithmetized, i.e. simulated using Diophantine equations and exponentiation.
Since there exist recursively enumerable (semi-decidable), and hence Diophan-
tine, sets that are not decidable, any proposed algorithm would have to solve
the halting problem in order to decide an arbitrary Diophantine solution set.

Students’ Background and Parallelization of Work After the team ac-
quainted itself with the proof, the workgroup was split accordingly: Team I
worked on showing that exponentiation is Diophantine, Team II on register ma-
chines and their arithmetization. Figure 1 gives an overview of the structure of
the project. For the first part, Matiyasevich [16] provides detailed proofs; how-
ever, the arguments in the second part were at a higher level of abstraction.
While Team I could work on formalizing the first part with minimal Isabelle
knowledge and the already detailed paper proof, the second part of the formal-
ization turned out more challenging. The arithmetization of register machines
required not only an understanding of all details omitted in the paper, it also
required a good understanding of existing theories of already formalized math-
ematics and practice with Isabelle’s tools — what definitions lend themselves
to automation? What is the appropriate level of abstraction? What makes for a
definition that can be used well in proofs? etc.

Especially with the diverse background of many group members, the above
questions were not answered, let alone asked, immediately. The students involved
were mainly first year undergraduates studying mathematics and computer sci-
ence, who had not taken a course on theorem proving. Not only did the students
lack any foundational knowledge in logic and type theory, some did not even have
prior programming experience. Combined, these factors resulted in an approach
to learning that can best be described as haphazard. However, unbeknownst to
the workgroup, these also became the preconditions for a larger feasibility ex-
periment in theorem proving — how a group of inexperienced undergraduates
can learn an interactive theorem prover to formalize a non-trivial mathematical
result. In broader terms, the next few sections report on this feasibility study.



4 J. Bayer et al.

Digit Definition
Representations of numbers
in arbitrary bases

Specification
Execution model of a RM, valid-
ity / termination assumptions

Lucas’s Theorem
Digits of

(
n
k

)
in a

prime base

Digit Operations
Digit-wise operations on bi-
nary numbers

Properties
Execution trace of machine,
other properties

Digit Comparison
Relationships between digit-
wise operations

Simulation
Arithmetization of execution
trace (ET)

Alternative Diophantine
Impl. of is diophantine for
predicates

Equations and Equivalences
Equivalences between terminat-
ing RMs and artihmetized ETs

Exponentiation is Dio-
phantine
Monolithic ≈ 3000 loc proof

MRDP
Every recursively enumerable set
is Diophantine

Diophantine implemen-
tation
Diophantine predicate for
sets

Hilbert 10
Unsolvability of Hilbert’s tenth
problem

Diophantine

Positional Notation Register Machine (RM)

Fig. 1. Simplified overview of the project’s structure.

3 Sledgehammer Abuse, Foolish Definitions, and
Reinventions

In the beginning, many definitions, functions, lemmas, and proofs were written
without an overall understanding of their individual functionality and utility.
Especially for proofs, a lack of this structural understanding prevented the for-
malization from advancing. This section reviews the gamut of work done on
the formalization between October 2017 and February 2019 and analyses the
key mistakes that were made in the process, as well as the lessons learned from
them.

Reinventions and Sledgehammer Abuse Due to the different nature of the
two parts of the proof, the two teams progressed with different speed and success.
Team I started by implementing custom 2×2 matrices which are used frequently
in the first part. Although they initially searched for a matrix datatype within
existing Isabelle theories, this search turned out unsuccessful as few relevant



Beginners’ Quest to Formalize Mathematics 5

results appeared. And the results that were found did not allow the team to
infer how to use the respective implementations for their own proofs. As the
formalization progressed, many other definitions and statements started relying
on these custom types. Not only did this result in a dependency-blow-up of
elementary properties that needed proving, they also prevented Isabelle from
automating many parts of the proofs.

The reimplementation of this basic type was followed by stating and assuming
intermediate lemmas without proof using Isabelle’s convenient sorry keyword.
This allowed for parallelizing the work on separate parts. The number-theoretic
nature of proofs made it easier to use tools like sledgehammer that call external
automatic theorem provers to search for proofs. The general approach to prove
a given statement was the following: state an intermediate step, then check
if sledgehammer can find a proof, otherwise introduce a simpler sub-step and
repeat.

Since the paper proof was understood in full detail and the internal Isabelle
libraries were sufficiently sophisticated, the sledgehammer-and-repeat approach
worked surprisingly well. In fact, much of the entire first part was successfully
formalized using this approach. This, however, had two main flaws. First, the
proofs themselves were generated by automated theorem provers without hu-
man insight, hence cumbersome and almost impossible to understand. Second,
since the approach worked relatively well it didn’t incentivize the members to
learn more about the Isabelle system and understand the functionality it pro-
vides. Remaining a mysterious tool that could automagically prove theorems,
sledgehammer’s capabilities, limitations, and output were never actually under-
stood.

Foolish Definitions In parallel to the above, Team II worked on arithmetiz-
ing register machines and the results of the second part of the proof, which
culminates in the statement that all recursively enumerable sets are exponen-
tially Diophantine. The groundwork underlying this part of the implementation
included a definition of register machines, in particular Minsky machines. This
modeling task initially posed a major hurdle towards the formalization. In ret-
rospect, the ideal implementation makes all variables used in the proof become
readily accessible. The first implementation written was, however, the direct
opposite of that as it made extensive use of lists, fold operations, and compre-
hensions. This approach, while easy to implement, turned out to be too unwieldy
for any proofs. In the end, the implementation from Xu et al. [20] was used as
model for the formalization. While they describe a Turing machine, compatible
ideas were extracted and used to implement register machines.

Once a workable model of register machines was implemented, the group
could set on the goal to actually prove lemmas that were only stated before.
For Team II, this is where the actual challenge of learning Isabelle started all
over. Although the register machine model succeeded in being strongly modu-
lar, its properties were inherently more complicated than the number-theoretic
statements from the first part. In particular, most lemmas about the workings



6 J. Bayer et al.

of a register machine typically required one to fix some initial state, some set
of instructions as well as to assume validity of all state transitions, etc. Break-
ing proofs down into smaller and smaller pieces, as is commonly done also in
mathematics, hence became much more difficult. In some sense, the large size of
the implemented machinery posed a mental barrier to tackling the stated lem-
mas. Extrapolating the sledgehammer-and-repeat strategy of Team I, Team II
initially hoped for automated theorem provers to prove very extensive lemmas
without much human help. In retrospect this was a ridiculous expectation.

Expecting Intuition from Isabelle To add to this, it turned out that the
small details of intermediate proof steps were often not understood as well as
the group thought. This lead to “proof-hacking” scenarios even after lemmas
had been successfully split into smaller statements. Most prominently, Matiya-
sevich [16, Section 4.4.2] gives a central property of register machines without
elaborate proof because it follows from an analogous special case. Due to the
similarity of the properties both in writing and in function, this generalization
was intuitively clear. However, collectively the team did not know how to convey
this intuition to Isabelle. It took several months until a complete “paper-proof”
of all intermediate steps, done by a member of the group, could suddenly give
the formalization of this property new momentum. With a new straight-forward
approach, its proof was seamlessly completed. Even though many proofs are
conceptual, often to ease reading and understanding, every correct proof can be
made formal by definition, on paper and hence in an interactive theorem prover.

Finally, the exact implementation of finite power series used in the proof
posed one more difficulty. Throughout the project, three definitions of such se-
ries coexisted. One can define a finite sum directly, or alternatively define re-
cursive functions which, in each iteration, add a term to the series from the left
or right. Their equivalence can be easily proven; yet, depending on the specific
use case within a proof, the right definition becomes pivotal. Exactly the above
generalization benefited from an explicit definition of the power series as a finite
sum, and would have taken significantly more effort with any of the other def-
initions. Incidentally, this is similar to conventional mathematics on paper but
contrasts conventional programming where there often is no difference between
two equivalent definitions.

In similar fashion, the complexity of proofs may considerably change depend-
ing on the facts which are added to the set of automatically used simplification
rules. As such, both the right setup of definitions before proving as well as the
right setup of the prover determine the (human) provers’ success.

Current Status With all of this at hand, the second part of the formalization
was only recently advanced. Additionally, many conceptual issues were resolved
earlier this year with the dedication and input from Mathias Fleury. As of writ-
ing, only few lemmas in the second part — and hence in the entire Isabelle
formalization of the MRDP theorem — remain to be completed. In particular,



Beginners’ Quest to Formalize Mathematics 7

these include more minor lemmas on register machines, proving Lucas’s theo-
rem on digit-wise representations of binomial coefficients in a prime base, and
proving that certain relations like binary digit-wise multiplication are Diophan-
tine. Table 1 lists some statistics from the current state of the formalization4.
Once completed, the formalization is expected to be sent as a submission to the
Archive of Formal Proofs [1].

Table 1. Statistics about the current progress (as of commit bea7403d) of the formal-
ization.

Lines of code 7759
— of which for Register Machines 2692
— of which for Diophantine theories 3856
— of which for Positional Notation 1150
— of which for miscellaneous files 61

Number of definitions 48
Number of functions 41
Number of lemmas and theorems 295

Lessons Learned Throughout the above story, we5 learned many lessons which
we share below. From discussions with Isabelle users of different background
and at different levels, a small survey showed that these also are issues for most
learners. One could call the following “trivial” and we would probably agree.
However, these lessons are so essential that we recommend any future beginner
to be absolutely aware of them.

1. Merely understanding the idea of a proof and knowing how it is carried out
conceptually does not suffice for its formalization. As tempting as is might
seem to start proving in Isabelle, the formalization should only be started
after the proof has carefully been written down on paper in full detail.

2. Working with concepts that frequently pop up in mathematics, it is likely
that someone else has worked on them before. Instead of reinventing the
wheel, one should search the existing and extensive Isabelle libraries.

3. The exact implementations of functions and predicates can both facilitate
but also impair the progress of any proof. The chosen definitions directly
reflect the approach taken to the problem, which also has a big impact on
conventional proofs. However, they additionally require an adequate level of
abstraction so that human and proof assistant can work with them effectively.

4 The actual source code has been made available at https://gitlab.com/hilbert-10/
dprm under the GPLv3 license.

5 In rest of the text the authors use “we” to interchangeably refer to themselves as
authors and as representatives of the workgroup.

https://gitlab.com/hilbert-10/dprm
https://gitlab.com/hilbert-10/dprm


8 J. Bayer et al.

What to Change Next Time Conjointly, reflection of our method of working
and learning reveals several defects, which are presented below. We suspect that
these, in turn, are very likely to have systematically caused the above mistakes,
or at least delayed their mending. In particular, we view the following points as
definitive “not to-dos” for any formalization project using interactive theorem
prover.

The most valuable source for beginners is undoubtedly Tobias Nipkow’s Con-
crete Semantics [17]. We would have learned much quicker and with more struc-
ture, had we had strictly followed this book and its exercises. Learning Isabelle
on the fly, in a learning-by-doing fashion, and looking up commands as needed
was futile and it remains questionable if any such method of learning can be
successful. Given many group member’s previous programming experience, we
clearly overestimated our ability to transfer this knowledge to an interactive
theorem prover.

Expanding on this note, our experience suggests that relying on program-
ming experience is helpful but should be done in tandem with an awareness of
the key differences between programming and proving. Most notably, theory files
are not compiled nor executed and proofs need to be written with a much more
mathematical and structured mindset, as compared to programming. Interac-
tive theorem provers are not just “yet another programming language” and our
failure to realize this has only lengthened the learning process.

We became aware of the two mistakes described above after connecting with
the very approachable Isabelle community. Only then we realized how näıve our
initial approach to learning Isabelle was. Hence, when working on a formalization
for the first time, it is very helpful to have an expert around who can be consulted
when more conceptual questions arise. We agree that this may not be ideal, which
is why further discussion on this issue follows in the next section.

4 Decoupling Learning from Experienced Individuals

We all have learned a lot from different members of the Isabelle community.
In this ongoing process, we gradually realize that there’s more to interactive
theorem proving than just having one’s lemmas accepted by the computer. A
prime example for this is knowing what definitions are useful in which scenario.
We’ve observed both ourselves and others, that experienced users seem funda-
mental to one’s Isabelle education. Most of this education goes beyond mere
factual information and includes understanding the Isabelle system on a deeper
level, developing a systematic methodology of writing proofs, and developing a
“feeling” for the proof assistant. From this, we conjecture the following.

Conjecture. Learning Isabelle currently depends on having an experi-
enced user in reach who can regularly answer questions.

We speculate that this can be generalized to other interactive theorem provers,
too. While we agree that learning from another user or developer in person is
certainly efficient, this becomes unsustainable as the community grows. This



Beginners’ Quest to Formalize Mathematics 9

naturally begs the question: How can a beginner’s learning process become more
guided by resources and documentation, therein more independent? We do not,
and possibly can not, answer this question exhaustively. Nevertheless, we ask
this question both to ourselves and the community and present our attempt at
answering it.

Expand Documentation Documentation plays a key role in helping new users
get accustomed to a new tool. And accessible, readable and easy to navigate
documentation, hence, is key to promote self-learning. As beginners our first
point of contact with Isabelle’s documentation system was the “Documentation”
tab in the prover IDE. However, we found it difficult to navigate as there was
no clear indication of which document is suitable for beginners. In retrospect
we realize that working though Nipkow’s tutorial [17] would have been the most
ideal. However, we still feel that the current documentation system could be
expanded as follows.

We identify four key parts of a systematic documentation system6. Tutorials
that walk new users through specific parts of the Isabelle system, how-to guides
for learning and using tools, topic guides that give the theoretical basis for
many of the features, and finally a repository of references that document all
necessary details. While the current documentation system addresses three of
those parts, it still lacks a crucial link that connects them: the topic guide.
This lack immediately implies that any deeper understanding of the system can
only come from being around regular users – hence tightly coupling a successful
learning experience to advanced users.

Maintain a Knowledge-Base In tandem with documentation, it helps to ac-
cumulate a knowledge-base of beginner- and intermediate-level questions and
answers. The Isabelle-users mailing list currently hosts the entire range of ques-
tions and is definitely appropriate for advanced questions. However, the thread
archives are not suitable nor effectively searchable as a database for questions
which many more are likely to have. Hence, we encourage users to ask these ques-
tions on Stack Overflow or a similar online forum. Stack Overflow, for example,
aspires to become an ultimate and exhaustive knowledge base, and has achieved
this for many larger communities. Conventional programming languages strongly
benefit from that any basic question — as elementary it may be — has been
asked and answered before. The interactive theorem proving community can do
this as well.

We suggest that introductory-level resources like Concrete Semantics or the
Isabelle Community Wiki main page actively encourage users to ask questions
on Stack Overflow to build such a knowledge-base. This way, every question will

6 This identification is, by no means, original. Many large open-source software
projects are aware of this structure and routinely advocate for documentation that
conforms to it. See for instance the Django documentation [8] and the Write the
Docs project [2].



10 J. Bayer et al.

only need to be asked and answered once, and everyone can benefit from users
who share their expertise.

Develop the Isabelle Community Wiki Thirdly, we suggest to expand the
Isabelle Community Wiki in a similar fashion: by an organic community effort.
In the initial stages of our project, we used an internal “Isabelle Cheat Sheet”
to facilitate mutual knowledge exchange. This Cheat Sheet was meant to be
a platform where common problems and their solutions could be presented to
everyone. In this respect, the intention was very similar to the “Isabelle Commu-
nity Wiki”. Although, interestingly enough, our own Cheat Sheet and the Wiki
were completely disjoint until we merged them.

While the Cheat Sheet initially only included very basic syntactical facts it
was quickly extended by features of Isabelle that are not described in existing
beginner-level resources, e.g. Concrete Semantics. This includes the possibility
of passing arguments to sledgehammer or how to look up facts in the existing
theories. Other facts on the Cheat Sheet include keywords that can be used for
custom case distinctions. Coming back to the previous point, we found out about
the latter specifically after asking the Isabelle community on Stack Overflow. The
fact that the question and answer have received several upvotes indicates that
questions like this are indeed relevant to a broader audience.

Adopt into University Curricula In a larger scope, all of the aforementioned
would strongly benefit from a growing user base. Having a larger community
means that more people will ask questions and thereby create documentation,
as well as eventually become experts themselves, working on exciting projects.
As a matter of fact, knowing how to use an interactive theorem prover can
be valued highly in many fields. Clearly, there is academia with mathematics
and computer science which both have an interest and sometimes even a need to
formally verify [10]. But uses in industry and engineering are equally compelling:
formally verified robots, airplanes, rockets, and nuclear plants prove attractive to
many companies and governments. Just one example of this prevailing relevance
is given by the annual NASA Formal Methods Symposium.

In order to connect potential new users to the interactive theorem proving
community as early as possible, we think that initiatives like Proving for Fun [11],
i.e. “competitive proving” challenges, are a great idea to popularize the métier.
Well-established competitive programming contests range from the International
Informatics Olympiad to tech giant sponsored events and attract students as
young as middle school from all over the world.

More radically, we suggest this subject be adapted into mathematics, com-
puter science, and engineering curricula at universities. For wide acceptance, in
particular Bachelor students need to be exposed to these tools before they spe-
cialize. Otherwise, knowledge will keep being passed on from PhD student to
PhD student within existing research groups, but not become decoupled from
exactly these. Of course, this integration can happen step by step. Initially, there



Beginners’ Quest to Formalize Mathematics 11

may be an small elective course on interactive theorem proving, or some part of
a current course on logic can be dedicated to introducing an interactive theorem
prover. Once this exists, much more becomes possible. In mathematics classes,
there can be extra-credit problems for also formally verifying one’s proof, or
eventually a full exercise with this purpose. Theorem proving helps to teach
what theorems and facts are precisely used in every step of a proof [7].

Some might classify this as a significant change in paradigm for university-
level education. We argue that our suggestion may well be compared to computer
algebra systems, which just entered Bachelor curricula less than two decades
ago. In this regard, interactive theorem provers are the logical next step. With
Mathematica, SAGE, and similar systems successfully assisting computation and
visualization, it’s now time to introduce interactive theorem provers like Isabelle
to assist modelling and proving. Initially well-suited as educational tools, they
might eventually also make their way into day-to-day research work.

5 Conclusion

Our experience shows that non-experts can indeed learn interactive theorem
proving to an extent that allows them to formalize significant mathematical
results. Within one and a half years, we gained enough Isabelle proficiency to
formalize a core part of the solution to Hilbert’s tenth problem. We are happy
to have used Isabelle for this purpose, which we found to have a modest learning
curve and be worth the time investment. To future projects of similar kind, we
recommend that beginners approach learning an interactive theorem prover in
a more structured way than we did. To this end, we found Tobias Nipkow’s
“Concrete Semantics” [17] the most helpful first introduction to Isabelle. In
general, we recommend to use a single beginner-friendly resource which should
also be clearly advertised as such by more experienced members of the interactive
theorem proving community. For carrying out a formalization, we realize that
it is most crucial to start with a detailed “paper proof” in order to then verify
every single step in a proof assistant.

Moreover, we find that interactive theorem provers are attractive to many
more fields and industries than their current user-base. Notably, the group we
encourage most to adopt proof assistants are mathematicians, not least by in-
corporating them into university curricula. Our feasibility study showed that
interactive theorem proving is doable and practical — now it is the time to start
formalizing mathematics on a larger scale.

Acknowledgements We want to thank the entire workgroup [19], without
whose involvement we wouldn’t be writing this paper; as well as Yuri Matiyase-
vich for initiating and guiding the project. Moreover, we would like to express
our sincere gratitude to the entire welcoming and supportive Isabelle community.
In particular we are indebted to Mathias Fleury for all his help with Isabelle.
Thank you also to Christoph Benzmüller for mentoring us as well as Florian



12 J. Bayer et al.

Rabe for suggesting this contribution and helping us prepare the final version.
Furthermore, we thank everyone who replied to our small survey, sharing their
experience and opinion on this topic with us. Finally, a big thank you to our su-
pervisor Dierk Schleicher, for motivating us throughout the project, connecting
us to many experts in the field, and all his comments on this article.

References

1. Archive of formal proofs, https://www.isa-afp.org/index.html

2. Write the docs, https://www.writethedocs.org/

3. The QED manifesto. In: Bundy, A. (ed.) Automated Deduction - CADE-12.
Lecture Notes in Computer Science, vol. 814, pp. 238–251. Springer (1994).
https://doi.org/10.1007/3-540-58156-1, https://doi.org/10.1007/3-540-58156-1

4. The Coq proof assistant (2019), http://coq.inria.fr

5. Benzmüller, C.: Towards computer aided mathematics. Journal of Applied Logic
4(4), 359 – 365 (2006). https://doi.org/10.1016/j.jal.2005.10.001

6. Bundy, A.: Preface. Philosophical Transactions: Mathematical, Physical and En-
gineering Sciences 363(1835), 2331–2333 (2005), http://www.jstor.org/stable/
30039730

7. Buzzard, K.: Xena, https://xenaproject.wordpress.com

8. Foundation, D.S., contributors: Django documentation, https://docs.
djangoproject.com/

9. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,
S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev,
A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving.
pp. 163–179. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

10. Hales, T., Adams, M., Bauer, G., Tat Dang, D., Harrison, J., Hoang, T., Kaliszyk,
C., Magron, V., McLaughlin, S., Tat Nguyen, T., Quang Nguyen, T., Nipkow,
T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A., Trung, T., Thi Trieu, D.,
Zumkeller, R.: A formal proof of the Kepler conjecture. Forum of Mathematics, Pi
5 (01 2015). https://doi.org/10.1017/fmp.2017.1

11. Haslbeck, M.P., Wimmer, S.: Proving for fun, http://competition.isabelle.systems

12. Hilbert, D.: Mathematical problems. Bulletin of the American Mathematical Soci-
ety 8 (07 1902). https://doi.org/10.1090/S0002-9904-1902-00923-3

13. Matiyasevich, Y.: Alfred Tarski’s great algorithm: Decidability of elementary
algebra and geometry (talk), https://logic.pdmi.ras.ru/∼yumat/talks/talks.php?
istate=state show talk&iid=1364

14. Matiyasevich, Y.: Finite Dirichlet series with partially prescribed ze-
roes (talk), https://logic.pdmi.ras.ru/∼yumat/talks/talks.php?istate=state show
talk&iid=1364

15. Matiyasevich, Y.: The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR
191, 279–282 (1970)

16. Matiyasevich, Y.: Hilbert’s tenth problem. MIT Press (1993)

17. Nipkow, T., Klein, G.: Concrete Semantics. Springer (2014)

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

https://www.isa-afp.org/index.html
https://www.writethedocs.org/
https://doi.org/10.1007/3-540-58156-1
https://doi.org/10.1007/3-540-58156-1
http://coq.inria.fr
https://doi.org/10.1016/j.jal.2005.10.001
http://www.jstor.org/stable/30039730
http://www.jstor.org/stable/30039730
https://xenaproject.wordpress.com
https://docs.djangoproject.com/
https://docs.djangoproject.com/
https://doi.org/10.1017/fmp.2017.1
http://competition.isabelle.systems
https://doi.org/10.1090/S0002-9904-1902-00923-3
https://logic.pdmi.ras.ru/~yumat/talks/talks.php?istate=state_show_talk&iid=1364
https://logic.pdmi.ras.ru/~yumat/talks/talks.php?istate=state_show_talk&iid=1364
https://logic.pdmi.ras.ru/~yumat/talks/talks.php?istate=state_show_talk&iid=1364
https://logic.pdmi.ras.ru/~yumat/talks/talks.php?istate=state_show_talk&iid=1364


Beginners’ Quest to Formalize Mathematics 13

19. Stock, B., Pal, A., Oprea, M.A., Liu, Y., Hassler, M.S., Dubischar, S.,
Devkota, P., Deng, Y., David, M., Ciurezu, B., Bayer, J., Aryal, D.:
Hilbert meets Isabelle. Isabelle Workshop (Federated Logic Conference) (2018).
https://doi.org/10.29007/3q4s

20. Xu, J., Zhang, X., Urban, C.: Mechanising Turing machines and computability the-
ory in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Inter-
active Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol. 7998,
pp. 147–162. Springer Berlin, Heidelberg (2013)

https://doi.org/10.29007/3q4s

	Beginners' Quest to Formalize Mathematics: A Feasibility Study in Isabelle

