Skip to main content

A Deep Reinforcement Learning Approach for Autonomous Car Racing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11462))

Abstract

In this paper, we introduce a deep reinforcement learning approach for autonomous car racing based on the Deep Deterministic Policy Gradient (DDPG). We start by implementing the approach of DDPG, and then experimenting with various possible alterations to improve performance. In particular, we exploit two strategies: the action punishment and multiple exploration, to optimize actions in the car racing environment. We evaluate the performance of our approach on the Car Racing dataset, the experimental results demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. https://gym.openai.com/

  2. https://keras.io

  3. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. CoRR abs/1605.08695 (2016)

    Google Scholar 

  4. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Sig. Process. Mag. 34(6), 26–38 (2017)

    Article  Google Scholar 

  5. Gomez, F., Schmidhuber, J.: Evolving modular fast-weight networks for control. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 383–389. Springer, Heidelberg (2005). https://doi.org/10.1007/11550907_61

    Chapter  Google Scholar 

  6. Heess, N., Wayne, G., Silver, D., Lillicrap, T.P., Erez, T., Tassa, Y.: Learning continuous control policies by stochastic value gradients. In: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 2944–2952 (2015)

    Google Scholar 

  7. Konda, V.R., Tsitsiklis, J.N.: Onactor-critic algorithms. SIAM J. Control Optim. 42(4), 1143–1166 (2003)

    Article  MathSciNet  Google Scholar 

  8. Koutnik, J., Cuccu, G., Schmidhuber, J., Gomez, F.J.: Evolving large-scale neural networks for vision-based reinforcement learning. In: Genetic and Evolutionary Computation Conference, GECCO 2013, Amsterdam, The Netherlands, 6–10 July 2013, pp. 1061–1068 (2013)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, pp. 1106–1114 (2012)

    Google Scholar 

  10. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. CoRR abs/1509.02971 (2015)

    Google Scholar 

  11. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  12. Peters, J., Vijayakumar, S., Schaal, S.: Natural actor-critic. In: Gama, J., Camacho, R., Brazdil, Pavel B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 280–291. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_29

    Chapter  Google Scholar 

  13. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  14. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 61602139), the Open Project Program of State Key Lab of CAD&CG, Zhejiang University (No. A1817), and Zhejiang Province science and technology planning project (No. 2018C01030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizhao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, F., Wu, Z. (2019). A Deep Reinforcement Learning Approach for Autonomous Car Racing. In: El Rhalibi, A., Pan, Z., Jin, H., Ding, D., Navarro-Newball, A., Wang, Y. (eds) E-Learning and Games. Edutainment 2018. Lecture Notes in Computer Science(), vol 11462. Springer, Cham. https://doi.org/10.1007/978-3-030-23712-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23712-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23711-0

  • Online ISBN: 978-3-030-23712-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics