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Abstract. Event detection has long been the domain of physical sensors operat-

ing in a static dataset assumption. The prevalence of social media and web ac-

cess has led to the emergence of social, or human sensors who report on events 

globally. This warrants development of event detectors that can take advantage 

of the truly dense and high spatial and temporal resolution data provided by 

more than 3 billion social users. The phenomenon of concept drift, which caus-

es terms and signals associated with a topic to change over time, renders static 

machine learning ineffective. Towards this end, we present an application for 

physical event detection on social sensors that improves traditional physical 

event detection with concept drift adaptation. Our approach continuously up-

dates its machine learning classifiers automatically, without the need for human 

intervention. It integrates data from heterogeneous sources and is designed to 

handle weak-signal events (landslides, wildfires) with around ten posts per 

event in addition to large-signal events (hurricanes, earthquakes) with hundreds 

of thousands of posts per event. We demonstrate a landslide detector on our ap-

plication that detects almost 350% more landslides compared to static ap-

proaches. Our application has high performance: using classifiers trained in 

2014, achieving event detection accuracy of 0.988, compared to 0.762 for static 

approaches. 

Keywords: Concept drift, Machine Learning Event Detection, Disaster Detec-

tion. 

1 Introduction 

The ubiquitous presence of web data and increase in users sharing information in 

social media has created a global network of human reporters who report on live 

events. Such human reporters can be considered as social sensors that provide infor-

mation about live physical events around the globe [4-7]. Development of applica-

tions that can take advantage of social sensors to perform physical event detection are 

a clear next step. The primary challenge lies in the actual event detection: since social 

sensor data is a noisy text stream, machine learning models are required. Further, 

there is the phenomena of concept drift, where the distribution of real-world data 
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changes with respect to time. This is especially apparent with text data. We provide 

an example with landslide detection on social media: the word landslide can refer to 

the disaster event or elections, among others. Since October and November are often 

election seasons in the United States, classification models that are tuned to ignore 

social media data with election related landslide keywords are more appropriate in 

this data window. In other months, the presence of election-related landslide tweets is 

scarce, which can cause increase false negatives in models overfit for election-related 

landslide tweets. This instance of changing data distributions is a form of concept 

drift. 

So, social sensors constitute a challenge for the traditional approaches to text clas-

sification, which involve static machine learning classifiers that are never updated. 

Event detection systems for social sensors without concept drift adaptation face per-

formance deterioration. We can consider Google Flu Trends (GFT) as an example; 

GFT was originally created to identify seasonal trends in the flu season [9]. However, 

the models did not incorporate changes in Google’s own search data, causing increas-

ing errors after release [9-11]. Our application addresses these challenges by incorpo-

rating concept drift adaptation. Additionally, we develop automated concept drift 

adaptation techniques to automatically generate training data for machine learning 

model updates. This is necessary due to the sheer volume of social media data – it is 

impractical to manually label the millions of social media posts per day. Our approach 

allows us to perform drift adaptation without human labelers, which significantly 

reduces training bottlenecks. 

Specifically, we have the following contributions: 

1. We present a drift-adaptive event detection application that performs physical 

event detection on social sensors using machine learning. We also show automated 

classifier updates for concept drift adaptation.  

2. We develop a procedure to combine news articles and physical sensor data (e.g. 

rainfall data from NOAA and earthquake data from USGS) to perform automated 

training data generation for concept drift adaptation. Our application uses the low-

latency, abundant social sensor data to perform physical event detection with ma-

chine learning classifiers, and the high-latency, scarce physical sensor data to tune 

and update classifiers.  

We demonstrate our event detection application with landslide detection. We select 

landslides because they do not have dedicated physical sensors (in contrast to tsuna-

mis or earthquakes); however, they cause large monetary and human losses each year. 

Landslides are a also what we call a weak-signal disaster: landslide-related social 

media data has significant noise in social media streams. Also, usage of landslide 

keywords to reference disasters is small compared to usage to reference irrelevant 

topics such as election landslides.  

We compare our landslide detection application (LITMUS-adaptive) to the static 

approach in [2], which we call LITMUS-static. Our approach, LITMUS-adaptive, 

detects 350% more landslide events than LITMUS-static. We also evaluate our adap-

tive classifiers’ accuracy compared to the static classifiers in LITMUS-static. We 

train classifiers with data in 2014, and compare performance of static and adaptive 
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approaches in 2018. LITMUS-adaptive has f-score of 0.988 in 2018, compared to f-

score of 0.762 in LITMUS-static, showcasing improvements our drift adaptive ap-

proach makes.  

The rest of the paper is organized as follows: Section 2 covers related work. Sec-

tion 3 covers data sources used in our application. Section 4 and 5 provide implemen-

tation details for our application. Section 6 and 7 evaluate our application quantita-

tively and qualitatively, respectively. Section 8 presents our conclusions.  

2 Related Work 

2.1 Physical Event Detection on Social Sensors 

Earthquake detection using social sensors was initially proposed in [1]. There have 

also been attempts to develop physical event detectors for other types of disasters, 

including flooding [2], flu [3, 4], infectious diseases [5], and landslides [6, 7]. In most 

cases, the works focus on large-scale disasters or health crises, such as earthquakes, 

hurricanes [8], and influenza that can be easily verified and have abundant reputable 

data Our application is general purpose, as it can handle small-scale disaster such as 

landslides and large-scale disasters. The existing approaches also assume data without 

concept drift. However such assumptions, made in Google Flu Trends [9, 10] degrade 

in the long term.  

2.2 Concept Drift Adaptation 

Recent drift adaptation approaches evaluate their methods with synthetic data [11-

14]. Such data is perturbed to include specific, known forms of drift. Several mecha-

nisms have been developed for handling concept drift with numeric, sensor data.  

Windowing, or sliding windows, is a common technique for adaptation. This ap-

proach uses multiple data memories, or windows of different lengths sliding over 

incoming data. Each window has an associated model. The SAM-KNN approach uses 

k-NN classifier to select window closest to a new data sample for classification [15]. 

Nested windows are considered in [16] to obtain training sets.  

Adaptive Random Forests augment a random forest with a drift detector. Drift 

detection leads to forest pruning to remove tress that have poor performance. Pruned 

trees are replaced with new weak classifiers [17].  

Knowledge Maximized Ensemble (KME) uses a combination of off-the-shelf 

and created drift detectors to recognize various forms of drift simultaneously. Models 

are updated when enough training data is collected and removed if they perform poor-

ly [18]. 

Most methods approach concept drift with an eye towards detection and subse-

quent normalization. Updating or rebuilding a machine learning model facing drift 

involves two bottlenecks in the classification pipeline: data labeling and model train-

ing; of these, data labeling is the greater challenge due to its oracle requirements. 

Such wait-and-see models that perform corrections once errors have been detected 

entail periodic performance degradation before they are corrected with model up-
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dates; this may be infeasible in mission-critical applications. Active learning strate-

gies counteract this bottleneck in part; the tradeoff is between highly accurate models 

and clustered, knowledge-agnostic representations that consider data on distance 

without subject matter expertise.  

3 Data Sources 

Our application, LITMUS-adaptive, combines physical sensor and news data, 

which have high-latency and are scarce, with social sensor data, which have low-

latency and are abundant. The social sensor data is used for event detection through 

machine learning classifiers, while the physical sensors and news data are used to 

update machine learning classifiers.  

3.1 Physical Sensors and News 

1. News: News articles are downloaded from various online RSS feeds. Each source 

is described by the article link, the publish date, the article headline, and the publi-

cation name. Locations are extracted from the text using Named Entity Recogni-

tion. Publisher sources include international feeds from agencies (e.g. BBC, CNN, 

ABC, Reuters), as well as local news sources (some sample snippets are provided 

in Figure 1). 

2. Rainfall Reporting: We download rainfall data from NOAA and earthquake data 

from USGS to perform to validate landslide detections. 

3. Landslide Predictions: The National Oceanic and Atmospheric Administration 

(NOAA) and USGS provide landslide predictions in select locations where there is 

enough terrain and rainfall data. LITMUS uses this to perform localized landslide 

tracking and labeling. 

 

 

Fig. 1.   Snippets of news articles about landslides. Each retrieved article is geolocated using 

NER to identify locations and indexed spatiotemporally. 
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3.2 Social Sensors 

1. Twitter: a keyword streamer is used to download tweets continuously for Twitter. 

Keywords include the words ‘landslide’, ‘mudslide’, and ‘rockslide’ as well as 

their lemmas (some examples are provided below). 

2. Facebook: a general keyword streamer is used to download public Facebook posts. 

Existing web crawlers are leveraged to improve retrieval efficiency 

 

 

Fig. 2. Sample of raw tweets. The left side are relevant tweets. The right side are irrelevant 

tweets for landslide detection. 

4 Approach 

 

Fig. 3. Our application detects real-time events from social sensors. It remains drift-adaptive by 

integrating physical sensors with social sensors to continuously update machine learning classi-

fiers. 

The dataflow for our application is shown in Figure 3. We perform physical event 

detection by performing classification on social media data. We use binary classifiers 

that detect whether a given social sensor post is relevant to a given event or not (e.g. 

landslides). The latency between a physical event’s occurrence and social sensor post 

about the event is significantly lower than latency with news reports and physical 

sensors, which often require expert confirmation. In contrast, social sensor data has 

low latency. However, it lacks the reputability of physical sensors and news reports. 

We rely on the social sensors for event detection, and physical sensors to continuous-

ly tune machine learning models.  
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Traditional approaches perform event detection under a static data assumption. Our 

contribution is in generating updated machine learning classifiers without any manual 

intervention so that our application can adapt to concept drift.  

4.1 Social Sensor Download 

Social sensor download operates in real-time. Our application has streaming end-

points for several short-text social media systems, such as Twitter and Facebook, with 

an extensible framework for integrating custom streaming sources. Social sensor 

downloads operate in a high-volume streaming setting. Each downloaded post object 

contains at least five fields: (i) the post content as a Unicode string, (ii) an array of 

named locations within the post (this is usually null and is filled during data pro-

cessing step), (iii) timestamp of post, (iv) array of hyperlink content within the post, 

and (v) user-id or screen name of human reporter who created the post.  

4.2 Physical Sensor and News Download 

Physical sensors and news sources are dedicated physical, social, and web sensors 

providing event information with human annotations. In contrast to social sensors, 

these are trustworthy sources. We further distinguish physical sensors and news from 

social sensors: physical sensor and news data is highly structured and contains de-

tailed event information. In our domain (landslides), most physical sensors and news 

sources provide geographical coordinates and time of landslide disaster. In most mis-

sion-critical applications, such physical sensor and news data appears long after an 

event takes place, once reputable sources have confirmed the event. Additionally, 

these sensors have lower volume.  

For physical sensors, it is trivial to insert the physical event provided by the sen-

sors into our ground truth database by extracting timestamp and location information. 

News articles provide topic tags that can be mined for an application’s event; event 

reports (e.g. earthquake or large landslide report by USGS) provide detailed infor-

mation about events, including locations, timestamps, event range, and event impact. 

We use Named Entity Recognition as well as location tags of news articles to extract 

location information to identify event location. These events are also stored in the 

ground truth event database as confirmed landslide events. 

4.3 Social Sensor Data Processing  

Social sensor data has low-context, which hinders location extraction and classifi-

cation. Additionally, Named Entity Recognition (NER) often fails on short-text be-

cause there are too few words for the NER algorithms. We augment natural language 

extractors by sharing information between ground truth events and social sensor data 

processing. We provide an example with location extraction. Since social posts have 

few words, location extraction is not accurate on the short-text and often misses loca-

tions provided in a post’s text content. So any location identified by NER is saved in 

memory for several days as a string. This string is used to augment location extraction 
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with substring match; intuitively, if there is one social post about an event in a loca-

tion, there could be others. Similarly, any ground-truth event locations are also added 

to the short-term memory to augment social sensor location extraction. 

4.4 Automated Training Data Generation 

We integrate social sensor data with physical sensors and news sources to automat-

ically generate labeled data. During live operation, social sensor data is passed to the 

Machine Learning classifiers for event detection. Concept drift causes performance 

deterioration in these classifiers. So, our application performs model updates at regu-

larly scheduled intervals. A model update requires labeled data, and a classifier’s own 

labels cannot be used for updating itself. As noted before, it is also impractical to 

manually label the large volume of social sensor data (on Twitter alone, there are 

>500M tweets per day). 

Our application matches historical social sensor data to ground truth events detect-

ed from physical sensors and news reports, which are highly trustworthy. Intuitively, 

social posts with landslide keywords that have similar space-time coordinates as 

ground truth events are very likely relevant to a real landslide (as opposed to irrele-

vant posts such as election landslides).  

At the end of each data window (one-month windows in our landslide application), 

ground truth events of the window are stored as cells (coordinates of events are 

mapped to 2.5-min cell grids on the planet [7]). Social media data from the window is 

localized by time into 6-day bins. Note that in data processing step, NER augmenta-

tion only occurs forward in time, i.e. when a new location is added to the memory for 

substring matching, only subsequent social sensor posts are processed with the new 

location. So, during the automated training data generation stage, we have access to 

archived social sensor data.  

Table 1. Automatically labeled data in each data window 

Data Window Data Samples Labeled 

2014-Training Data 26,953 13028 

2014-Test Data 6464 3266 

July 2018 378 189 

August 2018 212 106 

September 2018 386 193 

October 2018 498 249 

November 2018 1770 885 

December 2018 446 223 

 

We take advantage of this by re-processing data from the prior window. Locations 

extracted from each ground-truth event within  days are used as a substring filter to 

extract locations from social posts. We then perform automated labeling by matching 

a social media post’s space-time coordinates to true-event location and time. Location 
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matching is achieved with the 2.5-min cell grid superposition using strong supervi-

sion. This is in contrast to weak-supervision [21] as our supervisory labeling is do-

main-specific, instead of domain-agnostic. Table 1 below shows statistics about the 

generated training data (labeled data) in each window. 

5 Event Detection with Machine Learning Classifiers 

Our application uses machine learning classifiers to perform event detection. We 

employ a variety of statistical and deep learners, including SVMs, Logistic Regres-

sion, Decision Trees, and Neural Networks. Our drift adaptation consists of two com-

plementary parts: Classifier generation (to create new ML models) and Classifier 

updates (to update older models with new data). We cover them below. We will first 

describe the classifier generation/update procedure. Then we will cover update sched-

ules which govern when new classifiers are generated or updated. 

5.1 Classifier generation 

We define a window as the collection of social sensor data between two updates. 

At the end of a data window, training data is generated for the previous window using 

procedures in Automated Training Data Generation. The labeled samples are used to 

train new ML classifiers. Existing classifiers are copied, and the copies are updated 

with the new data. Both new and updated classifiers are saved to a database using 

key-value scheme. The classifiers function as values and the training data as the key. 

Currently, instead of storing the entire training data, we store the training data cen-

troid as the key for a classifier.  

5.2 Update Schedule 

We support three types of classifier update schedules: user-specified, detector-

specified, and hybrid, described below. These schedules allow for continuous classifi-

er generation and updates to combat concept drift. 

User-Specified. Users can set up an update schedule (daily, weekly, monthly, etc). 

The application tracks the internal time, and when an update is triggered, procedures 

in Classifier Generation are followed to create new classifiers and update existing 

ones.  

Detector-Specified. Some classifiers types provide confidence values with predic-

tions. Neural networks with softmax output layer provide class probabilities. Drift can 

be detected by tracking frequency of low confidence labels. For linear classifiers (in-

cluding SVMs), higher density of data points close to the separating hyperplane over 

time can indicate signal drift. If drift time exceeds a threshold, procedures in Classifi-

er Generation are followed to create new classifiers and update existing ones.  
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5.3 ML-Based Event Detection 

Classifiers are retrieved using two approaches: (i) recency or (ii) relevancy. Recen-

cy performs lookup on most recently created classifiers. Relevancy  performs k-NN (k 

nearest neighbors) search to find training data (using the stored data centroids) that is 

closest to prediction data; the k-closest data are then used to look up respective classi-

fiers in the classifier database. These classifiers are used as an ensemble).  

Our machine learning event detectors use multiple classifiers with votes to perform 

predictions, since ensembles perform better than lone classifiers. Our ensemble classi-

fier supports several weight assignment options: 

Unweighted average. The class labels predicted by each classifier in the ensemble (0 

for irrelevant and 1 for relevant physical event) are summed and averaged. 

 indicates majority of classifiers consider the input post as relevant to the 

physical event 

Weighted average. Classifiers can be weighted by domain experts based on which 

algorithm they implement. Weak classifiers (random forests) can be given lower 

weights than better classifiers (SVMs, neural networks).  

Model-weighted. We can determine classifier weights using their prior performance: 

 
where  is classifier ,  is the weight of classifier  in data window , and 

 is the validation accuracy of  on the testing data in the data window  (  is 

the window where the model was last trained). 

6 Evaluation of Drift Adaptive Approach 

We first demonstrate the need for concept drift adaptive event detection with evidence 

of concept drift in our data. As shown in Table 1, we have social sensor data from 

2014 through 2018. Each labeled post’s text is converted to a high-dimensional, nu-

meric representation using word2vec [22]. The post vector is dimensionally reduced 

with tSNE. The tSNE-based reducer measures pairwise similarities between data 

points and shows the event characteristics separation between 2014 and 2018 data. 

Our real-world live data will continue to evolve over time. 

Such drift in text data is difficult to predict due to the phenomena of lexical diffu-

sion [23]. Current drift adaptation methods use synthetic data with bounded and pre-

dictable drift to evaluate methods; they do not focus on adapting to unbounded drift in 

live data.  
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Fig. 4. TSNE of datasets from 2014 through 2018 

We evaluate our drift adaptive event detectors with two approaches summarized in 

Table 2. In each window, the drift adaptive learner is provided with classifiers trained 

under each approach and tuned with optimal hyperparameters obtained using grid 

search. 

Table 2. Summary of approaches 

Approach Description Training Data 

N_RES (Static) 
Non-drift resilient approach 

with static classifiers 

2014 Data 

RES (Adaptive) 
Drift resilient approach 

using generated training 

data for updates 

2014 Data – 2018 

Data (Separated 

by windows) 

 

We compare performance of each approach in Table 2 over subsequent windows in 

our data. As we show in Figure 5, ensembles with resilience (adaptive approach) out-

perform non-resilient counterparts (static approach) throughout. RES under both sta-

tistical and deep learners maintains high f-score across multiple years. N_RES has 

significantly higher variance in performance, and is generally poor at adapting to the 

live data’s drift. 
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Fig. 5. The Adaptive methods significantly outperform static counterparts in the 2018 data. 

N_RES classifiers face deterioration across all metrics without access to generated 

training data to update their parameters (Figure 6).  

 

 

Fig. 6. Decay is apparent in non-resilient classifiers. The f-score is high during the offline win-

dow, but degrades without access to generated training data. 

7 Landslide Detection: Results 

We built our application with physical event detection in mind; evaluation is per-

formed with landslide detection. In the previous section, we validated our drift adap-

tive approach. Here, we compare our application – LITMUS-adaptive, to LITMUS-

static, the traditional approach. Figure 7 shows the raw event comparisons between 

LITMUS-static and LITMUS-adaptive. LITMUS-adaptive outperforms LITMUS-

static, and over time, the share of events detected only by LITMUS-adaptive increases 

(Figure 8). We see that by December 2018, LITMUS-adaptive detects 71% of events, 
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compared to LITMUS-static’s 28% of events, an increase by 350%. We show global 

coverage in Figure 9. 

 

Fig. 7. Raw additional events comparison between LITMUS-adaptive and LITMUS-static. 

Both applications are events detected by both LITMUS-static and LITMUS-adaptive. Every 

event detected by LITMUS-static was also detected by LITMUS-adaptive. In addition, 

LITMUS-adaptive also detects several additional events (LITMUS-adaptive only). The sum of 

the two are shown in LITMUS-adaptive Total 

 

Fig. 8. Events normalized as fractions of total. Over data windows, fraction of data missed by 

LITMUS-static increases as its classifiers deteriorate. However, with continuous updates, 

LITMUS-adaptive can adapt to drift and maintain higher accuracy and thus, better event detec-

tion.  
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Fig. 9. Our application has global coverage. We are able to detect events across the globe, and 

as mentioned, every event in LITMUS-static is also detected in LITMUS-adaptive, along with 

hundreds of additional events LITMUS-static misses (Figure 7 and Figure 8). 

8 Conclusions 

We proposed a physical event detector for social sensor data that remains resilient to 

concept drift. Our approach combines social sensors with physical sensors and news 

data to perform continuous learning to maintain model currency with the data distri-

bution. Our application’s drift adaptation takes advantage of human annotations in 

existing reputable sources (physical sensors and news data) to augment and generate 

training data. This removes the need for humans to perform manual labeling, signifi-

cantly reducing cost and labeling bottlenecks. 

Our application uses an ML-based event processing classifiers that continuously 

adapt to changes in live data. We believe the application and the methods presented in 

this paper can be useful for a variety of social-sensor based physical event detection. 

We demonstrated a disaster detection application that is designed for landslide detec-

tion. Our application, LITMUS-adaptive, improves upon static approaches such as 

LITMUS-static. LITMUS-adaptive adapts to changing event characteristics in social 

sources and detects almost 350% more landslide events than LITMUS-static. Moreo-

ver, LITMUS-adaptive achieves f-score of 0.988 by December 2018, compared to f-

score of 0.762 for static approaches. 
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