
ar
X

iv
:1

90
7.

08
36

8v
1

 [
cs

.L
O

]
 1

8
Ju

l 2
01

9

1

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-030-23250-4_4

http://arxiv.org/abs/1907.08368v1
http://dx.doi.org/10.1007/978-3-030-23250-4_4

2

A Tale of Two Set Theories

Chad E. Brown1 and Karol Pąk2[0000−0002−7099−1669]

1 Czech Technical University in Prague
2 University of Białystok pakkarol@uwb.edu.pl

Abstract. We describe the relationship between two versions of Tarski-
Grothendieck set theory: the first-order set theory of Mizar and the
higher-order set theory of Egal. We show how certain higher-order terms
and propositions in Egal have equivalent first-order presentations. We
then prove Tarski’s Axiom A (an axiom in Mizar) in Egal and construct
a Grothendieck Universe operator (a primitive with axioms in Egal) in
Mizar.

Keywords: Formalized Mathematics, Theorem Proving, Set Theory,
Proof Checking, Mizar

1 Introduction

We compare two implemented versions of Tarski-Grothendieck (TG) set theory.
The first is the first-order TG implemented in Mizar [3,15] axiomatized using
Tarski’s Axiom A [24,25]. The other is the higher-order TG implemented in
Egal [7] axiomatized using Grothendieck universes [17]. We discuss what would
be involved porting Mizar developments into Egal and vice versa.

We use Egal’s Grothendieck universes (along with a choice operator) to prove
Tarski’s Axiom A in Egal. Consequently the Egal counterpart of each of Mizar’s
axioms is provable in Egal and so porting from Mizar to Egal should always
be possible in principle. In practice one would need to make Mizar’s implicit
reasoning using its type system explicit, a nontrivial task outside the scope of
this paper.

Porting from Egal to Mizar poses two challenges. One is that many definitions
and propositions in Egal make use of higher-order quantifiers. In order to give
a Mizar counterpart, it is enough to give a first-order reformulation and prove
the two formulations equivalent in Egal. While this will not always be possible
in principle, it has been possible for the examples necessary for this paper. The
second challenge is to construct a Grothendieck universe operator in Mizar that
satisfies the properties of a corresponding operator in Egal. We have constructed
such an operator.

We give a brief introduction to Mizar and its version of first-order Tarski-
Grothendieck in Section 2. In Section 3 we introduce the new system Egal and
describe its version of higher-order Tarski-Grothendieck. In Section 4 we give a
few examples of definitions and propositions in Egal that can be reformulated
in equivalent first-order forms. These first-order versions have counterparts in

pakkarol@uwb.edu.pl

2 Chad E. Brown, Karol Pąk

Mizar. Section 5 discusses the Egal proof of Tarski’s Axiom A. In Section 6 we
discuss the construction of a Grothendieck universe operator in Mizar.3 Possi-
bilities for future work are discussed in Section 7.

2 Mizar and FOTG

The Mizar system [16] from its beginning aimed to create a proof style that
simultaneously imitates informal mathematical proofs as much as possible and
and can be automatically verified to be logically correct. A quite simple and
intuitive reasoning formalism and an intuitive soft type system play a major
role in the pursuit of Mizar’s goals.

The Mizar proof style is mainly inspired by Jaśkowski [18] style of natural
deduction and most statements correspond to valid first-order predicate calcu-
lus formulas. Over time the Mizar community has also added support for syntax
that goes beyond traditional first-order terms and formulas. In particular, Mizar
supports schemes with predicate and function variables, sufficient to formulate
the Fraenkel replacement as one axiom in Mizar. This axiom is sufficient to con-
struct the set comprehension {Fx|x ∈ X,Px} (called Fraenkel terms) for a given
set X , function F and predicate P in the Mizar language but it is impossible to
define such a functor for arbitrary X , F , P . Therefore, in response to the needs
of Mizar’s users, support for Fraenkel terms has been built into the system. In
fact Mizar supports a generalized notation where the set membership relation
x ∈ X in the Fraenkel term has been replaced by the type membership x : Θ if
the Mizar type Θ has the sethood property. A Mizar type has the sethood prop-
erty if the collection of all objects of the type forms a set (as opposed to a class).
Semantically, Mizar types are simply unary first-order predicates over sets that
can be parameterized by sets. However, the type inference mechanisms make
Mizar significantly more powerful and user-friendly. The rules available for au-
tomatic type inference are influenced by the author of a given script by choosing
the environ (i.e., environment, see [15]). By skillfully choosing the environment,
an author can make a Mizar article more concise and readable since the type
system will handle many inferences implicitly. Mizar types must be inhabited
and this obligation must be proven by a user directly in the definition of a given
type or before the first use if a type has the form of intersection of types.

Parallel to the system development, the Mizar community puts a significant
effort into building the Mizar Mathematical Library (MML)[4]. The MML is
the comprehensive repository of currently formalized mathematics in the Mizar
system. The foundation of the library, up to some details discussed below, is
first-order Tarski-Grothendieck set theory (FOTG). This is a non-conservative
extension of Zermelo–Fraenkel set theory (ZFC), where the axiom of infinity has
been replaced by Tarski’s Axiom A. Axiom A states that for every set N there
is a Tarski universe M such that N ∈ M . A Tarski universe is essentially a set
closed under subsets and power sets with the property that every subset of the

3 At http://grid01.ciirc.cvut.cz/~chad/twosettheories.tgz one can find Egal,
the Egal formalization files and the Mizar formalization files.

http://grid01.ciirc.cvut.cz/~chad/twosettheories.tgz

A Tale of Two Set Theories 3

universe is either a member of the universe or equipotent with the universe. The
statement of Axiom A in Mizar is shown in Figure 1.

reserve N,M,X,Y,Z for set;
theorem :: TARSKI_A:1

ex M st N in M &

(for X,Y holds X in M & Y c= X implies Y in M) &

(for X st X in M ex Z st Z in M & for Y st Y c= X holds Y in Z) &

(for X holds X c= M implies X,M are_equipotent or X in M);

Fig. 1. Tarski’s Axiom A in Mizar

FOTG was not the only foundation considered for the library. One of the
main reasons it was chosen is the usefulness of Axiom A in the formalization of
category theory. Namely, FOTG provides many universes that have properties
analogous to those of a class of all sets. In particular, every axiom of ZFC remains
true if we relativize quantifiers to the given universe.

The axiom of choice can be proven in FOTG. In fact Axiom A was used to
prove Zermelo’s well-ordering theorem and the axiom of choice in an early MML
article [2]. Later changes to Mizar also yielded the axiom of choice in a more
direct way and we briefly describe the relevant changes.

While working with category theory in the Mizar system, new constructions
called permissive definitions were introduced (implemented in Mizar-2 in the
80’s [16]). Permissive definitions allow an author to make definitions under as-
sumptions where these assumptions can be used to justify the obligations. For
example, the type morphism of a,b can be defined under the assumption that
there exists a morphism from a to b. Without the assumption the definition
of morphism of a,b would not be allowed since the type would not be provably
inhabited (see [19,20]).

In contrast to Fraenkel terms, permissive definitions do not have an obvious
semantic justification in FOTG. For any type Θ of a,b,... (depending on objects
a, b, . . .) a permissive definition can be used to obtain a choice operator for the
type in the following way:

definition

let a,b,... such that C: contradiction;
func choose(a,b,...) → Θ of a,b,... means contradiction;
existence by C; uniqueness by C;

end;

The definition states that given objects a, b, . . . (of appropriate types), the func-
tion choose will return an object of type Θ of a,b,... satisfying the condition
contradiction. The definition is made under the extra assumption contradiction

and it is this extra assumption (from which everything can be proven) that
guarantees existence and uniqueness of an object of type Θ of a,b,... satisfying
the otherwise impossible condition. After the definition is made, Mizar allows

4 Chad E. Brown, Karol Pąk

the user to make use of the term choose(a,b,...) of type Θ of a,b,... even in non-
contradictory contexts.

To avoid repetition of definitions like choose, in 2012, the Mizar syntax was
extended by the explicit operator the (e.g., the Θ of a,b,...). This new operator
behaves similarly to a Hilbert ε-operator, which corresponds to having a global
choice operator on the universe of sets (cf. p. 72 of [13]). ZFC extended with a
global choice operator is known to be conservative over ZFC [12]. The situation
with FOTG is analogous to that of ZFC, and we conjecture FOTG extended
with a global choice operator (the) is conservative over FOTG. Regardless of the
truth of this conjecture, we take the proper foundation of the MML to be FOTG
extended with a global choice operator (see [20]).

3 Egal and HOTG

Egal [7] is a proof checker for higher-order Tarski-Grothendieck (HOTG) set
theory. Since this is the first publication describing Egal, we begin by placing
the system in context and discussing various design decisions.

The idea of combining higher-order logic and set theory is not new [14,21,23].
However, many of the features of existing higher-order systems (e.g., the ability
to define new type constructors such as α × β) should in principle no longer
be needed if one is doing higher-order set theory. Instead the higher-order logic
only needs to be expressive enough to bootstrap the set theory. Once enough set
theory has been developed users would work with products of sets (instead of
products of types). With this in mind, Egal begins with a “higher-order logic”
restricted to a simple type theory mostly in the style of Church [10], extended
with limited prefix polymorphism (discussed below).

Another motivation to use as restricted a form of higher-order logic as pos-
sible is to ensure Egal satisfies the de Bruijn criterion [5]: Egal proofs should
be checkable by independent small proof checkers. For this reason Egal places
an emphasis on proof terms and proof checking. Proof terms are λ-calculus
terms corresponding to natural deduction proofs in the Curry-Howard sense.
Egal proof scripts are presented in a way similar to Coq [6] and instruct Egal
how to construct a proof term. Since the underlying logic is relatively simple
and the additional set theory axioms are few, the portion of the code that does
type checking and proof checking is reasonably short. Of course the Egal code
consists of more than just a checker. For example, the code includes a parser
allowing users to give terms using mathematical notation and variable names
(instead of the de Bruijn indices used internally) as well as an interpreter for
proof script steps. Nevertheless we claim Egal satisfies the de Bruijn criterion
in the sense that a small independent checker could easily be written to take as
input serialized versions of the internal representations of Egal types, terms and
proof terms and check correctness of a sequence of definitions and proofs. The de
Bruijn criterion also provides a major point of contrast between Egal and Mizar,
as constructing an independent checker for Mizar proofs would be nontrivial for
several reasons (e.g., the soft typing system).

A Tale of Two Set Theories 5

The kernel of the Egal system includes simply typed λ-calculus with a type
of propositions along with a λ-calculus for proof terms. There is a base type of
individuals ι (thought of as sets), a based type of propositions o and function
types σ → τ . Egal also allows the use of type variables for some purposes (e.g.,
defining equality or giving axioms such as functional extensionality). To simplify
the presentation, we will assume there are no type variables at first and then
briefly describe how type variables are treated. Without extra axioms, the logic
of Egal is intentional intuitionistic higher-order logic. On top of this logic we add
constants and axioms that yield an extensional classical higher-order set theory.

To be precise let T be the set of types generated freely via the grammar
o|ι|σ → τ . We use σ, τ to range over types. For each σ ∈ T let Vσ be a countably
infinite set of variables and assume Vσ ∩ Vτ = ∅ whenever σ 6= τ . We use
x, y, z,X, Y, f, g, p, q, P,Q, . . . to range over variables. For each σ ∈ T let Cσ be
a set of constants. We use c, c1, c2, . . . to range over constants. We consider only
a fixed family of constants given as follows:

– εσ is a constant in C(σ→o)→σ for each type σ.
– In is a constant in Cι→ι→o.
– Empty is a constant in Cι.
– Union is a constant in Cι→ι.
– Power is a constant in Cι→ι.
– Repl is a constant in Cι→(ι→ι)→ι.
– UnivOf is a constant in Cι→ι.

No other constants are allowed. We assume none of these constants are variables.
We next define a family (Λσ)σ∈T of typed terms as follows. We use s, t and

u to range over terms.

– If x ∈ Vσ, then x ∈ Λσ.
– If c ∈ Cσ, then c ∈ Λσ.
– If s ∈ Λσ→τ and t ∈ Λσ, then (st) ∈ Λτ .
– If x ∈ Vσ and t ∈ Λτ , then (λx.t) ∈ Λσ→τ .
– If s ∈ Λo and t ∈ Λo, then (s⇒ t) ∈ Λo.
– If x ∈ Vσ and t ∈ Λo, then (∀x.t) ∈ Λo.

Each member of Λσ is a term of type σ. Terms of type o are also called proposi-

tions . We sometimes use ϕ, ψ and ξ to range over propositions. It is easy to see
that Λσ and Λτ are disjoint for σ 6= τ . That is, each term has at most one type.

We omit parentheses when possible, with application associating to the left
and implication associating to the right: stu means ((st)u) and ϕ ⇒ ψ ⇒ ξ
means (ϕ ⇒ (ψ ⇒ ξ)). Binders are often combined: λxyz.s means λx.λy.λz.s
and ∀xyz.ϕ means ∀x.∀y.∀z.ϕ. To present the types of variables concisely, we
sometimes annotate variables in binders with their types, as in λx :σ.s to assert
x ∈ Vσ. When the type of a variable is omitted entirely, it is ι.

Although the only logical connectives as part of the definition of terms are im-
plication and universal quantification, it is well-known how to define the other
connectives and quantifiers in a way that even works in an intuitionistic set-
ting [8]. For this reason we freely write propositions (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ),

6 Chad E. Brown, Karol Pąk

(ϕ⇔ ψ), (∃x.ϕ) and (s = t) (for s, t ∈ Λσ). Again, we omit parentheses and use
common binder abbreviations in obvious ways.

We also use special notations for terms built using the constants. We write
s ∈ t for In s t. We write ∀x ∈ s.ϕ for ∀x.x ∈ s⇒ ϕ and ∃x ∈ s.ϕ for ∃x.x ∈ s∧ϕ.
We write εx : σ.ϕ for εσ(λx : σ.ϕ) and εx ∈ s.ϕ for εx.x ∈ s ∧ ϕ. We also write
∅ for Empty,

⋃
s for Union s, ℘s for Power s, {s|x ∈ t} for Repl t (λx.s) and Us

for UnivOf s.
In general new names can be introduced to abbreviate terms of a given type.

In many cases we introduce new corresponding notations as well. The following
abbreviations are used in the statements of the axioms below:

– TransSet : ι → o is λU.∀X ∈ U.X ⊆ U . Informally we say U is transitive to
mean TransSet U .

– Union_closed : ι → o is λU.∀X ∈ U.
⋃
X ∈ U . Informally we say U is⋃

-closed to mean Union_closed U .
– Power_closed : ι→ o is λU.∀X ∈ U.℘X ∈ U . Informally we say U is ℘-closed

to mean Power_closed U .
– Repl_closed : ι → o is λU.∀X ∈ U.∀F : ι → ι.(∀x ∈ X.Fx ∈ U) ⇒

{Fx|x ∈ X} ∈ U . Informally we say U is closed under replacement to mean
Repl_closed U .

– ZF_closed : ι→ o is λU.Union_closed U ∧Power_closed U ∧Repl_closed U .
Informally we say U is ZF-closed to mean ZF_closed U .

The deduction system for Egal includes a set A of closed propositions we call
axioms. The specific members of the set A are as follows:

Prop. Ext. ∀PQ : o.(P ⇔ Q) ⇒ P = Q,
Func. Ext. ∀fg : σ → τ.(∀x : σ.fx = gx) ⇒ f = g (for types σ and τ),
Choice ∀p : σ → o.∀x : σ.px⇒ p(εx : σ.px) (for each type σ),
Set Ext. ∀XY.X ⊆ Y ⇒ Y ⊆ X ⇒ X = Y ,
∈-Induction ∀P : ι→ o.(∀X.(∀x ∈ X.Px) ⇒ PX) ⇒ ∀X.PX ,
Empty ¬∃x.x ∈ ∅,
Union ∀Xx.x ∈

⋃
X ⇔ ∃Y.x ∈ Y ∧ Y ∈ X ,

Power ∀XY.Y ∈ ℘X ⇔ Y ⊆ X ,
Replacement ∀X.∀F : ι→ ι.∀y.y ∈ {Fx|x ∈ X} ⇔ ∃x ∈ X.y = Fx,
Universe In ∀N.N ∈ UN ,
Universe Transitive ∀N.TransSet UN ,
Universe ZF closed ∀N.ZFclosed UN and
Universe Min ∀NU.N ∈ U ⇒ TransSet U ⇒ ZFclosed U ⇒ UN ⊆ U .

The axiom set would be finite if it were not for functional extensionality and
choice. In the implementation type variables are used to specify functional ex-
tensionality and choice. Again, we delay discussion of type variables for the
moment.

The notions of free and bound variables are defined as usual, as is the notion
of a variable x being free in a term s. We consider terms equal up to bound
variable names. As usual there are notions of capture-avoiding substitution and
we write sxt to be the result of subsituting t for x in s. We have the usual notions

A Tale of Two Set Theories 7

of β-conversion and η-conversion: (λx.s)t β-reduces to sxt and (λx.sx) η-reduces
to s if x is not free in s. The relation s ∼βη t on terms s, t ∈ Λσ is the least
congruence relation closed under β-conversion and η-conversion.

The underlying deduction system for Egal is natural deduction with proof
terms. We do not discuss proof terms here, but give the corresponding natural
deduction calculus without proof terms in Figure 2. The calculus defines when
Γ ⊢ ϕ is derivable where Γ is a finite set of propositions and ϕ is a proposition.

Ax
ϕ ∈ A

Γ ⊢ ϕ
Hyp

ϕ ∈ Γ

Γ ⊢ ϕ
β
Γ ⊢ ψ ψ ∼βη ϕ

Γ ⊢ ϕ
⇒I

Γ ∪ {ϕ} ⊢ ψ

Γ ⊢ ϕ⇒ ψ

⇒E
Γ ⊢ ϕ ⇒ ψ Γ ⊢ ϕ

Γ ⊢ ψ
∀I

Γ ⊢ ϕx
y y ∈ Vσ is not free in Γ ∪ {ϕ}

Γ ⊢ ∀x : σ.ϕ

∀E
Γ ⊢ ∀x : σ.ϕ t ∈ Λσ

Γ ⊢ ϕx
t

Fig. 2. Natural deduction sytem

We now briefly discuss the role of polymorphism in Egal. We have already
seen examples where type variables would be useful. Instead of having infinitely
many constants εσ in the implementation there is one constant ε which must be
associated with a type when used. Likewise, the axioms of functional extension-
ality and choice make use of type variables and whenever these axioms are used
the instantiations for these type variables must be given. Some definitions (such
as equality, existential quantification and if-then-else) as well as some theorems
(such as the existential introduction rule) also make use of type variables. From
the beginning Egal was designed to discourage the use of type variables in the
hope of eventually eliminating them. For this reason constants, definitions, ax-
ioms and theorems can use at most three type variables. To make this precise we
have three fixed type variables ν0, ν1 and ν2. For n ∈ {0, 1, 2, 3} we have T n as
the set of types freely generated from ν0| · · · |νn−1|o|ι|σ → τ . Similarly we have
four families of terms (Λn

σ)σ∈T n and four judgments Γ ⊢n ϕ where Γ is a finite
subset of Λn

o and ϕ is in Λn
o . All definitions and theorems (with proofs) are given

in some type context determined by n ∈ {0, 1, 2, 3}. The context remains fixed
throughout the declaration. If n > 0, then when the definition or theorem is used
later (in type context m ∈ {0, 1, 2, 3}) it must be given along with n (explicitly
given) types from T m which are used to instantiate the type variables.

In addition to the constants and axioms of the system, we import a num-
ber of constructions and results from the library distributed with Egal. Some
of the constructions are definitions of logical connectives, equality and existen-
tial quantification as well as basic theorems about their properties. Negation of
equality, negation of set membership and subset are imported, defined in the
obvious ways. We use the notation s 6= t, s 6∈ t and s ⊆ t for the corresponding

8 Chad E. Brown, Karol Pąk

propositions. The definitions TransSet, Union_closed, Power_closed, Repl_closed

and ZF_closed are imported. In addition the following definitions are imported:

– ordinal : ι→ o is λα.TransSet α ∧ ∀β ∈ α.TransSet β. Informally we say β is

an ordinal to mean ordinal β.
– famunion : ι → (ι → ι) → ι is λXF.

⋃
{Fx|x ∈ X}. We write

⋃
x∈s t for

famunion s (λx.t).

We also import the following objects in an opaque way, so that we will only be
able to use properties imported from the library and not the actual definitions.

– Sep : ι → (ι → o) → ι. We write {x ∈ X |ϕ} for Sep X (λx.ϕ). Results are
imported to ensure ∀z.z ∈ {x ∈ X |ϕ} ⇔ z ∈ X ∧ ϕx

z is provable.
– ReplSep : ι → (ι → o) → (ι → ι) → ι. We write {s|x ∈ X such that ϕ} for

ReplSep X (λx.ϕ) (λx.s). Results are imported to ensure the provability of
∀z.z ∈ {s|x ∈ X such that ϕ} ⇔ ∃y ∈ X.ϕx

y ∧ z = sxy .
– UPair : ι → ι → ι. We write {x, y} for UPair x y. Results are imported to

ensure ∀z.z ∈ {x, y} ⇔ z = x ∨ z = y is provable.
– Sing : ι → ι. We write {x} for Sing x. Results are imported to ensure

∀z.z ∈ {x} ⇔ z = x is provable.
– R : (ι→ (ι→ ι) → ι) → ι→ ι. The R operator is used to define functions by

∈-recursion over the universe. Given a function F : ι→ (ι→ ι) → ι satisfying
certain conditions, R F yields a function f satisfying f X = F X f . Its
construction is discussed in detail in [8]. It is obtained by defining the graph
of R F as the least relation satisfying appropriate closure properties and
then using ∈-induction to prove (under appropriate assumptions) that this
yields a functional relation. Here we will only need the fundamental property
imported as Proposition 5 below. Its use will be essential in proving Tarski’s
Axiom A in Section 5.

We will freely make use of these imported terms to form new terms below.
Less than 60 results proven in the library need to be imported in order to

prove the results discussed in this paper. Most of those results are basic results
about logic and set theory and we will leave them implicit here. The choice axiom
and the extensionality axioms make the logic extensional and classical [11]. We
import excluded middle and the double negation law from the library.

The following imported results are worth making explicit:

Proposition 1. ∀x.x /∈ x.

Proposition 2 (Regularity). ∀Xx.x ∈ X ⇒ ∃Y ∈ X.¬∃z ∈ X.z ∈ Y .

Proposition 3. ∀α.ordinal α ⇒ ∀β ∈ α.ordinal β.

Proposition 4. ∀αβ.ordinal α ⇒ ordinal β ⇒ α ∈ β ∨ α = β ∨ β ∈ α.

The fundamental property of R is imported from the library:

Proposition 5 (cf. Theorem 1 in [8]).

∀Φ : ι→ (ι→ ι) → ι.(∀X.∀gh : ι→ ι.(∀x ∈ X.gx = hx) ⇒ Φ X g = Φ X h)
→ ∀X.R Φ X = Φ X (R Φ)

A Tale of Two Set Theories 9

4 Higher-order vs. First-order Representations

For many concepts we cannot directly compare the formulations in Egal with
those from Mizar since Egal is higher-order. On the other hand, for the cases
of interest in this paper we show we can find first-order formulations which are
provably equivalent in Egal and have counterparts in Mizar. In particular we
will use this to compare Grothendieck universes in Egal (defined using closure
under replacement) and Grothendieck universes in Mizar (defined using closure
under unions of families of sets).

Tarski’s Axiom A (Figure 1) informally states that every set is in a Tarski
universe. The most interesting condition in the definition of a Tarski universe
is that every subset of the universe is either a member of the universe or is
equipotent with the universe. The notion of equipotence of two sets can be
represented in different ways. In first-order one can define when sets X and Y
are equipotent as follows: there is a set R of Kuratowski pairs which essentially
encodes the graph of a bijection from X to Y . In order to state Axiom A in
Mizar, one must first define Kuratowski pairs and then equipotence. This first-
order definition of equipotence can of course be made in Egal as well. We omit
the details, except to say we easily obtain an Egal abbreviation equip of type
ι→ ι→ o with a definition analogous to the definition of equipotence in Mizar.

There is an alternative way to characterize equipotence in Egal without rely-
ing on the set theoretic encoding of pairs and functions. We simply use functions
of type ι→ ι given by the underlying simple type theory.

Let bij : ι→ ι→ (ι→ ι) → o be

λXY.λf : ι→ ι.(∀u ∈ X.fu ∈ Y) ∧ (∀uv ∈ X.fu = fv ⇒ u = v)
∧(∀w ∈ Y.∃u ∈ X.fu = w).

Informally we say f is a bijection taking X onto Y to mean bij X Y f .
It is straightforward to prove equip X Y ⇔ ∃f : ι → ι.bij X Y f in Egal.

When proving Axiom A in Egal (see Theorem 5) we will use ∃f : ι→ ι.bij X Y f
to represent equipotence. To obtain the first-order formulation Axiom A, the
equivalence of the two formulations of equipotence can be used.

A similar issue arises when considering the notion of being ZF-closed in
Mizar. The definition of ZF_closed relies on Repl_closed. Repl_closed relies on
the higher-order Repl operator and quantifies over the type ι→ ι. An alternative
first-order definition of U being ZF-closed is to say U is ℘-closed and U is closed
under internal family unions. The internal family union of a set I and a set f is
defined as the set famunionintern I f such that w ∈ famunionintern I f if and only
if ∃i ∈ I.∃X.[i,X] ∈ f ∧w ∈ X where [i,X] is the Kuratowski pair {{i}, {i,X}}.
It is easy to prove such a set exists, in both Egal and Mizar. Closure of U
under internal family unions states that if I ∈ U , f is a set of Kuratowski pairs
representing the graph of a function from I into U , then famunionintern I f ∈ U .

We say U is ZF-closed in the FO sense if U is ℘-closed and closed under
internal family unions. In Egal it is straightforward to prove that for transitive
sets U , U is ZF-closed if and only if U is ZF-closed in the FO sense. Grothendieck
universes in Egal are transitive ZF-closed sets. Grothendieck universes in Mizar

10 Chad E. Brown, Karol Pąk

are transitive sets that are ZF-closed in the FO sense. By the equivalence result,
we know these two notions of Grothendieck universes are equivalent in Egal.

5 Tarski’s Axiom A in Egal

We will now describe the HOTG proof of Tarski’s Axiom A in Egal.
We begin by using the recursion operator to define an operator returning the

set of all sets up to a given rank: V : ι→ ι is R(λXv.
⋃

x∈X ℘(vx)). We will write
VX for V applied to X . Using Proposition 5 it is easy to prove the following:

Theorem 1. ∀X.VX =
⋃

x∈X .℘(Vx)

It is then straightforward to prove a sequence of results.

Theorem 2. The following facts hold.

1. ∀yxX.x ∈ X ⇒ y ⊆ Vx ⇒ y ∈ VX .

2. ∀yX.y ∈ VX ⇒ ∃x ∈ X.y ⊆ Vx.

3. ∀X.X ⊆ VX .

4. ∀XY.X ⊆ VY ⇒ VX ⊆ VY .

5. ∀XY.X ∈ VY ⇒ VX ∈ VY .

6. ∀XY.X ∈ VY ∨VY ⊆ VX .

7. ∀XY.VX ∈ VY ∨VY ⊆ VX .

Proof. Parts 1 and 2 are easy consequences of Theorem 1 and properties of
powersets and family unions. Part 3 follows by ∈-induction using Part 1. Part 4
also follows by ∈-induction using Parts 1 and 2. Part 5 follows easily from Parts 1,
2 and 4. Part 6 follows by ∈-induction using classical reasoning and Parts 1 and
2. Part 7 follows from Part 5 and 6.

Let V_closed of type ι → o be λU.∀X ∈ U.VX ∈ U . Informally we say
U if V-closed to mean V_closed U . The following theorem is easy to prove by
∈-induction using Theorem 1.

Theorem 3. If U is transitive and ZF-closed, then U is V-closed.

Using the choice operator it is straightforward to construct the inverse of a
bijection taking X onto Y and obtain a bijection taking Y onto X .

Theorem 4. ∀XY.∀f : ι→ ι.bij X Y f ⇒ bij Y X (λy.εx ∈ X.fx = y).

We now turn to the most complicated Egal proof. More than half of the
file ending with the proof of Axiom A is made up of the proof of Lemma 1. We
outline the proof here and make some comments about the corresponding formal
proof in Egal along the way. For the full proof see the technical report [9] or the
Egal formalization.

Lemma 1. Let U be a ZF-closed transitive set and X be such that X ⊆ U and

X 6∈ U . There is a bijection f : ι→ ι taking {α ∈ U |ordinal α} onto X.

A Tale of Two Set Theories 11

Proof. In the Egal proof we begin by introducing the local names U and X and
making the corresponding assumptions.

let U. assume HT: TransSet U. assume HZ: ZF_closed U.

let X. assume HXsU: X c= U. assume HXniU: X /:e U.

We next make six local abbreviations. Let

– λ be {α ∈ U |ordinal α},
– P : ι→ ι→ (ι→ ι) → o be λαxf.x ∈ X ∧ ∀β ∈ α.fβ 6= x,
– Q : ι→ (ι→ ι) → ι→ o be λαfx.P α x f ∧ ∀y.P α y f ⇒ Vx ⊆ Vy,
– F : ι→ (ι→ ι) → ι be λαf.εx.Q αfx,
– f : ι→ ι be RF and
– g : ι→ ι be λy.εα ∈ λ.fα = y.

In the Egal proof three of these local definitions are given as follows:

set lambda : set := {alpha :e U|ordinal alpha}.

...

set f : set->set := In_rec F.

set g : set->set := fun y => some alpha :e lambda, f alpha = y.

The following claims are then proven:

∀α.fα = F α f (1)

∀α ∈ λ.Q α f (fα) (2)

∀α ∈ λ.fα ∈ X (3)

∀αβ ∈ λ.fα = fβ ⇒ α = β (4)

bij {f α|α ∈ λ} λ g (5)

λ = {g y|y ∈ {f α|α ∈ λ}} (6)

∀x ∈ X.∃α ∈ λ.fα = x (7)

Note that (3), (4) and (7) imply f is a bijection taking λ onto X , which will com-
plete the proof. Here we only describe the proof of (2) in some detail and make
brief remarks about the proofs of the other cases. For example, Proposition 5 is
used to prove (1).

In the Egal proof we express (2) as a claim followed by its subproof.

claim L1: forall alpha :e lambda, Q alpha f (f alpha).

The subproof is by ∈-induction. Let α be given and assume as inductive hypoth-
esis ∀γ.γ ∈ α ⇒ γ ∈ λ ⇒ Q γ f (fγ). Assume α ∈ λ, i.e., α ∈ U and ordinal α.
Under these assumptions we can prove the following subclaims:

∀β ∈ α.Q β f (fβ) (8)

∀β ∈ α.fβ ∈ X (9)

{fβ|β ∈ α} ⊆ X (10)

{fβ|β ∈ α} ∈ U (11)

∃x.P α x f (12)

∃x.Q α f x (13)

Q α f (F α f) (14)

We show only the proof of (13) assuming we have already established (12). Let
Y be {Vx|x ∈ X such that ∀β ∈ α.fβ 6= x}. By (12) there is a w such that
P α w f . That is, w ∈ X and ∀β ∈ α.fβ 6= w. Clearly Vw ∈ Y. By Regularity
(Proposition 2) there is some Z ∈ Y such that ¬∃z ∈ Y.z ∈ Z. Since Z ∈ Y

12 Chad E. Brown, Karol Pąk

there must be some x ∈ X such that Z = Vx and ∀β ∈ α.fβ 6= x. We will prove
Q α f x for this x. We know P α x f since x ∈ X and ∀β ∈ α.fβ 6= x. It remains
only to prove ∀y.P α y f ⇒ Vx ⊆ Vy. Let y such that P α y f be given. By
Theorem 2:7 either Vy ∈ Vx or Vx ⊆ Vy. It suffices to prove Vy ∈ Vx yields a
contradiction. We know Vy ∈ Y since P α y f . If Vy ∈ Vx, then Vy ∈ Z (since
Z = Vx), contradicting ¬∃z ∈ Y.z ∈ Z.

We conclude (14) by (13) and the property of the choice operator used in the
definition of F. By (14) and (1) we have Q α f (fα). Recall that this was proven
under an inductive hypothesis for α. We now discharge this inductive hypothesis
and conclude (2).

One can easily prove (3) and (4) from (2) and Proposition 4. From (4) and
Theorem 4 we have (5) and from this we obtain (6).

Finally to prove (7) assume there is some x ∈ X such that ¬∃α ∈ λ.fα = x.
Under this assumption one can prove λ ∈ λ, contradicting Proposition 1. It is
easy to prove λ is an ordinal, so it suffices to prove λ ∈ U . The proof that
λ ∈ U makes use of Proposition 3, Theorem 3, Theorem 2:3, (2), (5), (6) and
the closure properties of U .

We can now easily conclude Tarski’s Axiom A in Egal.

Theorem 5 (Tarski A). For each set N there exists an M such that

1. N ∈M ,

2. ∀X ∈M.∀Y ⊆ X.Y ∈M ,

3. ∀X ∈M.∃Z ∈M.∀Y ⊆ X.Y ∈ Z and

4. ∀X ⊆M.(∃f : ι→ ι.bij X M f) ∨X ∈M .

Proof. We use U := UN as the witness for M . We know N ∈ UN , UN is transitive
and ZF-closed by the axioms of our set theory. All the properties except the last
follow easily from these facts. We focus on the last property. Let X ⊆ U be
given. Since we are in a classical setting it is enough to assume X /∈ U and prove
there is some bijection f : ι → ι taking X onto U . Since U ⊆ U and U /∈ U
(using Proposition 1), we know there is a bijection g taking {α ∈ U |ordinal α}
onto U by Lemma 1. Since X ⊆ U and X /∈ U , we know there is a bijection h
taking {α ∈ U |ordinal α} onto X by Lemma 1. By Theorem 4 there is a bijection
g−1 taking X onto {α ∈ U |ordinal α}. The composition of g−1 and h yields a
bijection f taking X onto U as desired.

6 Grothendieck Universes in Mizar

In this section we construct Grothendieck universes using notions introduced
in the MML articles CLASSES1 and CLASSES2 [1,22]. For this purpose, first, we
briefly introduce the relevant constructions from these articles. We then define
the notion of a Grothendieck universe of a set A as a Mizar type, the type of
all transitive sets with A as a member that are closed under power sets and
internal family unions. Since Mizar types must be nonempty, we are required to

A Tale of Two Set Theories 13

construct such a universe. We finally introduce a functor GrothendieckUniverse A
that returns the least set of the type. Additionally, we show that every such
Grothendieck universe is closed under replacement formulating the property as
a Mizar scheme.

To simplify notation we present selected Mizar operators in more natural
ways closer to informal mathematical practice. In particular, we use ∅, ∈, ⊆, ℘,
| · |,

⋃
to represent Mizar symbols as {}, in, c=, bool, card, union, respectively.

Following Bancerek, we will start with the construction of the least Tarski
universe that contains a given set A. Tarski’s Axiom A directly implies that
there exists a Tarski set TA that contains A where Tarski is a Mizar attribute (for
more details see [15]) defined as follows:

attr T is Tarski means :: CLASSES1:def 2

T is subset-closed & (for X holds X ∈ T implies ℘(X)∈ T) &
for X holds X ⊆ T implies X,T are_equipotent or X ∈ T;

Informally we say that T is Tarski to mean T is closed under subset, power sets
and each subset of T is a member of T or is equipotent with T . Then one shows
that

⋂
{X |A ∈ X ⊆ TA, X is Tarski set} is the least (with respect to inclusion)

Tarski set that contains A, denoted by Tarski-Class A.

By definition it is easy to prove the following:

Theorem 6. The following facts hold.

1. ∀A. A ∈ Tarski-ClassA,

2. ∀AX Y. Y ⊆ X ∧X ∈ Tarski-ClassA⇒ Y ∈ Tarski-ClassA,

3. ∀AX. Y ∈ Tarski-Class A⇒ ℘(X) ∈ Tarski-Class A,

4. ∀AX. X ⊆ Tarski-ClassA ∧ |X | < |Tarski-ClassA| ⇒ X ∈ Tarski-ClassA.

Tarski universes, as opposed to Grothendieck universes, might not be tran-
sitive (called epsilon-transitive in the MML) but via transfinite induction. By
Theorems 22 and 23 in [1] we know Tarski-Class A is transitive if A is transi-
tive. Therefore, in our construction we take the transitive closure of A prior to
the application of the Tarski-Class functor. Using a recursion scheme we know
for a given set A there exists a recursive sequence f such that f(0) = A and
∀k ∈ N. f(k + 1) =

⋃
f(k). For such an f ,

⋃
{f(n)|n ∈ N} is the least (with

respect to the inclusion) transitive set that includes A (or contains A if we start
with f(0) = {A}). The operator is defined in [1] as follows:

func the_transitive-closure_of A → set means :: CLASSES1:def 7

for x holds x ∈ it iff ex f being Function, n being Nat st

x ∈ f.n & dom f = N & f.0 = A & for k being Nat holds f.(k+1) =
⋃

f.k;

We now turn to a formulation of ZF-closed property in Mizar. It is obvi-
ous that ℘-closed,

⋃
-closed properties can we expressed as two Mizar types as

follows:

attr X is power-closed means for A being set st A ∈ X holds ℘(A) ∈ X;
attr X is union-closed means for A being set st A ∈ X holds

⋃
(A) ∈ X;

14 Chad E. Brown, Karol Pąk

Note that we cannot express the closure under replacement as a Mizar type
since each condition that occurs after means has to be a first-order statement.
We must therefore use an alternative approach that uses closure under internal
family unions using the notion of a function as well as its domain (dom) and
range (rng) as follows:

attr X is FamUnion-closed means

for A being set for f being Function st dom f = A & rng f ⊆ X & A ∈ X
holds

⋃
rng f ∈ X;

Comparing the properties of Tarski and Grothendieck universes we can prove
the following:

Theorem 7. The following facts hold.

1. ∀X.X is Tarski ⇒ X is subset-closed power-closed,
2. ∀X.X is epsilon-transitive Tarski ⇒ X is union-closed,
3. ∀X.X is epsilon-transitive Tarski ⇒ X is FamUnion-closed.

Proof. Part 1 is an easy consequences of the Tarski definition and properties of
powersets. Part 2 is a direct conclusion of the MML theorem CLASSES2:59. To
prove 3 let X be an epsilon-transitive Tarski set, A be a set and f be a function
such that dom f = A, rng f ⊆ X , A ∈ X . Since X is subset-closed as a Tarski set
and A ∈ X , we know that ℘(A) ⊆ X . By Cantor’s theorem we conclude that
|A| < |℘(A)| and consequently |A| < |X |. Since |rng f | ≤ |dom f | = |A|, we
know that rng f is not equipotent with X . Then rng f ∈ X since X is Tarski
and rng f ⊆ X , and finally

⋃
rng f ∈ X by Part 2.

We can now easily infer from Theorem 7 that the term:

Tarski-Class(the_transitive-closure_of {A}) (15)

is suitable to prove that the following Mizar type is inhabited:

mode Grothendieck of A → set means

A ∈ it & it is epsilon-transitive power-closed FamUnion-closed;

Now it is a simple matter to construct the Grothendieck universe of a given set
A (GrothendieckUniverse A) since

⋂
{X |X ⊆ GA, X is Grothendieck of A} is the

least (with respect to the inclusion) Grothendieck of A, where GA denotes the
term (15).

As we noted earlier, we cannot express the closure under replacement prop-
erty as a Mizar type or even assumption in a Mizar theorem. However we can
express and prove that every Grothendieck of A satisfies this property as a scheme
as follows:

scheme ClosedUnderReplacement
{A() → set, U() → Grothendieck of A(),F(set) → set}:

{F(x) where x is Element of A(): x ∈ A()} ∈ U()
provided

for X being set st X ∈ A() holds F(X) ∈ U()

The proof uses a function that maps each x in A() to {F(x)}.4

4 Note that in Mizar schemes, schematic variables such as A must be given as A() to
indicate A is a term with no dependencies.

A Tale of Two Set Theories 15

7 Future Work

The present work sets the stage for two future possibilities: translating Mizar’s
MML into Egal and translating Egal developments into Mizar articles. Translat-
ing the MML into Egal is clearly possible in principle, but will be challenging in
practice. The “obvious” inferences allowed by Mizar would need to be elaborated
for Egal. Furthermore, the implicit inferences done by Mizar’s soft typing system
would need to be made explicit for Egal. A general translation from Egal devel-
opments to Mizar articles is not possible in principle (since Egal is higher-order)
although we have shown it is often possible in practice (by handcrafting equiva-
lent first-order formulations of concepts). There is no reason to try to translate
the small Egal library to Mizar, but it might be useful to have a partial trans-
lation for Egal developments that remain within the first-order fragment. With
such a translation a user could formalize a mathematical development in Egal
and automatically obtain a Mizar article.

8 Conclusion

We have presented the foundational work required in order to port formalizations
from Mizar to Egal or Egal to Mizar. In Egal this required a nontrivial proof of
Tarski’s Axiom A, an axiom in Mizar. In Mizar this required finding equivalent
first-order representations for the relevant higher-order terms and propositions
used in Egal and then constructing a Grothendieck universe operator in Mizar.

Acknowledgment

This work has been supported by the European Research Council (ERC) Con-
solidator grant nr. 649043 AI4REASON and the Polish National Science Center
granted by decision n◦DEC-2015/19/D/ST6/01473.

References

1. Bancerek, G.: Tarski’s Classes and Ranks. Formalized Mathematics 1(3), 563–567
(1990)

2. Bancerek, G.: Zermelo Theorem and Axiom of Choice. Formalized Mathematics
1(2), 265–267 (1990)

3. Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A., Matuszewski, R., Nau-
mowicz, A., Pąk, K., Urban, J.: Mizar: State-of-the-art and Beyond. In: Kerber, M.,
Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) Intelligent Computer Math-
ematics - International Conference, CICM 2015. LNCS, vol. 9150, pp. 261–279.
Springer (2015). https://doi.org/10.1007/978-3-319-20615-8_17

4. Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A., Matuszewski, R., Nau-
mowicz, A., Pąk, K.: The Role of the Mizar Mathematical Library for Interac-
tive Proof Development in Mizar. J. Autom. Reasoning 61(1–4), 9–32 (2018).
https://doi.org/10.1007/s10817-017-9440-6

https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6

16 Chad E. Brown, Karol Pąk

5. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Royal Society
of London Transactions Series A 363, 2351–2375 (2005)

6. Bertot, Y.: A Short Presentation of Coq. In: Mohamed, O.A.,
Muñoz, C.A., Tahar, S. (eds.) Theorem Proving in Higher Order Log-
ics (TPHOLs 2008). LNCS, vol. 5170, pp. 12–16. Springer (2008).
https://doi.org/10.1007/978-3-540-71067-7_3

7. Brown, C.E.: The Egal manual (Sep 2014)
8. Brown, C.E.: Reconsidering Pairs and Functions as Sets. J. Autom. Reasoning

55(3), 199–210 (Oct 2015). https://doi.org/10.1007/s10817-015-9340-6
9. Brown, C.E., Pąk, K.: A tale of two set theories (2019),

http://alioth.uwb.edu.pl/~pakkarol/publications.html

10. Church, A.: A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic 5, 56–68 (1940)

11. Diaconescu, R.: Axiom of Choice and Complementation. Proceedings of the Amer-
ican Mathematical Society 51, 176–178 (1975)

12. Felgner, U.: Comparison of the Axioms of Local and Universal Choice. Fundamenta
Mathematicae 71(1), 43–62 (1971)

13. Fraenkel, A.A., Bar-Hillel, Y., Lévy, A.: Foundations of Set Theory. North-Holland
Pub. Co (1973)

14. Gordon, M.: Set Theory, Higher Order Logic or Both? In: Goos, G., Hartmanis, J.,
van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) Theorem Proving in
Higher Order Logics. pp. 191–201. Springer Berlin Heidelberg, Berlin, Heidelberg
(1996). https://doi.org/10.1007/BFb0105405

15. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a Nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010)

16. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Four Decades of Mizar. J. Autom.
Reasoning 55(3), 191–198 (2015). https://doi.org/10.1007/s10817-015-9345-1

17. Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas
- (SGA 4) - vol. 1, Lecture Notes in Mathematics, vol. 269. Springer-Verlag (1972)

18. Jaśkowski, S.: On the Rules of Suppositions. Studia Logica 1 (1934)
19. Kaliszyk, C., Pąk, K.: Presentation and Manipulation of Mizar Properties in

an Isabelle Object Logic. In: Geuvers, H., England, M., Hasan, O., Rabe,
F., Teschke, O. (eds.) Intelligent Computer Mathematics - 10th International
Conference, CICM 2017. LNCS, vol. 10383, pp. 193–207. Springer (2017).
https://doi.org/10.1007/978-3-319-62075-6_14

20. Kaliszyk, C., Pąk, K.: Semantics of Mizar as an Isabelle object logic. J. Autom.
Reasoning (2018). https://doi.org/10.1007/s10817-018-9479-z

21. Kirst, D., Smolka, G.: Categoricity Results and Large Model Constructions for
Second-Order ZF in Dependent Type Theory. J. Autom. Reasoning (2018).
https://doi.org/10.1007/s10817-018-9480-6, first Online: 11 October 2018

22. Nowak, B., Bancerek, G.: Universal Classes. Formalized Mathematics 1(3), 595–
600 (1990)

23. Obua, S.: Partizan Games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti,
A., Cerone, A. (eds.) Theoretical Aspects of Computing - ICTAC 2006. LNCS,
vol. 4281, pp. 272–286. Springer (2006). https://doi.org/10.1007/11921240_19

24. Tarski, A.: Über Unerreichbare Kardinalzahlen. Fundamenta Mathematicae 30,
68–89 (1938)

25. Trybulec, A.: Tarski Grothendieck Set Theory. Journal of Formalized Mathematics
Axiomatics (2002), released 1989

https://doi.org/10.1007/978-3-540-71067-7_3
https://doi.org/10.1007/s10817-015-9340-6
http://alioth.uwb.edu.pl/~pakkarol/publications.html
https://doi.org/10.1007/BFb0105405
https://doi.org/10.1007/s10817-015-9345-1
https://doi.org/10.1007/978-3-319-62075-6_14
https://doi.org/10.1007/s10817-018-9479-z
https://doi.org/10.1007/s10817-018-9480-6
https://doi.org/10.1007/11921240_19

	A Tale of Two Set Theories
	1 Introduction
	2 Mizar and FOTG
	3 Egal and HOTG
	4 Higher-order vs. First-order Representations
	5 Tarski's Axiom A in Egal
	6 Grothendieck Universes in Mizar
	7 Future Work
	8 Conclusion

