
Comparison of Classification Methods for Very

High-Dimensional Data in Sparse Random

Projection Representation

Anton Akusok1

Emil Eirola1

1Department of Business Management and Analytics, Arcada
UAS, Helsinki, Finland.

Abstract

The big data trend has inspired feature-driven learning tasks, which
cannot be handled by conventional machine learning models. Unstruc-
tured data produces very large binary matrices with millions of columns
when converted to vector form. However, such data is often sparse, and
hence can be manageable through the use of sparse random projections.

This work studies efficient non-iterative and iterative methods suitable
for such data, evaluating the results on two representative machine learn-
ing tasks with millions of samples and features. An efficient Jaccard kernel
is introduced as an alternative to the sparse random projection. Findings
indicate that non-iterative methods can find larger, more accurate models
than iterative methods in different application scenarios.

1 Introduction

Machine learning is a mature scientific field with lots of theoretical results,
established algorithms and processes that address various supervised and unsu-
pervised problems using the provided data. In theoretical research, such data
is generated in a convenient way, or various methods are compared on standard
benchmark problems – where data samples are represented as dense real-valued
vectors of fixed and relatively low length. Practical applications represented by
such standard datasets can successfully be solved by one of a myriad of existing
machine learning methods and their implementations.

However, the most impact of machine learning is currently in the big data
field with the problems that are well explained in natural language (“Find ma-
licious files”, “Is that website safe to browse?”) but are hard to encode numeri-
cally. Data samples in these problems have distinct features coming from a huge
unordered set of possible features. Same approach can cover a frequent case of
missing feature values [10, 28]. Another motivation for representing data by
abstract binary features is a growing demand for security, as such features can

1

ar
X

iv
:1

91
2.

08
61

6v
1

 [
cs

.L
G

]
 1

8
D

ec
 2

01
9

be obfuscated (for instance by hashing) to allow secure and confidential data
processing.

The unstructured components can be converted into vector form by defining
indicator variables, each representing the presence/absence of some property
(e.g., bag-of-words model [11]). Generally, the number of such indicators can
be much larger than the number of samples, which is already large by itself.
Fortunately, these variables tend to be sparse. In this paper, we study how
standard machine learning solutions can be applied to such data in a practical
way.

The research problem is formulated as a classification of sparse data with
a large number of samples (hundreds of thousands) and huge dimensionality
(millions of features). In this work, the authors omit feature selection methods
because they are slow on such large scale, they can reduce the performance
if a poor set of features is used, and, most importantly, features need to be
re-selected if the feature set changes. Feature selection is replaced by Sparse
Random Projection [3] (SRP) that provides a dense low-dimensional representa-
tion of a high-dimensional sparse data while almost preserving relative distances
between data samples [1]. All the machine learning methods in the paper are
compared on the same SRP representation of the data.

The paper also compares the performance of the proposed methods on SRP
to find the suitable ones for big data applications. Large training and test sets
are used, with a possibility to process the whole dataset at once. Iterative
solutions are typically applied to large data processing, as their parameters
can be updated by gradually feeding all available data. Such solutions often
come at a higher computational cost and longer training time than methods
where explicit solutions exist, as in linear models. Previous works on this topic
considered neural networks and logistic regression [9]. Also, there is application
research [26] without general comparison of classification methods. A wide
comparison of iterative methods based on feature subset selection is given in
the original paper for the publicly available URL Reputation benchmark [17].

The remainder of this paper is structured as follows. The next section 2
introduces the sparse random projection, and the classification methods used in
the comparison. The experimental section 3 describes the comparison datasets
and makes a comparison of experimental results. The final section 4 discusses
the findings and their consequences for practical applications.

2 Methodology

2.1 Sparse Random Projection for Dimensionality Reduc-
tion

The goal of applying random projections is to efficiently reduce the size of the
data while retaining all significant structures relevant to machine learning. Ac-
cording to Johnson–Lindenstrauss’ lemma, a small set of points can be projected
from a high-dimensional to low-dimensional Euclidean space such that relative
distances between points are well preserved [1]. As relative distances reflect the
structure of the dataset (and carry the information related to neighborhood and
class of particular data samples), standard machine learning methods perform
well on data in its low-dimensional representation. The lemma requires an or-

2

thogonal projection, that is well approximated by random projection matrix at
high dimensionality.

Johnson–Lindenstrauss lemma applies to the given case because the number
of data samples is smaller than the original dimensionality (millions). How-
ever, computing such high-dimensional projection directly exceeds the memory
capacity of contemporary computers. Nevertheless, a similar projection is ob-
tained by using sparse random projection matrix. The degree of sparseness is
tuned so that the result after the projection is a dense matrix with a low number
of exact zeros.

Denote the random projection matrix byW , and the original high-dimensional
data by X. The product W TX can be calculated efficiently for very large W
and X, as long as they are sparse. Specifically, the elements of W are not
drawn from a continuous distribution, but instead distributed as follows:

wij =

−
√
s/d with probability 1/2s

0 with probability 1− 1/s

+
√
s/d with probability 1/2s

(1)

where s = 1/density and d is the target dimension [14].

2.2 Extreme Learning Machine

Extreme Learning Machine (ELM) [13, 12] is a single hidden layer feed-forward
neural network where only the output layer weights β are optimized, and all the
weights wkj between the input and hidden layer are assigned randomly. With
N input vectors xi, i ∈ [1, N] collected in a matrix X and the targets collected
in a vector y, it can be written as

Hβ = y where H = h(W TX + 1Tb) (2)

Here W is a projection matrix with L rows corresponding to L hidden neurons,
filled with normally distributed values, b is a bias vector filled with the same
values, and h(·) is a non-linear activation function applied element-wise. This
paper uses hyperbolic tangent function as h(·). Training this model is simple, as
the optimal output weights β are calculated directly by ordinary least squares.
Tikhonov regularization [29] is often applied when solving the least square prob-
lem in Eq. (2). The value of the regularization parameter can be selected by
minimizing the leave-one-out cross-validation error (efficiently calculated via the
PRESS statistic [19]). The model is easily adapted for sparse high-dimensional
inputs by using sparse random matrix W as described in the previous section.
ELM with this structure for the random weight matrix is very similar to the
ternary ELM from [30].

ELM can incorporate a linear part by attaching the original data features X
to the hidden neurons output H. A random linear combination of the original
data features can be used if attaching all the features is infeasible, as in the cur-
rent case of very high-dimensional sparse data. These features let ELM learn
any linear dependencies in data directly, without their non-linear approxima-
tion. Such method is similar to another random neural network method called
Random Vector Functional Link network (RVFL [22]), and is presented in this
paper by the RVFL name.

3

2.3 Radial Basis Function ELM

An alternative way of computing the hidden layer output H is by assigning
a centroid vector cj , j ∈ [1, L] to each hidden neuron, and obtain H as a
distance-based kernel between the training/test set and a fixed set of centroid
vectors.

Hi,j = e−γjd
2(xi,cj), i ∈ [1, N], j ∈ [1, L], (3)

where γj is kernel width.
Such architecture is widely known as Radial Basis Function (RBF) net-

work [6, 16], except that ELM-RBF uses fixed centroids and fixed random kernel
widths γj . Centroid vectors cj are chosen from random training set samples to
better follow the input data distribution. Distance function for dense data is
Euclidean distance.

2.4 Jaccard distance for sparse binary data

Distance computations are a major drawback in any RBF network with Eu-
clidean distances as they are slow and impossible to approximate for high-
dimensional data [2]. Jaccard distances can be used for binary data [8]. How-
ever, a naive approach for Jaccard distances is infeasible for datasets with mil-
lions of features.

An alternative computation of Jaccard distance matrix directly from sparse
data is considered in the paper and proved to be fast enough for practical
purposes. Recall the Jaccard distance formulation for sets a and b:

J(a, b) = 1− |a ∩ b|
|a ∪ b|

(4)

Each column in sparse binary matrices A and B can be considered as a set of
non-zero values, so A = [a1, a2, . . . am] and B = [b1, b2, . . . bn]. Their union and
intersection can be efficiently computed with matrix product and reductions:

|ai ∩ bj | = (ATB)ij , i ∈ [1, n], j ∈ [1,m] (5)

|ai ∪ bj | = |ai|+ |bj | − |ai ∩ bj | =

(
1T
∑
k

Aik +
∑
K

Bjk
T1−ATB

)
i,j

(6)

The sparse matrix multiplication is the slowest part, so this work utilizes
its parallel version. Note that the runtime of a sparse matrix product ATB
scales sub-linearly in the number of output elements n ·m, so the approach is
inefficient for distance calculation between separate pairs of samples (ai, bj) not
joined in large matrices A, B.

3 Experiments

3.1 Datasets

The performance of the various methods is compared on two separate, large
datasets with related classification tasks. The first dataset concerns Android
application packages, with the task of malware detection. Features are extracted

4

using static analysis techniques, and the current data consists of 6,195,080 bi-
nary variables. There are 120,000 samples in total, of which 60,000 are malware,
and this is split into a training set of 100,000 samples and a fixed test set of
20,000 samples.

The data is very sparse – the density of nonzero elements is around 0.0017%.
Even though the data is balanced between classes, the relative costs of false
positives and false negatives are very different. As such, the overall classification
accuracy is not the most useful metric, and the area under the ROC curve (AUC)
is often preferred to compare models. More information about the data can be
found in [26, 25, 21].

Second, the Web URL Reputation dataset [18] contains a set of 2,400,000
websites that can be malicious or benign. The dataset is split into 120 daily
intervals when the data was collected; the last day is used as the test set.
The task is to classify them using the given 3,200,000 sparse binary features,
as well as 65 dense real-valued features. This dataset has 0.0035% nonzero
elements, however, a small number of features are real-valued and dense. For this
dataset, the classification accuracy is reported in comparison with the previous
works [32, 33].

3.2 Additional Methods

Additional methods include Kernel Ridge Regression (KRR), k-Nearest Neigh-
bors (kNN), Support Vector Machine for binary classification (SVC), Logistic
regression and Random Forest. Of these methods, only SVC and logistic regres-
sion have iterative solutions.

Kernel Ridge Regression [24, 20] combines Ridge regression, a linear least
squares solution with L2-penalty on weights norm, with the kernel trick. Dif-
ferent kernels may be used, like the Jaccard distance kernel for sparse data
proposed above.

k-Nearest Neighbors (kNN) method is a simple classifier that looks at k clos-
est training samples to a given test sample and runs the majority vote between
them to predict a class. The value of k is usually odd to avoid ties. It can use
different distance functions, and even a pre-computed distance matrix (with the
Jaccard distance explained in the Methodology section).

Support Vector Machine [7] constructs a hyperplane in a kernel space, that
separates the classes. It’s a native binary classifier with an excellent perfor-
mance, that can be extended to regression as well. There is a significant draw-
back of the computational complexity that is between quadratic and cubic in
the number of samples [15].

Logistic regression [4] is a binary classifier that utilizes the logistic function
in its optimization problem. The logistic function is non-linear and prevents Lo-
gistic Regression from having a direct one-step solution like linear least squares
in ELM or RVFL. Its weights are optimized iteratively [27], with an L2 penalty
helping to speed up the convergence and improve the prediction performance.

Random Forest [5, 31] is an ensemble method consisting of many random tree
classifiers (or regressors). Each tree is trained on bootstrapped data samples
and a small subset of features, producing a classifier with large variance but
virtually no bias. Then Random Forest averages the predictions of all trees,
reducing the variance of their estimations. It can be considered a non-iterative
method because parameters of each leaf of a tree are computed in a closed form

5

and never updated afterward. The method can work directly with sparse high-
dimensional data. It obtains good results already with 10 trees. Increasing
this number yields little improvement at a significant price in the training time.
Drawbacks of Random Forest are its inability to generalize beyond the range
of feature values observed in the training set, and slower training speed with a
large number of trees.

All methods are implemented in Python using scikit-learn routines [23]. The
experiments are run on the same workstation with a 6-core Intel processor and
64GB RAM.

3.3 Results on Large Data

The effect of various Sparse Random Projection dimensionality on classification
performance for large datasets is examined here. A range of 4–10,000 features is
evaluated, sampled uniformly on a logarithmic scale. Only “fast” methods with
sub-quadratic runtime scaling in the number of training samples are considered.

101 102 103 104

SRP dimension

0.6

0.7

0.8

0.9

1.0

Ar
ea

 u
nd

er
 R

OC
 c

ur
ve

Android Malware, 100,000 samples

ELM, SRP
RVFL, SRP
RBF-ELM, SRP
Logistic, SRP
R.Forest 10
R.Forest 100

101 102 103 104

SRP dimension

0.990

0.992

0.994

0.996

0.998

1.000

Ar
ea

 u
nd

er
 R

OC
 c

ur
ve

Android Malware, 100,000 samples (zoom)

ELM, SRP
RVFL, SRP
RBF-ELM, SRP
Logistic, SRP
R.Forest 10
R.Forest 100

Figure 1: The effect of varying number of Sparse Random Projection features
on the performance for Android Malware dataset. Vertical line corresponds to
5000 features.

Performance evaluation for Android Malware dataset is presented on Fig-
ure 1. Random Forest methods are the best performers with little SRP features,
but other methods catch up after 2,000 features in SRP and outperform Random
Forest with even higher SRP dimensionality. The number of trees in Random
Forest has a small positive effect of only +0.2% AUC for 10 times more trees.

The same evaluation for Web URL Reputation dataset is shown in Figure 2.
Random Forest is again better with fewer SRP features and performs similarly
with more features. More trees in Random Forest reduce is performance fluc-
tuations. Interesting that all the methods except Random Forest perform very
similarly despite their different formulation; a fact that is probably connected
to the nature of Sparse Random Projection.

3.4 Sparse Random Projection Benchmark

A larger variety of classification methods are compared on a reduced training set
of only 1,000 samples, randomly selected from the training set. All experiments
use the same test set of 20,000 samples. Sparse Random Projection includes
5,000 features that provide highest performance with reasonable runtime in the

6

101 102 103 104

SRP dimension

0.6

0.7

0.8

0.9

1.0
Ar

ea
 u

nd
er

 R
OC

 c
ur

ve
Web URL Reputation, 100,000 samples

ELM, SRP
RVFL, SRP
RBF-ELM, SRP
Logistic, SRP
R.Forest 10
R.Forest 100

101 102 103 104

SRP dimension

0.6

0.7

0.8

0.9

1.0

Ar
ea

 u
nd

er
 R

OC
 c

ur
ve

Web URL Reputation, 2,376,130 samples
ELM, SRP
RVFL, SRP
RBF-ELM, SRP
Logistic, SRP
R.Forest 10
R.Forest 100

Figure 2: The effect of varying number of Sparse Random Projection features
on the performance for Web URL Reputation dataset. Full dataset is tested
with a maximum 650 features due to the memory constraints. Vertical line
corresponds to 5,000 features.

previous experiments (vertical line on Figures 1, 2). The experimental results
are summarized in Table 1.

A total of 101 fixed training sets are generated – one for tuning hyper-
parameters, and the rest for 100 runs of all the methods. All methods use tuned
L2-regularization with the regularization parameter selected on a logarithmic
scale of [2−20, 2−19, . . . , 220], except for kNN that has a validated k = 1 and
Random Forest with 100 trees for a reasonable runtime.

Comparison results on Web URL Reputation dataset achieved 94.4% accu-
racy in rule-based learning [32], and 97.5% accuracy in SVM-based approach [18].
The latter is comparable to the proposed results, but the exact comparison de-
pends on a particular point of the ROC curve.

Table 1: Mean area under ROC curve in % (with the standard deviation in
parentheses) and runtime in seconds for all methods on the two benchmark
datasets, using 1,000 training samples and summarized over 100 runs. Bold
font denotes the best result for each dataset, and any other not statistically
significantly different values (paired t-test at the significance level 0.05).

Method Android Malware Web URL Reputation
AUC (std.), % time, s AUC (std.), % time, s

ELM, SRP 99.41 (0.08) 3.1 99.29 (0.16) 2.9
RVFL, SRP 99.34 (0.08) 2.2 98.13 (0.74) 2.1
RBF-ELM, SRP 99.12 (0.11) 2.1 97.53 (1.81) 2.1
KRR, SRP 92.61 (0.24) 1.3 99.15 (0.22) 1.3
kNN, SRP 86.55 (1.00) 13.4 83.35 (2.25) 13.5
SVC, SRP 99.26 (0.10) 44.2 99.17 (0.21) 34.6
Logistic Regression, SRP 99.21 (0.11) 0.6 99.17 (0.23) 0.1
Random Forest 98.54 (0.42) 30.6 95.64 (1.65) 4.9
RBF-ELM, Jaccard 86.34 (5.15) 18.9 79.67 (3.62) 1.7
KRR, Jaccard 99.48 (0.06) 18.3 99.31 (0.06) 1.6
kNN, Jaccard 91.38 (0.50) 18.0 84.62 (0.95) 1.3

7

4 Conclusion

This study provides useful insights on the nature of a very high-dimensional
sparse data and the utility of Sparse Random Projection for its processing.

The original high-dimensional sparse data representation is best combined
with Random Forest if the data is abundant. Random Forest efficiently learns
to discriminate between classes on a huge dataset and has the fastest training
speed if run in parallel with a small number of trees. However, it underperforms
on smaller datasets.

The original sparse data can be used in kernel matrix calculation for Kernel
Ridge regression, that excels in smaller datasets. However, the kernel computa-
tion runtime is a significant drawback, and the KRR itself cannot scale to huge
datasets.

Sparse Random Projection efficiently represents a high-dimensional sparse
data given a sufficient number of features (at least 1,000 in the tested datasets).
In that case, it provides good results with very different methods: based on
neural networks, logistic regression, kernel methods like KRR and SVM. An
interesting fact is that the choice of a particular method is not significant. Of
the aforementioned methods, ELM and RVFL are the most versatile. They
provide best results in a short runtime, for any training set size.

Acknowledgements

This work was supported by Tekes – the Finnish Funding Agency for Innovation
– as part of the “Cloud-assisted Security Services” (CloSer) project.

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. Journal of Computer and System Sciences,
66(4):671 – 687, 2003. Special Issue on PODS 2001.

[2] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When Is “Nearest Neighbor” Meaningful? In Catriel Beeri and Peter
Buneman, editors, Database Theory — ICDT’99: 7th International Con-
ference Jerusalem, Israel, January 10–12, 1999 Proceedings, pages 217–235.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[3] Ella Bingham and Heikki Mannila. Random projection in dimensionality
reduction: Applications to image and text data. In Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’01, pages 245–250, New York, NY, USA, 2001.
ACM.

[4] Christopher M. Bishop. Pattern recognition and machine learning.
Springer, 2006.

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[6] D. S. Broomhead and David Lowe. Multivariable functional interpolation
and adaptive networks. Complex Systems, 2(3):321–355, 1988.

8

[7] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[8] W. M. Czarnecki. Weighted Tanimoto Extreme Learning Machine with
Case Study in Drug Discovery. IEEE Computational Intelligence Magazine,
10(3):19–29, August 2015.

[9] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale malware
classification using random projections and neural networks. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on, pages 3422–3426. IEEE, 2013.

[10] Emil Eirola, Amaury Lendasse, Vincent Vandewalle, and Christophe Bier-
nacki. Mixture of gaussians for distance estimation with missing data.
Neurocomputing, 131:32 – 42, 2014.

[11] Zellig S. Harris. Distributional Structure, pages 3–22. Springer Netherlands,
Dordrecht, 1981.

[12] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. Ex-
treme learning machine for regression and multiclass classification. Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
42(2):513–529, April 2012.

[13] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning
machine: Theory and applications. Neural Networks Selected Papers from
the 7th Brazilian Symposium on Neural Networks (SBRN ’04)7th Brazilian
Symposium on Neural Networks, 70(1–3):489–501, December 2006.

[14] Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 287–296. ACM,
2006.

[15] Nikolas List and Hans Ulrich Simon. General polynomial time decomposi-
tion algorithms. J. Mach. Learn. Res., 8:303–321, May 2007.

[16] David Lowe. Adaptive radial basis function nonlinearities, and the problem
of generalisation. In Artificial Neural Networks, 1989., First IEE Interna-
tional Conference on (Conf. Publ. No. 313), pages 171–175. IET, 1989.

[17] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker.
Identifying suspicious URLs: An application of large-scale online learning.
In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 681–688, Montreal, Quebec, Canada, 2009. ACM.

[18] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Iden-
tifying suspicious urls: an application of large-scale online learning. In Pro-
ceedings of the 26th annual international conference on machine learning,
pages 681–688. ACM, 2009.

[19] Yoan Miche, Mark van Heeswijk, Patrick Bas, Olli Simula, and Amaury
Lendasse. TROP-ELM: a double-regularized ELM using LARS and
Tikhonov regularization. Neurocomputing, 74(16):2413–2421, 2011.

9

[20] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, August 2012.

[21] Paolo Palumbo, Luiza Sayfullina, Dmitriy Komashinskiy, Emil Eirola, and
Juha Karhunen. A pragmatic android malware detection procedure. Com-
puters & Security, 70:689–701, 2017.

[22] Yoh-Han Pao, Gwang-Hoon Park, and Dejan J. Sobajic. Learning and gen-
eralization characteristics of the random vector functional-link net. Neuro-
computing, 6(2):163 – 180, 1994. Backpropagation, Part IV.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[24] Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge re-
gression learning algorithm in dual variables. In ICML, volume 98, pages
515–521, 1998.

[25] Luiza Sayfullina, Emil Eirola, Dmitry Komashinsky, Paolo Palumbo, and
Juha Karhunen. Android malware detection: Building useful representa-
tions. In 2016 15th IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 201–206, December 2016.

[26] Luiza Sayfullina, Emil Eirola, Dmitry Komashinsky, Paolo Palumbo, Yoan
Miche, Amaury Lendasse, and Juha Karhunen. Efficient detection of zero-
day android malware using normalized bernoulli naive bayes. In IEEE
TrustCom 2015, pages 198–205, 2015.

[27] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums
with the stochastic average gradient. Mathematical Programming, pages
1–30, 2013.

[28] Dusan Sovilj, Emil Eirola, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Anton
Akusok, and Amaury Lendasse. Extreme learning machine for missing data
using multiple imputations. Neurocomputing, 174:220 – 231, 2016.

[29] Andrey Nikolayevich Tikhonov. On the stability of inverse problems. vol-
ume 39, pages 195–198, 1943.

[30] Mark van Heeswijk and Yoan Miche. Binary/ternary extreme learning
machines. Neurocomputing, 149:187–197, 2015.

[31] Le Zhang, Ye Ren, and Ponnuthurai N Suganthan. Towards generating ran-
dom forests via extremely randomized trees. In Neural Networks (IJCNN),
2014 International Joint Conference on, pages 2645–2652. IEEE, 2014.

[32] Peng Zhang, Chuan Zhou, Peng Wang, Byron J Gao, Xingquan Zhu, and
Li Guo. E-tree: An efficient indexing structure for ensemble models on
data streams. IEEE Transactions on Knowledge and Data Engineering,
27(2):461–474, 2015.

10

[33] Zhaoze Zhou, Wei-Shi Zheng, Jian-Fang Hu, Yong Xu, and Jane You. One-
pass online learning: A local approach. Pattern Recognition, 51:346–357,
2016.

11

	1 Introduction
	2 Methodology
	2.1 Sparse Random Projection for Dimensionality Reduction
	2.2 Extreme Learning Machine
	2.3 Radial Basis Function ELM
	2.4 Jaccard distance for sparse binary data

	3 Experiments
	3.1 Datasets
	3.2 Additional Methods
	3.3 Results on Large Data
	3.4 Sparse Random Projection Benchmark

	4 Conclusion

