Skip to main content

Extended 3-Party \(\text{ACCE}\) and Application to LoRaWAN 1.1

  • Conference paper
  • First Online:
Progress in Cryptology – AFRICACRYPT 2019 (AFRICACRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11627))

Included in the following conference series:

Abstract

LoRaWAN is an IoT protocol deployed worldwide. Whereas the first version 1.0 has been shown to be weak against several types of attacks, the new version 1.1 has been recently released, and aims, in particular, at providing corrections to the previous release. It introduces also a third entity, turning the original 2-party protocol into a 3-party protocol. In this paper, we provide the first security analysis of LoRaWAN 1.1 in its 3-party setting with a provable approach, and show that it suffers from several flaws. Based on the \({\text{3(S)ACCE}}\) model of Bhargavan et al., we then propose an extended framework that we use to analyse the security of LoRaWAN-like 3-party protocols, and describe a generic 3-party protocol provably secure in this extended model. We use this provable security approach to propose a slightly modified version of LoRaWAN 1.1. We show how to concretely instantiate this alternative, and formally prove its security in our extended model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, S., Fouque, P.-A., Macario-rat, G., Onete, C., Richard, B.: A cryptographic analysis of UMTS/LTE AKA. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 18–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_2

    Chapter  Google Scholar 

  2. Avoine, G., Ferreira, L.: Rescuing LoRaWAN 1.0. In: Financial Cryptography and Data Security (FC 2018) (2018).https://fc18.ifca.ai/preproceedings/13.pdf

  3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  4. Bhargavan, K., Boureanu, I., Delignat-Lavaud, A., Fouque, P., Onete, C.: A formal treatment of accountable proxying over TLS. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 339–356 (2018)

    Google Scholar 

  5. Bhargavan, K., Boureanu, I., Fouque, P.A., Onete, C., Richard, B.: Content delivery over TLS: a cryptographic analysis of keyless SSL. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 1–16. IEEE, April 2017

    Google Scholar 

  6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

    Chapter  MATH  Google Scholar 

  7. Canard, S., Ferreira, L.: Extended 3-Party ACCE and Application to LoRaWAN 1.1. Cryptology ePrint Archive (2019). http://eprint.iacr.org/2019/479

  8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol - Version 1.2 (August 2008), RFC 5246

    Google Scholar 

  10. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel: C. (eds.) ACM CCS 15. pp. 1197–1210. ACM Press, October 2015

    Google Scholar 

  11. Eronen, P., Tschofenig, H.: Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) (December 2005), RFC 4279

    Google Scholar 

  12. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA protocol. Cryptology ePrint Archive, Report 2016/480 (2016)

    Google Scholar 

  13. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. Cryptology ePrint Archive, Report 2011/219 (2011)

    Google Scholar 

  14. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in the standard model. Cryptology ePrint Archive, Report 2013/367 (2013)

    Google Scholar 

  15. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_24

    Chapter  Google Scholar 

  16. Lundgren, L.: Taking over the world through MQTT - Aftermath. Black Hat USA (2017)

    Google Scholar 

  17. McGrew, D.: An Interface and Algorithms for Authenticated Encryption (January 2008), RFC 5116

    Google Scholar 

  18. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS handshake protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 55–73. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_5

    Chapter  Google Scholar 

  19. Naylor, D., et al.: Multi-Context TLS (mcTLS): enabling secure in-network functionality in TLS. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM 2015, pp. 199–212. ACM (2015)

    Google Scholar 

  20. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols (May 2015), RFC 7539

    Google Scholar 

  21. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 (August 2018), RFC 8446

    Google Scholar 

  22. Sornin, N.: LoRaWAN 1.1 Specification (June 2017), LoRa Alliance, version 1.1

    Google Scholar 

  23. Sornin, N., Luis, M., Eirich, T., Kramp, T.: LoRaWAN Specification (July 2016), LoRa Alliance, version 1.0

    Google Scholar 

  24. Wu, T.: The SRP Authentication and Key Exchange System (September 2000), RFC 2945

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canard, S., Ferreira, L. (2019). Extended 3-Party \(\text{ACCE}\) and Application to LoRaWAN 1.1. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds) Progress in Cryptology – AFRICACRYPT 2019. AFRICACRYPT 2019. Lecture Notes in Computer Science(), vol 11627. Springer, Cham. https://doi.org/10.1007/978-3-030-23696-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23696-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23695-3

  • Online ISBN: 978-3-030-23696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics