Skip to main content

Contextual Classification of Tumor Growth Patterns in Digital Histology Slides

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2019)

Abstract

Patch-based image classification approaches are frequently employed in digital pathology applications with the goal to automatically delineate diagnostically important regions in digital slides. However, patches into which a slide is partitioned are often classified singly and sequentially without additional context. To address this issue, we tested a contextual classification of image patches with soft voting applied to a multi-class classification problem. The context comprised five or nine overlapping patches. The classification is performed using convolutional neural networks (CNNs) trained to recognize four histologically distinct growth patterns of lung adenocarcioma and non-tumor areas. Classification with soft voting outperformed sequential classification of patches yielding higher whole slide classification accuracy. The F1-scores for the four tumor growth patterns improved by 3% and 4.9% when the context consisted of five and nine neighboring patches, respectively. We conclude that the context can improve classification performance of areas sharing the same histological features. Soft voting is a non-trainable approach and therefore straightforward to implement. However, it is computationally more expensive than the classical single patch-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awan, R., Koohbanani, N.A., Shaban, M., Lisowska, A., Rajpoot, N.: Context-aware learning using transferable features for classification of breast cancer histology images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 788–795. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  2. Bejnordi, E., Miko, V., van Diest, P.J., et al: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Google Scholar 

  3. Coudray, N., Ocampo, P.S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A.L., Razavian, N., Tsirigos, A.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Med. 24(10), 1559 (2018)

    Article  Google Scholar 

  4. Zanjani, F.G., Zinger, S.: Cancer detection in histopathology whole-slide images using conditional random fields on deep embedded spaces (2018)

    Google Scholar 

  5. Gecer, B., Aksoy, S., Mercan, E., Shapiro, L.G., Weaver, D.L., Elmore, J.G.: Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks. Pattern Recog. 84, 345–356 (2018)

    Article  Google Scholar 

  6. Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N., Markiewicz, T., Cierniak, S., Salemi, H., Guzman, S., Walts, A.E., Knudsen, B.S.: Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep. 9, 1483 (2019)

    Google Scholar 

  7. Goode, A., Gilbert, B., Harkes, J., Jukic, D., Satyanarayanan, M.: OpenSlide: a vendor-neutral software foundation for digital pathology. J. Pathol. Inf. 4(1), 27 (2013)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hou, L., Samaras, D., Kur, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2424–2433 (2016)

    Google Scholar 

  10. Ing, N., Salman, S., Ma, Z., Walts, A., Knudsen, B., Gertych, A.: Machine learning can reliably distinguish histological patterns of micropapillary and solid lung adenocarcinomas. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) 2016 Proceedings of 5th International Conference on Information Technologies in Medicine, ITIB 2016 Kamien Slaski, Poland, 20–22 June 2016, vol. 2, pp. 193–206. Springer International Publishing, Cham (2016)

    Google Scholar 

  11. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inf. 7 (2016)

    Google Scholar 

  12. Kadota, K., Yeh, Y.C., Sima, C.S., Rusch, V.W., Moreira, A.L., Adusumilli, P.S., Travis, W.D.: The cribriform pattern identifies a subset of acinar predominant tumors with poor prognosis in patients with stage I lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype. Modern Pathol. 27(5), 690 (2014)

    Article  Google Scholar 

  13. Li,W., Li, J., Sarma, K.V., Ho, K.C., Shen, S., Knudsen, B.S., Gertych, A., Arnold, C.W.: Path R-CNN for prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Med. Imaging 38(4), 945–954 (2019)

    Google Scholar 

  14. Ma, Z., Swiderska-Chadaj, Z., Ing, N., Salemi, H., McGovern, D., Knudsen, B., Gertych, A.: Semantic segmentation of colon glands in inflammatory bowel disease biopsies. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Proceedings 6th International Conference, ITIB’2018, Kamien Slaski, Poland, June 18-20, 2018, Information Technology in Biomedicine, pp. 379–392. Springer International Publishing, Cham (2019)

    Google Scholar 

  15. Mobadersany, P., Yousefi, S., Amgad, M., Gutman, D.A., Barnholtz-Sloan, J.S., Velázquez Vega, J.E., Brat, D.J., Cooper, L.A.D.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl Acad. Sci. 115(13), E2970–E2979 (2018)

    Google Scholar 

  16. Russell, P.A., Wainer, Z., Wright, G.M., Daniels, M., Conron, M., Williams, R.A.: Does lung adenocarcinoma subtype predict patient survival? A clinicopathologic study based on the new international association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary lung adenocarcinoma classification. J. Thorac. Oncol. 6(9), 1496–1504 (2011)

    Article  Google Scholar 

  17. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  18. Tellez, D., Balkenhol, M., Otte-Höller, I., van de Loo, R., Vogels, R., Bult, P., Wauters, C., Vreuls, W., Mol, S., Karssemeijer, N., Litjens, G., van der Laak, J., Ciompi, F.: Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018)

    Article  Google Scholar 

  19. Thunnissen, E., Beasley, M.B., Borczuk, A.C., Brambilla, E., Chirieac, L.R., Dacic, S., Flieder, D., Gazdar, A., Geisinger, K., Hasleton, P., et al.: Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod. Pathol. 25(12), 1574 (2012)

    Google Scholar 

  20. Tsao, M.S., Marguet, S., Le Teuff, G., Lantuejoul, S., Shepherd, F.A., Seymour, L., Kratzke, R., Graziano, S.L., Popper, H.H., Rosell, R., et al.: Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. J. Clin. Oncol. 33(30), 3439 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by in part by the Precision Health Grant at C-S, seed grants from the department of Surgery at Cedars-Sinai Medical Center and a grant from the National Science Centre, Poland (grant 2016/23/N/ST6/02076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Gertych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swiderska-Chadaj, Z. et al. (2019). Contextual Classification of Tumor Growth Patterns in Digital Histology Slides. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2019. Advances in Intelligent Systems and Computing, vol 1011. Springer, Cham. https://doi.org/10.1007/978-3-030-23762-2_2

Download citation

Publish with us

Policies and ethics