Skip to main content

CPS Dependability Framework Based on Inhomogeneous Stochastic Hybrid Systems

  • Conference paper
  • First Online:
  • 704 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11615))

Abstract

In this paper, we propose a time-inhomogeneous stochastic hybrid system, as the appropriate modelling framework for the performance of complex engineering systems. One important hypothesis for this hybrid system is the ergodicity that ensures the existence of some sort of invariant measures. The invariant measures constitute an important tool for defining performance measures for dependability. First, we define an appropriate model of time-inhomogeneous stochastic hybrid systems. Then, we adapt the concept of invariant measure for the nonhomogeneous case. Under the assumption of geometric (or exponential) ergodicity of the underlying hybrid process, we prove the existence and uniqueness of this kind of invariant measure. The paper ends with some sort of sensitivity analysis of this invariant measure under appropriate perturbations of the infinitesimal generators associated to the stochastic process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is a project under development in our Maritime Safety Research Centre at University of Strathclyde.

  2. 2.

    http://tc56.iec.ch/index-tc56.html.

References

  1. Aubry, J.-F., Brinzei, N.: Systems Dependability Assessment: Modelling with Graphs and Finite State Automata. Willey, Hoboken (2015)

    Google Scholar 

  2. Babaei, M., Shi, J., Zohrabi, N., Abdelwahed, S.: Development of a hybrid model for shiboard power systems. In: IEEE Electric Ship Technology Symposium (2015)

    Google Scholar 

  3. Basso, G.: A Hitchhiker’s guide to Wasserstein distances. Report (2015)

    Google Scholar 

  4. Bolbot, V., et al.: A novel method for safety assessment of cyber-physical systems - application to cruise ship diesel-electric propulsion plant blackout probability prediction. J. Saf. Reliab. (submitted)

    Google Scholar 

  5. Buse, C., Niculescu, C.P.: An ergodic characterization of uniformly exponentially stable evolution families. Bull. Math. Soc. Roumanie 52(100) (1), 33–40 (2009)

    Google Scholar 

  6. Cao, X.-R.: Optimization of average rewards of time nonhomogeneous Markov chains. IEEE Trans. Autom. Control 60(7), 1841–1856 (2015)

    Article  MathSciNet  Google Scholar 

  7. Perez Castaneda, G.A., Aubry, J.-F., Brinzei, N.: Stochastic hybrid automata for dynamic reliability assessment. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 225(1), 28–41 (2011)

    Google Scholar 

  8. Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs, vol. 70. AMS (1999)

    Google Scholar 

  9. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_4

    Chapter  Google Scholar 

  10. Clark, S., Latushkin, Y., Montgomery-Smith, S., Randolph, T.: Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach. Siam J. Control Optim. 38(6), 1757–1793 (2000)

    Article  MathSciNet  Google Scholar 

  11. Cloez, B., Hairer, M.: Exponential ergodicity for Markov processes with random switchings. Bernoulli 21(1), 505–536 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cuth, M., Doucha, M., Wojtaszczyk, P.: On the structure of Lipschitz-free spaces. Proc. Amer. Math. Soc. 144, 3833–3846 (2016)

    Article  MathSciNet  Google Scholar 

  13. Cressent, R., Idasiak, V., Kratz, F., David, P.: Mastering safety and reliability in a model based process. In: Proceedings Annual Reliability and Maintainability Symposium (2011)

    Google Scholar 

  14. Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. XV(3), 458–486 (1970)

    Article  MathSciNet  Google Scholar 

  15. Fan, M., Zeng, Z., Zio, E., Kang, R., Chen, Y.: A stochastic hybrid systems based framework for modeling dependent failure processes. PLoS ONE 12(2), e0172680 (2017). Public Library of Science

    Article  Google Scholar 

  16. Hamilton, J.D.: Analysis of time series subject to changes in regime. J. Econom. 45(1–2), 39–70 (1990)

    Article  MathSciNet  Google Scholar 

  17. Heirung, A.N., Mesbah, A.: Stochastic nonlinear model predictive control with active model discrimination: a closed-loop fault diagnosis application. In: 20th IFAC World Congress (2017, preprint)

    Article  Google Scholar 

  18. Heidergott, B., Leahu, H., Lopker, A., Pflug, G.: Perturbation analysis of inhomogeneous Markov processes. Working Paper (2012)

    Google Scholar 

  19. Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7, 1–10 (1986)

    Article  MathSciNet  Google Scholar 

  20. Hinrichsen, D., Ilchmann, A., Pritchard, A.J.: Robustness of stability of time-varying linear systems. J. Differ. Equ. 82, 219–250 (1989)

    Article  MathSciNet  Google Scholar 

  21. Hsu, Y., Wu, W.F., Huang, T.W.: Reliability analysis based on nonhomogeneous continuous-time Markov modelling with application to repairable pumps of a power plant. Int. J. Reliab. Qual. Saf. Eng. 24(1), 1750004 (2017). 14 p

    Article  Google Scholar 

  22. Iosifescu, M.: Finite Markov Processes and their Applications. Wiley, Hoboken (1980)

    MATH  Google Scholar 

  23. Johnson, N.F.: Simply Complexity: A Clear Guide to Complexity Theory. Oneworld Oxford, London (2009)

    Google Scholar 

  24. Lewis, E.E., Zhuguo, T.: Monte Carlo reliability modeling by inhomogeneous Markov processes. Reliab. Eng. 16(4), 277–296 (1986)

    Article  Google Scholar 

  25. Limnios, N.: Reliability measures of semi-Markov systems with general state space. Method. Comput. Appl. Probab. 14(14), 895–917 (2012)

    Article  MathSciNet  Google Scholar 

  26. Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Heidelberg (1993). https://doi.org/10.1007/978-1-4471-3267-7

    Book  MATH  Google Scholar 

  27. Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)

    MATH  Google Scholar 

  28. Smotherman, M., Zemoudeh, K.: A non-homogeneous Markov model for phased-mission reliability analysis. IEEE Trans. Reliab. 38(5), 585–590 (1989)

    Article  Google Scholar 

  29. Thomas, J.: Extending and automating a systems-theoretic hazard analysis for requirements generation and analysis. MIT (2013)

    Google Scholar 

  30. Tundis, A., Buffoni, L., Fritzson, P., Garro, A.: Model-based dependability analysis of physical systems with modelica. Model. Simul. Eng., 15 p. (2017)

    Google Scholar 

  31. Zhang, H., Dufour, F., Dutuit, Y., Gonzalez, K.: Piecewise deterministic Markov processes and dynamic reliability. J. Risk Reliab. 222(4), 545–551 (2008)

    Google Scholar 

  32. Zohrabi, N., Abdelwahed, S.: On the application of distributed control structure for medium-voltage DC shipboard power system. In: IEEE Conference on Control Technology and Applications (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela L. Bujorianu .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Metrics and Norms on Measure Spaces

In this section, Wasserstein metrics and Kantorovich-Rubinstein type norms on the space of finite signed Borel measures are briefly presented. We suppose that \(\mathbf {S}\) is a Polish space (i.e. complete, separable, metric space), such that any finite signed Borel measure is a Radon measure (i.e. \( \mathbf {S}\) is a Radon space). Recall that a measure \(\mu \) defined on the Borel \(\sigma \)-algebra \(\mathcal {B}(\mathbf {S})\) is called Radon measure if it is locally finite (i.e. for any point \(x\in \mathbf {S}\) there is a neighborhood that has finite measure) and the following (inner regularity) property is satisfied:

$$\begin{aligned} \mu (B)=\sup \{\mu (K)\vert K\subset B\text {, }K\text { compact}\}\text {.} \end{aligned}$$

Let \(\mathcal {M}(\mathbf {S})\) be the Banach space of finite signed Borel measures with the norm \(||\mu ||:=|\mu |(\mathbf {S})\), which is called the variation norm of the measure. Let \(\mathcal {M}^{+}(\mathbf {S})\) denote the subset of \(\mathcal {M}(\mathbf {S})\) consisting in all nonnegative Borel measures. By \(\mathcal {M}_{1}(\mathbf {S})\) we denote the set of \( \mathcal {M}^{+}(\mathbf {S})\) that are probability measures (i.e. \(\mu ( \mathbf {S})=1\) for \(\mu \in \mathcal {M}_{1}(\mathbf {S})\)).

If d is a metric on \(\mathbf {S,}\) the space of Lipschitz functions is defined as follows

$$\begin{aligned} Lip(\mathbf {S}):=\{f:\mathbf {S}\rightarrow {\mathbb {R}}|\exists L\ge 0\text { s.t. }|f(x)-f(y)|\le Ld(x,y),\forall x,y\in \mathbf {S}\}. \end{aligned}$$

For \(f\in Lip(\mathbf {S})\), the quantity

$$\begin{aligned} |f|_{L}:={\mathop {\sup }\limits _{\begin{array}{c} x,y\in \mathbf {S} \\ x\ne y \end{array}}}\frac{|f(x)-f(y)|}{ d(x,y)} \end{aligned}$$

is called Lipschitz constant and this is a seminorm on \(Lip(\mathbf {S })\) (\(|f|_{L}=0\) if and only if f is constant). The quotient space with respect to the constant functions is denoted by \(Lip_{0}(\mathbf {S})\) and it is a Banach space. We will need also the set of Lipschitz contraction, which is

$$\begin{aligned} Lip_{1}(\mathbf {S}):=\{f:\mathbf {S}\rightarrow {\mathbb {R}}{{\vert }}|f|_{L}\le 1\}\text {.} \end{aligned}$$

As usual, \(\mathbf {B}(\mathbf {S})\) is the space of bounded measurable functions \(f:\mathbf {S}\rightarrow {\mathbb {R}}\) and \(C(\mathbf {S})\) is the space of all bounded continuous functions. Both spaces are equipped with the supremum norm: \(||f||_{\infty }:=\sup _{x\in \mathbf {S}}|f(x)|\).

For a function \(f:\mathbf {S}\rightarrow {\mathbb {R}}\) which is integrable with respect to \(\mu \in \mathcal {M}(\mathbf {S})\) we write

$$\begin{aligned} {<}f,\mu {>}\,:=\,\int _{\mathbf {S}}f(x)d\mu (x)\text {.} \end{aligned}$$

The space of signed measures \(\mathcal {M}(\mathbf {S})\) is complete (Banach space) with respect to the Radon norm: \(||\mu ||_{\mathcal {R }}:=\sup \{|{<}f,\mu {>}|\): \(||f||_{\infty }\le 1\}\).

We denote by \(\mathcal {M}^{d}(\mathbf {S})\) the space of signed measures \(\nu \) such that

$$\begin{aligned} \int _{\mathbf {S}}d(x,y)|\nu |(dx)<\infty \end{aligned}$$
(11)

for some (or, equivalently for all) \(y\in \mathbf {S}\). Similarly, one can define the space \(\mathcal {M}_{1}^{d}(\mathbf {S})\). The condition (11) ensures that the Lipschitz functions are integrable with respect to the measures from \(\mathcal {M}^{d}(\mathbf {S})\).

In the following, we will introduce some well-known metrics.

On the space \(\mathcal {M}^{d}(\mathbf {S})\), the Fortet-Mourier metric is given by the formula

$$\begin{aligned} ||\mu _{1}-\mu _{2}||_{\mathcal {F}}:= {\mathop {\sup }\limits _{\begin{array}{c} ||f||_{\infty }\le 1 \\ |f|_{L}\le 1 \end{array}}}|{<}f,\mu _{1}-\mu _{2}{>}| \end{aligned}$$

The space of probability measures \(\mathcal {M}_{1}^{d}(\mathbf {S})\) with respect to the Fortet-Mourier metric is a complete metric space [3]. Since the state space \(\mathbf {S}\) is supposed to be a Polish space, then the weak convergence in \(\mathcal {M}_{1}(\mathbf {S})\) is generated by this metric [27].

In the space \(\mathcal {M}_{1}^{d}(\mathbf {S})\), we also can introduce the Kantorovich-Wasserstein (called also Hutchinson) metric by the formula

$$\begin{aligned} ||\mu _{1}-\mu _{2}||_{\mathcal {KW}}:=\sup \{|{<}f,\mu _{1}-\mu _{2}{>}|\text {: } |f|_{L}\le 1\}\text {.} \end{aligned}$$

The norms associated to the above metrics can be defined in a standard way, as follows:

  • the Kantorovich-Rubinstein norm (or dual Lipschitz norm); which is defined on the closed subspace \(\mathcal {M}_{0}(\mathbf {S})\) of zero-charge measures (i.e. measures with total mass equal to zero)

    $$\begin{aligned} ||\mu ||_{\mathcal {K}}:=||\mu ^{+}-\mu ^{-}||_{\mathcal {KW}} \end{aligned}$$
  • the Fortet-Mourier (Wasserstein) norm

    $$\begin{aligned} ||\mu ||_{\mathcal {F}}:=\sup \{|\int _{\mathbf {S}}fd\mu |\text {: }|f|_{L}\le 1\text {; }||f||_{\infty }\le 1\}\text {.} \end{aligned}$$

We can employ the equivalent norm

$$\begin{aligned} ||\mu ||_{BL}^{*}:=\sup \{|\int _{\mathbf {S}}fd\mu |\text {: }f\in BL(\mathbf {S })\text {, }||f||_{BL}\le 1\}\text {,} \end{aligned}$$

where \(BL(\mathbf {S})\) is the space of all bounded Lipschitz functions on \( \mathbf {S}\) with the norm: \(||f||_{BL}:=||f||_{\infty }+|f|_{L}\).

Theorem 3

(Kantorovich-Rubinstein Maximum Principle). [27] For any \(\mu _{1}\), \(\mu _{2}\in \mathcal {M}_{1}^{d}( \mathbf {S})\), \(\mu _{1}\ne \mu _{2}\), there exists \(f\in Lip_{1}(\mathbf {S}) \) such that

$$\begin{aligned} {<}f,\mu _{1}-\mu _{2}{>}=\,||\mu _{1}-\mu _{2}||_{\mathcal {KW}}\text {.} \end{aligned}$$

Moreover, every such a function f satisfies the condition: \( |f(x)-f(y)|=d(x,y)\), \(\forall x,y\in \mathbf {S}\), \(x\ne y\).

1.2 A.2 Proofs

Proof of Theorem 1

Proof

\(\Longrightarrow :\) Suppose that the evolution system \((P_{s,t}^{q})\) is exponentially Lipschitz with positive exponent \(K>0\). For \(\mu _{1}\), \(\mu _{2}\in \mathcal {M}_{1}^{d}(\mathbf {S})\), we have, using the Kantorovich-Rubinstein Maximum Principle, the following computations:

$$\begin{aligned}&||(\mu _{1}-\mu _{2})P_{st}^{q}||_{\mathcal {KW}}=\mathop {\sup }\nolimits _{f\in Lip_{1}(\mathbf {S})}|{<}f,(\mu _{1}-\mu _{2})P_{st}^{q}{>}|\\&\quad \qquad =\mathop {\sup }\nolimits _{f\in Lip_{1}(\mathbf {S})}|{<}P_{st}^{q}f,\mu _{1}-\mu _{2}{>}|\le e^{(-K)(t-s)}||(\mu _{1}-\mu _{2})||_{\mathcal {KW}}. \end{aligned}$$

\(\Longleftarrow \): Suppose that the evolution system \((P_{s,t}^{q})\) is uniformly geometrically ergodic. It is known that the dual of \(\mathcal {M} _{0}(\mathbf {S})\) is the quotient of space of Lipschitz functions by constant functions \(Lip_{0}(\mathbf {S})\) with norm \(|\cdot |_{L}\). Then the dual space of \(Lip_{0}(\mathbf {S})\) is the completion of \(\mathcal {M}_{0}( \mathbf {S})\) with respect to the Kantorovich-Rubinstein norm.Then the semi-norm \(|P_{s,t}^{q}f|_{L}\), for any \(f\in Lip(\mathbf {S})\) can be calculated as the norm of a linear functional on \(\overline{\mathcal {M}_{0}( \mathbf {S})}\), i.e.

$$\begin{aligned}&|P_{s,t}^{q}f|_{L}=\mathop {\sup }\nolimits _{||\mu ||_{\mathcal {K}}\le 1}||\mu P_{s,t}^{q}f||_{ \mathcal {K}}\\&\quad \qquad =\mathop {\sup }\nolimits _{||\mu _{1}-\mu _{2}||_{\mathcal {KW}}\le 1}|{<}f,(\mu _{1}-\mu _{2})P_{s,t}^{q}{>}|\le |f|_{L}\cdot Ce^{(-\varDelta )(t-s)}. \end{aligned}$$

Proof of Proposition 1

Proof

Fix \(q\in Q\) and define the semigroup of operators associated the evolution system \(P_{s,t}^{q}\) via

$$\begin{aligned} ({\widehat{\mu }}T_{t}^{q})(s):=\mu _{s-t}P_{s-t,s}^{q}\text {, }s\in {\mathbb {R}} \text {, }t\ge 0\text {.} \end{aligned}$$

Let \({\widehat{\mu }}:=(\mu _{l})_{l}\ \)be an \(\mathcal {M}_{1}^{d}(\mathbf {S})\)-valued sequence. Then

$$\begin{aligned}&||{\widehat{\mu }}T_{t+s}^{q}-{\widehat{\mu }}T_{t}^{q}||_{\infty }\\&\qquad =\sup _{l}||({\widehat{\mu }}T_{t+s}^{q})(l)-({\widehat{\mu }}T_{t}^{q})(l)||_{ \mathcal {KW}} \\&\qquad =\sup _{l}||\mu _{l-(t+s)}P_{l-(t+s),l}^{q}-\mu _{l-t}P_{l-t,l}^{q}||_{ \mathcal {KW}} \\&\qquad \qquad {\mathop {=}\limits ^{(1)}}\sup _{l}||[\mu _{l-(t+s)}P_{l-(t+s),l-t}^{q}-\mu _{l-t}]P_{l-t,l}^{q}||_{\mathcal {KW}} \\&\qquad \le \sup _{l}||P_{l-t,l}^{q}||\cdot ||\mu _{l-(t+s)}P_{l-(t+s),l-t}^{q}-\mu _{l-t}||_{\mathcal {KW}} \\&\qquad \le C^{\prime }e^{(-\varDelta t)} \end{aligned}$$

with \(C^{\prime }=C\cdot K\), where K is a bound for \(||\mu _{l-(t+s)}P_{l-(t+s),l-t}^{q}-\mu _{l-t}||_{\mathcal {KW}}\) (this bound exists due to the fact that \((P_{s,t}^{q})\) is uniformly exponentially Lipschitz).

Therefore, the sequence \(({\widehat{\mu }}T_{t}^{q})\) is a Cauchy sequence in the complete space \(L^{\infty }({\mathbb {R}},\mathcal {M}_{1}^{d}(\mathbf {S}))\), thus it converges to a sequence of probability measures \(\widehat{\pi } ^{q}=(\pi _{t}^{q})\), which is trivially the unique evolution system of invariant measures.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bujorianu, M.L. (2019). CPS Dependability Framework Based on Inhomogeneous Stochastic Hybrid Systems. In: Chamberlain, R., Taha, W., Törngren, M. (eds) Cyber Physical Systems. Model-Based Design. CyPhy WESE 2018 2018. Lecture Notes in Computer Science(), vol 11615. Springer, Cham. https://doi.org/10.1007/978-3-030-23703-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23703-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23702-8

  • Online ISBN: 978-3-030-23703-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics