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Abstract. Mining data from social and communication network have
been attracting recent attention from various research fields. However,
these data represented by large-scale graphs are often sensitive and pri-
vate. It is a necessity of developing algorithms to publish large-scale
graph while not revealing sensitive information. As a standard for data
privacy preservation, differential privacy based algorithm are also widely
used in publishing graph-based dataset. However, previous differential
privacy based methods often bring huge computational cost and lack the
capability of modeling complicated graph structure. To address these
challenge, we propose a novel graph publishing algorithm which combines
community detection with differential privacy method. By segmenting
the graph into several sub-graphs by community detection, differential
privacy methods is able to handle large-scale graphs with complex struc-
ture. Experimental results on several datasets demonstrates the promis-
ing performance of the proposed algorithm compared with original dif-
ferential privacy methods.

Keywords: Graph publishing · Partition · Differential privacy ·
Structural information

1 Introduction

Recent progress in information technology has led to impressive success in a
wide range of applications, including recommendation system, medical services,
tasks among Neutral Language Processing, etc. Such advances are enabled partly
thanks to the availability of open large-scale graph based datasets. The graphs in
such datasets are generally large and contain many sensitive information of users.
Therefore, we need to explore methods that meet the demand of applications
while offering principled and rigorous privacy guarantee.

Current methods in publishing private data could be partitioned into two
aspects, including k-anonymity [1] and Differential Privacy [2]. The former is
vulnerable to attackers with strong background knowledge, while the latter per-
forms more robust for privacy preserving when facing strong attackers. Consid-
ering the specialization of abstract graphs, there are various of ways to convert
them. The common procedure is to instantiate abstract graph as specific graph,
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then to obtain the representation of graph, such as adjacency matrix [3], hierar-
chical random graph [4], quadtree [3,6], etc. These previous methods are often
applicable in small-scale graph datasets. However, real graph are generally com-
plex, which increases the difficulty on representation. Furthermore, the main
limitation among the methods is that real graphs are generally large and sparse,
leading to high computational expense.

In order to address these challenges, we propose a new algorithmic method
for publishing graph dataset. To handle with the problem of high computational
expense, we bring in a community detection algorithm to quickly partition the
graph into several communities. To handle with the other problem of low utility,
we explore a method by adding different degree of noises based on graph struc-
tural information. With the combination of Fast-unfolding community detection
algorithm and the framework of differential privacy based on hierarchical repre-
sentation, satisfactory performances are achieved on several large-scaled graph
datasets.

2 Related Works

Differential privacy has been applied to a wide variety of scenes, including secu-
rity of data publishing [8], machine learning [10], deep learning [9,10], etc. Data
publishing is an essential step along the life circle of data. It can be divided into
several branches by differing the type of objects, such as relational data, graph
data, etc.

In order to publish graph data with privacy protection, we need to face
the challenges on sanitizing graph with high-quality structural information. To
address such problem, some proposed methods tried to add noises to edges within
a graph, while others build an adjacency matrix first to store the information
of a graph [3,5,11], or hierarchical structure [4], or use quadtree [6] to represent
the graph, then do perturbation. However, most of the mentioned methods bring
in large noises that threaten the utility of sanitized data. For instance, Wang
et al. [11] propose to perturb the eigenvalues and eigenvectors of the correspond-
ing adjacency matrix. It imposes noise of magnitude proportional to O√

n, where
n is the number of nodes in the network. It also causes high computation expense.

Some methods have tried to partition a graph into many subgraphs [7], and
then do perturbation. However, it seems to be lack of strict privacy guarantee
and some interpretation on why partition them in those way. Meanwhile, same
noises are added to edges with no differences, which affects the utility of sanitized
data.

A key limitation to most of the mentioned methods is that the connection
strength hidden in the graph is ignored (i.e., all the edges are added to the same
noise). Thus, extra noises are brought into the weak connections. Furthermore,
the size of real networks is generally so large that causes large computational
expense.
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3 Preliminaries

In this section, we briefly recall the relevant definition of Differential Privacy,
introduce both Laplace mechanism and Exponential mechanism, also composi-
tion theorems. Furthermore, reveal the logical relationship between hierarchical
and community structure.

3.1 Differential Privacy

Differential Privacy [2] provides a strong standard with privacy guarantees for
algorithms on datasets. It is defined in terms of the concept of adjacent database.
In our research, each training dataset is a set of node pairs representing edges.
Two sets are adjacent if they differ in a single entry, that is, if one node pair
(edge) is present in one set and absent in another.

Definition 1. A randomized function M gives ε-differential privacy if for all
data sets d and d’ differing on at most one element, and all S ⊆ Range(M),

Pr[M(d) ∈ S] ≤ exp(ε) × Pr [M (d′) ∈ S]

A mechanism M satisfying this definition promises that even if the data of one
participant is removed from the dataset, no outputs would become significantly
more or less likely. ε is called privacy budget.

3.2 Laplace Mechanism

Before calling Laplace mechanism, we need to recall the definition of Sensitivity
first.

Definition 2. The sensitivity of a function f : D → R
k, which is a numeric

query function that maps datasets to k real numbers, is:

Δf = maxd,d′∈D |f(d) − f (d′)| , ‖d − d′‖ = 1

Where D is the dataset, d and d′ are the arbitrary neighboring subsets belong-
ing to D [14].

The sensitivity (global sensitivity) of a function f captures the magnitude
by which a single individual’s data can change the function f in the worst case.
Therefore, it gives an upper bound on how much we must perturb its output to
preserve privacy. Laplace mechanism will simply compute f , and perturb each
coordinate with noise drawn from the Laplace distribution. The scale of the noise
will be calibrated to the sensitivity of f (divided by ε). Thus, given any function
f : D → R

k, the Laplace mechanism is defined as:

M(d, f(·), ε) = f(d) + (Y1, . . . , Yk)

Where Yi are i.i.d. random variables drawn from Lap(Δf/ε). The Laplace
mechanism preserves ε-differential privacy.



70 Y. Yin et al.

3.3 Exponential Mechanism

The exponential mechanism is the natural building block for answering queries
with arbitrary utilities, especially non-numeric utilities.

Definition 3. Given arbitrary range R, the exponential mechanism is defined
with respect to some utility function u : D×R → R, which maps output to utility
scores. Then the sensitivity of u is:

Δu ≡ maxr∈R maxd,d′:‖d−d′‖≤1 |u(d, r) − u (d′, r)|
The exponential mechanism outputs each possible r ∈ R with probability pro-
portional to exp

(
εu(d,r)

Δu

)
and so the privacy loss is approximately:

ln
(

exp(εu(d, r)/Δu)
exp (εu (d′, r) /Δu)

)
= ε [u(d, r) − u (d′, r)] /Δu ≤ ε

An exponential mechanism is ε-differential privacy when it selects and outputs
an r ∈ R with probability proportional to exp

(
εu(d,r)
2Δu

)
.

3.4 Composition Theorems

Definition 4. Let M1 : D → R1 be an ε-differentially private algorithm, and let
M2 : D → R2 be an ε-differentially private algorithm. Then their combination,
defined to be M1,2 : D → R1 × R2 by the mapping: M1,2 = M1(d),M2(d) is
ε-differentially private.

3.5 The Relationship Between Hierarchical and Community
Structure

Hierarchical structure, which is represented by a binary tree, persistently parti-
tions a network into a set of smaller communities until to the level of single node.
The leaves of the hierarchical structure are nodes in the network. The instance
drawn on karate club dataset is shown in Fig. 1. We can see that nodes in the
same community are more likely to be divided into the same subtree [12].

4 Our Method

In this section, we describe four components of our method in turn: Fast-
unfolding community detection algorithm, differentially private representation
for hierarchical structure, differentially private noise addition, sanitized sub-
graphs generation. The framework is shown in Fig. 2.

Unlike the mentioned methods in Sect. 2, we explore the fast community
detection algorithm to partition an entire graph into two parts, and then to build
hierarchical representations of these two parts to make them satisfy Differential
Privacy. Finally, we perturb the edges to generate an entire sanitized graph. By
setting different privacy budget, we achieved different extend privacy preserving
for edges located in different parts of a graph.
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(a) Visualization of communities within
karate club.

(b) Corresponding hierarchical struc-
ture.

Fig. 1. The abstract representation of communities within karate club partitioned by
Fast-unfolding algorithm. Nodes in the same communities are of the same color, and
the number marks id of a node.

Fig. 2. The framework of our method.

4.1 Partition the Graph into Subgraphs by Using Fast-Unfolding
Algorithm

Fast-Unfolding algorithm [13] is a heuristic community detection method based
on modularity optimization, which extract the community structure of large
networks. The main goal of the algorithm is to optimize the modularity of the
entire network by continuously choosing the new nodes.

This algorithm is mainly divided into two phases that are repeated iteratively.
One where modularity is optimized by allowing only local changed of communi-
ties; one where the found communities are aggregated in order to build a new
network of communities. The phases are repeated iteratively until no increase of
modularity is possible.

The reason why we choose the algorithm is that it performs high effi-
ciency on large networks compared to other community detection algorithm [15].
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Parts of the algorithm efficiency results from the fact that gain in modularity
obtained by moving a node i into a community C can be easily computed by:

Q(G, s) =
1

4m

∑
i∈N

∑
j∈N

(
Ai,j − kikj

2m

)
sisj

which unfolds a complete hierarchical community structure of a network.

4.2 Construct Differentially Private Representation for Hierarchical
Structure

Intuitively, there is logical connection between the hierarchical structure and the
results of partitioned communities.

A hierarchical structure shown in Fig. 1(b) can represent some structural
information of network shown in Fig. 1(a). For instance, graph G consists of
nodes and edges between the nodes. We use probability value to label the
strength of links between nodes, which ranges from 0 to 1.

A specific form of the above expression is shown in Fig. 3. The strong links will
be labeled a value close to 1, while weak links will be labeled a value close to 0.

(a) Graph G (b) Hierarchical graph h

Fig. 3. The content of hierarchical graph h is corresponding to graph G. For instance,
the value of link probability between subset {a, b, c, d} and {e, f} is close to 0. Thus
means that there is a weak connection between them. On the contrary, the value of
link probability between subset {a, b} and node c is 1, which implies the very strong
connection between them.

The leaves in h represents nodes in graph G, the internal nodes drawn by
rectangle store the value of link probability Pr between nodes or node set.

Pr = |er| / (|nLr
| · |nRr

|)

where r is corresponding to an internal node, er is the number of links between
left and right node subset that have a common ancient r in h, nLr

and nRr

respectively are the number of nodes in the left and right node subsets.
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We can construct a large set of h from the different view of a graph. A
criterion known as Maximum Likelihood Estimation is used to measure how
plausible an h is to represent G. The math equation is as follows.

L (h, {Pr}) =
∏

r∈h
Per
r (1 − Pr)

nLrnRr−er

where h is the hierarchical graph, {Pr} is the set of link probabilities stored in
the internal nodes of h.

Intuitively, the logarithmic form of the equation can be converted as follows.

log L =
∑

r∈h
nLr

· nRr
· h (Pr)

where h (Pr) = Pr log Pr + (1 − Pr) log (1 − Pr) is Shannon Entropy. Essentially,
an h with higher logL is a better representation of the network structure than
those with lower likelihoods.

Another problem occurs when we quantify “better h”. There is an infinite
space of h for a network with n nodes. Hence, directly computing the logL of
each h is unfeasible.

Xiao et al. proposed a method [4] that uses MCMC to sample the best h. A
detail in her algorithm is to transition operation along the Markov chain, then
to use Monte Carlo sampling method to pick some “better h”. But the network
is so large that constructing a set of h leads to high computation expense.

A way to address this problem is to improve the computation efficiency within
the algorithm. Changing nodes or subsets by first storing their paths from root to
leaves into a list will help a lot. Furthermore, partitioning the entire graph G into
two parts (edges stored in communities and between communities) and making
different extend differential privacy for them will save the time of computation
for very large networks.

4.3 Differentially Private Noise Addition

Having constructed the hierarchical structure, a next issue is computing the
probabilities stored in internal nodes with applying Laplace noise. The ε-
differential privacy allows us to add noise that obeys Laplace distribution with
scale Δf/ε to each internal node. Each internal node requires to be updated the
new connection probability in a top-down direction, we are one step away from
generating a sanitized graph.

4.4 Sanitized Subgraphs Generation

Regenerate edges of each subgraph by referring to the connection probabilities.
In the end, aggregate these subgraphs to an entire graph for publishing.
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5 Experimental Results and Discussion

In this section, we evaluate the utility of sanitized graph over three various real
networks, which are online social networks, voting networks and collaboration
networks. By measuring a group of statistic properties of the original and sani-
tized graphs, we demonstrate the robustness and generalization of our method.

5.1 Datasets

To approximate the real and various networks in the world, we use several dif-
ferent types of networks in this section as shown in Table 1.

Table 1. Large network datasets description.

Name Type #Nodes #Edges Description

ego-Facebook Undirected, online
social network

4039 88234 Social circles from
Facebook

wiki-Vote Directed, voting
network

7115 103689 Wikipedia
who-votes-on-whom
network

ca-HepPh Undirected,
collaboration
network

12008 118521 Collaboration network of
Arxiv High Energy
Physics

ego-Facebook is an online social network dataset, where nodes represent users
in Facebook, and edges represent the friendship between them. wiki-Vote is a
voting network that contain Wikipedia voting information for adminship elec-
tions. ca-HepPh is a collaboration network that covers scientific collaborations
between authors submitted to High Energy Physics. All of the datasets are avail-
able in Stanford Network Analysis Projects.1

5.2 Evaluation Criteria

A set of graph evaluation criterias of statistic information about degree and path
are used to measure the similarity between original graph and sanitized graph.
Essentially, we consider an undirected network when compute these statistic
properties [16].

Degree. Considering an undirected network, the degree of a node is defined as
the number of its neighboring edges.

1 http://snap.stanford.edu/data/index.html.

http://snap.stanford.edu/data/index.html
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Average Degree (AD). For an undirected network, the average degree is defined
as follows.

AD =
1

ni=1,n
deg (vi)

Where n is the number of nodes in the network, vi is a node from the set of
nodes v of a network.

Maximum Degree (MD). The maximum degree of an undirected network is
defined as follows.

MD = max (deg (vi)) , i = 1, . . . , n

Degree Variance (DV). For an undirected network, degree variance is used to
measure the dispersion of degree, which defined as follows.

DV =
1
n

∑
i=1,...,n

(vi − AD)2

Clustering Coefficient (CC). Let node vi has ki neighbors, then at most ki(ki −
1)/2 edges can exist between them. CC denotes the fraction of these allowable
edges that actually exist.

Degree Distribution (DD). The degree distribution denotes the histogram of
degree of all nodes.

Path. Average path length is one of the three most robust measures of network
topology, along with its clustering coefficient and its degree information.

Average Path Length (APL). The average path length is defined as the average
number of steps along the shortest paths for all possible pairs of network nodes.
For an undirected network with a set of vertices V, the APL is defined as follows.

APL =
1

n(n − 1)
·
∑

i�=j
d (vi, vj)

Where n is the number of vertices, d (vi, vj) denotes the shortest distance
between vi and vj , where vi, vj ∈ v.

Diameter (D). D is defined as the maximum distance among all possible pairs
of network nodes.

D = max (d (vi, vj))

Effective Diameter (ED). The effective diameter denotes 90% effective distance
among all possible pairs of network nodes.
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Connectivity Length (CL). The connectivity length is defined as the mean size
of a smallest edge cut disconnecting vi from vj , which is an important measure
of its resilience as a network.

Shortest Path Length Distribution (SPLD). The shortest path length distribu-
tion de-notes the histogram of shortest path length among all pairs of nodes.

5.3 Experimental Results

This section reports on our evaluation on three various type of datasets: Face-
book, wiki-Vote and ca-HepPh. The following results show the utility of sanitized
graph compared to the original graph and privHRG [4].

Statistics Information About Degree. Figure 4 shows a group of statistic
information of degree mentioned in Sect. 4.2. It can be seen that, in all cases,
our method better preserves information of original networks on the properties
of degree, meaning that it preserves good degree feature within networks.

(a) egp-Facebook (b) wiki-Vote (c) ca-HepPh

Fig. 4. Results on statistics information about degree, including AD, CC, MD, DV
mentioned in Sect. 4.1, on three real large network datasets. Each radar line in these
charts corresponds to degree information of a network with different privacy protecting
model (i.e. origin, graphDP, privHRG).

Statistics Information About Path. Figure 5 shows some statistic infor-
mation of path mentioned in Sect. 4.2. It shows that, in all cases, our method
preserves better skewness of the original networks than privHRG, meaning that
it preserves good path feature within networks.

Shortest Path Length Distribution. Figure 6 depicts the shortest path
length distribution of each network. We can observe that the sanitized networks
preserve the shapes of the distributions with respect to those of the original
networks than that of privHRG.
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(a) ego-Facebook (b) wiki-Vote (c) ca-HepPh

Fig. 5. Results on statistics information about path, including APD, D, ED, CL men-
tioned in Sect. 4.1, on three real large network datasets.

(a) ego-Facebook (b) wiki-Vote (c) ca-HepPh

Fig. 6. Results on shortest path length distribution on three real large network
datasets. Each broken line corresponds to a graph with different privacy protecting
model.

5.4 Discussion

We demonstrate the large network publishing under differential privacy, sanitiz-
ing the entire graph with different degree of protection, achieved by bringing in a
community detection algorithm. In our experiments on ego-Facebook, wiki-Vote
and ca-HepPh, the results are observed to have better performance on a group
of statistic properties of degree and path, which reflect the utility of a network.

It is important to acknowledge that lots of real networks are much larger
than those of ego-Facebook or wiki-Vote, and may have much more communities;
except taking advantage of fast community detection algorithm, bounding the
privacy budget also plays an important parts on sanitizing the large networks.
That’s will be the immediate focus of our future work.
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