Skip to main content

A New Approach to Modelling Centralised Reputation Systems

  • Conference paper
  • First Online:
Progress in Cryptology – AFRICACRYPT 2019 (AFRICACRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11627))

Included in the following conference series:

Abstract

A reputation system assigns a user or item a reputation value which can be used to evaluate trustworthiness. Blömer, Juhnke and Kolb in 2015, and Kaafarani, Katsumata and Solomon in 2018, gave formal models for centralised reputation systems, which rely on a central server and are widely used by service providers such as AirBnB, Uber and Amazon. In these models, reputation values are given to items, instead of users. We advocate a need for shift in how reputation systems are modelled, whereby reputation values are given to users, instead of items, and each user has unlinkable items that other users can give feedback on, contributing to their reputation value. This setting is not captured by the previous models, and we argue it captures more realistically the functionality and security requirements of a reputation system. We provide definitions for this new model, and give a construction from standard primitives, proving it satisfies these security requirements. We show that there is a low efficiency cost for this new functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A simple example of an item could be a product being sold.

  2. 2.

    Soundness of Reputation is comparable to Public Linkability and Anonymity of Feedback is comparable to Anonymity.

References

  1. Amazon’s third-party sellers ship record-breaking 2 billion items in 2014, but merchant numbers stay flat. https://techcrunch.com/2015/01/05/amazon-third-party-sellers-2014/. Accessed 1 Apr 2019

  2. Travis kalanick says uber has 40 million monthly active riders. https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/. Accessed 1 Apr 2019

  3. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for anonymous networks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 202–218. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70630-4_13

    Chapter  Google Scholar 

  4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, 3–5 November 1993, pp. 62–73. ACM Press, Fairfax (1993)

    Google Scholar 

  6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  7. Bethencourt, J., Shi, E., Song, D.: Signatures of reputation. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 400–407. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_35

    Chapter  Google Scholar 

  8. Blömer, J., Juhnke, J., Kolb, C.: Anonymous and publicly linkable reputation systems. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 478–488. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_29

    Chapter  Google Scholar 

  9. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

    Chapter  Google Scholar 

  10. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

    Article  MathSciNet  Google Scholar 

  11. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_7

    Chapter  Google Scholar 

  12. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, 25–29 October 2004, pp. 132–145. ACM Press, Washington (2004)

    Google Scholar 

  13. Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation. In: 2017 IEEE Symposium on Security and Privacy, SP, pp. 901–920. IEEE (2017)

    Google Scholar 

  14. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45572-3_1

    Chapter  Google Scholar 

  15. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_10

    Chapter  Google Scholar 

  16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  17. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239_13

    Chapter  Google Scholar 

  18. Kaafarani, A.E., Katsumata, S., Solomon, R.: Anonymous reputation systems achieving full dynamicity from lattices. In: Twenty-Second International Conference on Financial Cryptography and Data Security (forthcoming)

    Google Scholar 

  19. Garms, L., Martin, K., Ng, S.-L.: Reputation schemes for pervasive social networks with anonymity. In: Proceedings of the fifteenth International Conference on Privacy, Security and Trust (PST 2017), IEEE (2017)

    Google Scholar 

  20. Garms, L., Quaglia, E.A.: A new approach to modelling centralised reputation systems. Cryptology ePrint Archive, Report 2019/453 (2019). https://eprint.iacr.org/2019/453

  21. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15

    Chapter  Google Scholar 

  22. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8_14

    Chapter  Google Scholar 

  23. Mármol, F.G., Pérez, G.M.: Security threats scenarios in trust and reputation models for distributed systems. Comput. Secur. 28(7), 545–556 (2009)

    Article  Google Scholar 

  24. Ng, S.-L., Martin, K., Chen, L., Li, Q.: Private reputation retrieval in public - a privacy-aware announcement scheme for vanets. IET Inf. Secur. (2016). https://doi.org/10.1049/iet-ifs.2014.0316

    Article  Google Scholar 

  25. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized additive reputation systems. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 108–119. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24747-0_9

    Chapter  Google Scholar 

  26. Petrlic, R., Lutters, S., Sorge, C.: Privacy-preserving reputation management. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC 2014, pp. 1712–1718. ACM, New York (2014)

    Google Scholar 

  27. Scott, M.: Pairing implementation revisited. Cryptology ePrint Archive, Report 2019/077 (2019). https://eprint.iacr.org/2019/077

  28. Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford, B.: AnonRep: towards tracking-resistant anonymous reputation. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2016), pp. 583–596. USENIX Association (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Garms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garms, L., Quaglia, E.A. (2019). A New Approach to Modelling Centralised Reputation Systems. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds) Progress in Cryptology – AFRICACRYPT 2019. AFRICACRYPT 2019. Lecture Notes in Computer Science(), vol 11627. Springer, Cham. https://doi.org/10.1007/978-3-030-23696-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23696-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23695-3

  • Online ISBN: 978-3-030-23696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics