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and Katrin Lohan[0000−0001−9843−316X]

Edinburgh Centre for Robotics. Edinburgh, UK.
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Abstract. Artificial intelligence is essential to succeed in challenging
activities that involve dynamic environments, such as object manipula-
tion tasks in indoor scenes. Most of the state-of-the-art literature ex-
plores robotic grasping methods by focusing exclusively on attributes
of the target object. When it comes to human perceptual learning ap-
proaches, these physical qualities are not only inferred from the object,
but also from the characteristics of the surroundings. This work proposes
a method that includes environmental context to reason on an object af-
fordance to then deduce its grasping regions. This affordance is reasoned
using a ranked association of visual semantic attributes harvested in a
knowledge base graph representation. The framework is assessed using
standard learning evaluation metrics and the zero-shot affordance predic-
tion scenario. The resulting grasping areas are compared with unseen la-
belled data to asses their accuracy matching percentage. The outcome of
this evaluation suggest the autonomy capabilities of the proposed method
for object interaction applications in indoor environments.

1 Introduction

One of the most significant challenges in artificial intelligence is to achieve a
system that simulates human-like behaviour. Let us consider a robot in a simple
task such as finding, collecting and delivering an object in home environments.
Given the complexity of home settings, it is hard to provide a robot with every
possible representation of the objects contained in a house. It is even harder to
feed the robot with all the possible uses of those objects. Instead of learning
all possible scenarios, suppose that a reasoning technique allows the system to
deduce an object affordance. As a result, offering the opportunity to achieve
autonomous capabilities. The term affordance refers to everything that defines
the interaction with an object, from the way to grasp it to its inherited ability to
perform different tasks [10]. Thus, affordance defines all possible actions depend-
ing on the target objects’ physical capabilities. For instance, a glass cup looks
as if it can be handed over, contain liquids, or pour liquids from it. The charac-
teristics that define the glass cup as a container or graspable object constitute
its affordance. According to different theories of human perception, the psychol-
ogy of perceptual learning compounds the different qualities in the environment
rather than acquiring associated responses to every object [9,3]. Thus, humans
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Fig. 1. Affordance map model to create a correlation between the objects properties
and their environment to improve on grasp-action affordance.

are efficient at deducing affordance for objects with different appearances and
similar abilities, e.g. glasses: wine, tumbler, martini, and discern among those
with similar features but different purposes, e.g. bowling pin vs water bottle.
Nonetheless, in robotics, the most common approach to learn affordances is from
labels [16,14,4]. This technique limits the number of learned objects, grasping
areas and affordance groups. Moreover, the robot is unable to interact with novel
objects. Further, by learning the limited set of responses, it is not possible to
deduce the key features that define the objects affordance.

Using the same analogy as the theories of human perception this paper hy-
pothesises that using the semantic features of the object and its surroundings
not only improves the affordance grasping action towards the object but it also
allows a reasoning process that, in the long term, offers autonomy capabilities,
a solution not yet seen in the current literature. This work summarises an ar-
chitecture that addresses the previously described challenges. The focus is on
affordance reasoning for calculating grasping areas, using a combination of the
object and its environment features. Figure 1 shows the foundations of this pro-
posal, which is an extended version of the affordance map presented in [16]. The
proposed methodology works with the concept that an affordance relates at-
tributes of an object and the environment to an interactive activity by an agent
who has some ability, which relates back to the object causing some affordance.
In other words, the attributes of the object and the environment reside in the
context of the affordance, the abilities of the agent and the object in the affor-
dance actions and the outcome of this interactive activity in the effects. This
work focuses on the integration of the semantic features of the previously men-
tioned environment in order to obtain a good grasp affordance action, from now
on referred to as grasp-action, of the object. The presented framework can reason
on the object grasping areas that are strongly related to the affordance group.
The reasoning process is based on a Knowledge Base (KB) graph representation.
This KB is built using semantic attributes of the object and the environment.
For every object explored by the framework, the KB uses weights to relate a
subset of attributes. This association then leads to an affordance category which
is highly correlated with a grasp-action area. The designed framework is assessed
not only using standard learning evaluation metrics, but it is also tested on the
zero-shot affordance prediction scenario. Moreover, the resulting grasping areas
are compared with unseen labelled data to asses their accuracy matching per-
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centage. The results demonstrate the suitability of the method for grasp-action
affordance applications, offering a generalised object interaction alternative with
autonomy capabilities.

2 Related Work

Many methods extract viable grasping points on objects, independently on their
affordance [14,1]. Others focus explicitly on the task of grasp-action affordance
from visual features and model parameters that are learned through reinforce-
ment learning using biologically inspired methods [23,4]. [23], interestingly em-
braces psychology theories for human development such as the ones presented
in [9] to learn from exploratory behaviours the invariants to obtain the best
grasps. Contrary, [2,15] focus on the ability-action affordance of the objects.
In their work, they use statistical relational learning to learn the ability affor-
dance of different objects, which shows to cope with uncertainty. Other works
go beyond the visual representation of the object and combine visual as well as
textual descriptors to build a KB [25,22]. This KB is composed of actions learned
through reinforcement learning techniques with the purpose of interacting with
the object. [8,12] work on the actions and objects relations in a single interface
representation to capture the needs of planning and robot control. Another ex-
tension is [5], they use these action complexes to extract the best grasping points
of the objects. In literature, it is extensive the use of learning techniques such
as deep Convolutional Neural Networks (CNN) to build an affordance model
based on the visual objects features, resulting in a plausible generalised method
given the robustness of their data [17,6]. Unlike these works, this paper presents
a methodology that combines attributes of the object and the environment to
provide a denser context for object affordance interaction. Thus, allowing it to
generalise the grasp-action affordance on similar objects.

3 Proposed Solution

In this paper, a grasp-action area of the object is the result of the relation be-
tween the object and its surrounding environment. Figure 1 shows a summary of
the proposed affordance model. Let us consider a glass cup in an affordance map
relationship. Additional to its inherited affordance action qualities, i.e. contain
liquids and being graspable, there are other elements that define its opportunity
of interaction. For example the way in which it is being manipulated as well as the
features that describe the glass cup itself and its surrounding environment. All
these elements together define the affordance of the glass cup. This does not mean
they are dependant of each other but rather codefining and coherent together.
Bearing this example in mind, in Figure 1, the context C = {c1, c2, ..., cn} is the
set of semantic attributes of the glass cup and its environment (such as kitchen
and living room), ({o}bject ∪ {s}urrounding) ⊆ {C}ontext. The set of available
actions, A = {a1, a2, ..., an}, is understood as a twofold: (i) the way in which
the glass cup can be approached, its suitable grasp-action areas, and (ii) the
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Fig. 2. Proposed framework for grasping affordance reasoning.

usages that the glass cup can achieve, its ability-action such as containing liq-
uids, ({g}rasps ∪ {u}sage) ⊆ {A}ctions. The set of effects of performing those
actions, E = {e1, e2, ..., en}, is kept as a simple discretisation between positive
or negative effects, such as holding the glass cup correctly in order not to spill
the liquid, ({p}ositive ∪ {n}egative) ⊆ {E}ffects. The key attributes of the af-
fordance reasoning to get those grasp-action areas are enclosed in the form of a
KB. These methods are commonly used in artificial intelligence because of their
advantages for harvesting data and accessing a more extensive array of queries
regarding the essential features of a process, rather than just the result. KBs
achieve this task by connecting a collection of attributes through a general set of
rules. In this work, the attributes are the features that describe the object and
the environment and are connected through a hierarchical set of decisions that
result in the object affordance. This section first summarises the object mod-
elling stage, to then reason on the object affordance that is highly correlated
with the resulting grasp-action areas as schematised in Figure 2.

A KB is visualised as a graph representation, as illustrated in Figure 3 where
the entities (nodes) are connected by general rules (edges). In this setup, the en-
tities are the target object, the attributes of the object and its surrounding, and
the resulting affordance groups. The general rules are the attribute to attribute
relation that results from a classification process. The relation between attributes
are weighted accordingly, where the higher the weight, the higher the correla-
tion between the two entities. In order to describe objects by their attributes the
best practice is to divide their features into base, semantic and discriminative
[7]. In this work, the base features, such as edges and colours, are extracted using
CNN. The semantic features are visual characteristics of the object as defined in
Table 1. From now on, these features will be referred to as visual semantic fea-
tures. They are the result of a deep CNN and are divided as (i) shape attributes,
these are the set of visual attributes that describe the objects geometrical ap-
pearance; (ii) texture attributes, are categories based on visual characteristics of
the objects materials; and (iii) environment attributes, which are the scenarios
in which the objects are more likely to be found in. This attribute is added with
the purpose of facilitating the object affordance reasoning. The implemented KB
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Attribute Entities per Attribute

Shape box, cylinder, irregular, long, round

Texture
aluminium, cardboard, coarse,

fabric, glass, plastic, rubber, smooth

Categorical
container, food, personal,

miscellaneous, utensils

Environment
bathroom, bedroom, play-room,

closet, kitchen, living room, office
Table 1. Used attributes and entities of the KB graph.

considers different scenarios in which the object can be located; thus the object
is not restricted to a particular environment. For example, a glass containing
liquids is more likely to be found in a kitchen and a living room. Finally, the
discriminative features are those that offer a comprehensive understanding of the
semantic features. They are the result of a predictive decision tree model that
uses deep CNN as nodes. The KB is composed of four different Deep Neural Net-
works that, through the pre-trained CNN, resnet50 [11], extract features from
the perceived images. These four different deep learned CNN correspond to the
four different visual semantic attributes, as described in Table 1, which result in
the deduced set of entities in a graph that defines a grasp-action affordance.

3.1 Knowledge Base Predictive Model

In this paper, the KB constitutes a data library that builds a predictive model
connected through a hierarchical set of decisions, such as the edges on Figure 3,
from now on referred as weights. These decisions are the result of a classification
task of the object semantic features, represented as the nodes in Figure 3. From
each of the attributes, ∀a ∈ A : A ∈ [1, ...,K], where K is the total number of
visual semantic features as described in Table 1, a set of weights represented as a
vector Ψak = [ψ1, ψ2, ..., ψn] is extracted, where n is the total number of entities
in that attribute. These Ψak are hierarchically connected with the next attribute
ak+1. Then Ψak offers a way to rank on the next best entity candidate. The
higher the ψn, the higher the probability that the connected two entities among

Box

Fabric

Utensils

Hand towel

To clean

Object
Shape
Texture
Categorical

Affordance
Environment

Bathroom

𝜓𝑠

𝜓𝑡

𝜓𝑐

𝜓𝑒

𝜓𝑎

Fig. 3. Example of a cleaning object and the extracted attributes used to build the
KB graph. The higher weights Ψ (red) create the reasoning to an affordance group.
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attributes result in a better affordance reasoning. These weights are proportional
to the posterior probability distribution obtained from the classification task.
Such that the posterior probability distribution is defined as the Bayes rule:

P̂ (a|x) =
P (x|a)P (a)

P (x)
, (1)

where x is an image belonging an attribute a, P (a) is the posterior distribution
and P (x) is a normalisation constant that consists of the sum over a of the multi-
variate normal density. Figure 3 depicts an example of an object which grasping
affordance can be to clean or to hand over. In this example, the weights deduce
the best path (shown in red) to the to clean grasping affordance. The collected
information from each of the deep CNN is then used to learn a decision tree
as a predictive model: (y, Z) = (y1, y2, y3, ..., yn, Z), where Z is the affordance
group that the system is trying to reason, and the vector y is the set of features
{y1, y2, y3, ..., yn} used for the reasoning task. Thus, the model learns the rank-
ing that reasons on the affordance grasping task R(x) = Ψᵀ

Ay(x) where ΨA is
the transpose of the model parameters from all the attributes and y(x) is the
set of visual features of a given image x.

3.2 Calculating the Grasping Points
Once the affordance is deduced, the system selects from the set of grasping points
obtained in the object reconstruction stage and limits the grasps depending
on the affordance reasoning obtained from the KB. In order to impose such
constraints, the space of the previously obtained grasping points is discretised
in the third dimension, z, so that the following decision on the grasping area
can be made: (i) The grasping region should lie on those points located in the
central subspaces of the discretised space for objects that are meant to contain
edibles. (ii) For the rest of objects, it is considered as the grasping region those
subspaces where the density of grasping points is higher than a threshold, given
that the affordance action-effect is not critical.

4 Evaluation

This work’s goal is to achieve a system able to reason on the object grasp-action
affordance, thus offering autonomy capabilities. As a result, it is of interest to
evaluate the KB on (i) its attribute accuracy classification, and (ii) its reasoning
efficiency with similar objects.

4.1 System Setup
The setting up of the system consists on collecting the required data for the
training and the assessment of the method. This collection is built using two
different datasets that are manually organised into entities of the attributes
described in Table 1. After passing through the predictive model in the KB,
every object in the library is expected to fall into: to eat, to contain, to hand
over, to brush, to squeeze, to clean or to wear. The first set of images is from
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Classifier Accuracy

Shape 95.71%

Texture 98.83%

Categorical 99.91%

Environment 76.50%
Table 2. Each of the attributes classification accuracies.

the Washington-RGB dataset, which contains 300 objects providing the point
clouds and the two-dimensional (2-D) images for each one of the instances [13].
The second dataset is the MIT indoor scene recognition that contains 15,620
different 2-D images of 67 different indoor scenes from which this work uses seven
of those classes [20]. By unifying these two datasets, the objects are correlated
to the environment in which they are more likely to be located. Both datasets
are split into 70% for training and the remaining 30% for testing. These subsets
are used to train and test a battery of classifiers that help to define good object
affordances features. In order to represent the obtained grasping area of the
objects, an ellipse with the iCub humanoid robot end-effector dimensions is
simulated. The orientation of such ellipse is out of the scope of this work and
the focus remains on the position of the grasping area.

4.2 Reasoning on the Affordance
A summary of the accuracies per deep CNN in the KB is presented in Table 2. As
a reminder to the reader, the aim of the proposed methodology is not to improve
the performance of the individual classifiers. Nonetheless, the illustrated accura-
cies match the state-of-the-art results shown in [11,13]. To evaluate the overall
performance of the KB, the accuracies before and after adding the environment
features were collected. Figure 4 shows the data for both cases. A lower accu-
racy is obtained in the case where the environment features are not included, as
illustrated in Figure 4(a) and Figure 4(b). Furthermore, Figure 4(a) not includ-
ing the environment shows a slightly higher spread among different affordance
classes. This misclassification is the case for affordances which objects have a
general semantic categorical attribute such as “miscellaneous” or “container”.

Accuracy: 92.57%
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Fig. 4. Affordance category classification performance: (a) before adding environment
features, showing an average diagonal accuracy of 92.57%; (b) after including the en-
vironment, showing a diagonal average accuracy of 96.81%.
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Fig. 5. Distributional posterior probabilities per class of the KB before (shown in black)
and after (shown in magenta) the environment features.

Thus, a percentage of objects are misclassified among the to contain, to brush,
to eat, and to squeeze categories. Regarding grasping, this miscue represents a
significant adverse effect, especially for objects which real affordance is to con-
tain, and its misclassification results in the system lifting up the object from any
point, risking dropping its content. This risk is reduced by 4.24% when adding
the environment features, as portrayed in Figure 4(b), especially in categories
such as to contain, to hand over and to eat. The posterior probability distribu-
tion of the affordances categories is also evaluated. Figure 5 shows that while
there is a decrement in the distribution for some categories such as to hand,
there is an increment for others such as to clean. This change in the distribution
is accredited to the variation in environments where these objects are found.

4.3 Zero-shot Affordance
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Fig. 6. Zero-shot affordance prediction on semantically similar objects. The original
images contain the labels (rectangles) for the preferred grasping regions from [14,24].

Considering the changing nature of indoor scenes, it is useful to measure the
method’s affordance prediction on new objects. In this work, the object affor-
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dance is limited to its grasping action and is seen as the combination of the
action-effect pair that results from the observations of the object and its envi-
ronment. Zero-shot affordance, in this case, refers to the affordance prediction
of a familiar but previously unseen object. For this part of the experiments, a
set of semantically similar objects has been chosen from a third dataset, Cor-
nell [24]. This dataset is used to learn how to grasp objects in other works such
as [14,24]. These works exploit the fact that the Cornell dataset contains the
three-dimensional (3-D) point cloud of the objects and their corresponding la-
belled grasping regions in the form of rectangles. From the Cornell dataset, 22
semantically similar objects to the ones used for the training of the KB are cho-
sen, obtaining an average accuracy of 81.3% on the object affordance reasoning.
In order to deduce the affordance of an unknown object, the same hierarchical
procedure previously explained is followed. The set of weights ΨA has ranked
a connection of attributes that results in an affordance, depending on the per-
ceived semantics. Furthermore, this hierarchical connection has been learned in
a predictive model to result in the grasping areas of the object. Figure 6 shows
a sample of the familiar objects tested using the KB with their affordance group
and deduced grasping area (shown with the red ellipse). Out of this subset, the
most critical case is shown by the ones which affordance is to contain edibles,
the cup and the mug in Figures 6(b) and 6(d), for which the grasping areas are
correctly calculated.

5 Discussion

The proposed methodology is not only able to (i) reason on the object affordance
of known and semantically similar objects, but also (ii) to extract a suitable
grasp-action region of the target depending on the interpreted affordance. Given
these features, this section discusses the performance of the KB on discerning
the affordance of semantically similar objects, followed by a comparison of the
obtained grasp-action regions with other methods’ ground truth data.

5.1 Similar Shape, Different Affordance
One of the most significant arguments for building this framework is to help a
robot generalise on object affordances. That is to say, just as humans succeed
at generalising an action towards objects of the same category with significantly
different shapes, e.g. glasses: wine, tumbler, martini, and differentiate how to
manipulate objects with similar shapes but for different purposes, e.g. candle vs
water bottle. Given the objects in the library, it is of interest to evaluate the
different affordance and grasping regions obtained for objects with similar shape
but different affordance thus different preferred grasping regions. Figure 6(b) and
Figure 6(e) are examples of two different everyday objects (a cup and a candle
respectively) with considerably different affordance, where the located grasping
regions differ according to the deduced affordance of the object.

5.2 Quality on the Calculated Grasping Area
Different works have been done in the field of affordance detection and grasping.
However, they commonly learn a labelled set of data in order to be able to iden-
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tify the grasping regions. Contrary to these techniques, the method presented in
this paper deduces the grasping region without any a-priori information about
the grasping points. Given that the presented method does not train on grasp
labels, in order to evaluate its output, it is compared to the ground truth labels
of the Cornell dataset. There are works that use deep learning techniques to
learn the grasping points of the objects mapped in the Cornell dataset images
[14,24,21]. It is worth mentioning that these works do not account for affordance
learning but for object classification. They simulate the end-effector with a rect-
angle, allowing it to account for its orientation, and use point and rectangle
metrics to measure the mean square error (MSE) between their ground truth
and the obtained grasps. Their proposed point metric computes the centre point
of the predicted rectangle and considers the grasp as a success if it is within
some distance from at least one of the ground truth rectangles. Contrary to
this work, their labelled grasping areas are based on their end-effector control,
and kinematic constraints and not on object affordance. Thus, a direct quanti-
tative comparison is not viable. However, it is possible to use a modified version
of their proposed point metric. The results of this work can be qualitatively
evaluated by visually inspecting the resulting area. Moreover, quantified by the
percentage of grasping regions that coincide between both sets of data, i.e., the
labelled rectangles of the Cornell dataset and the ellipses of this proposal. In
order to obtain such percentage, the Euclidean distance from the centre point of
the labelled rectangles, observation a, to the centre point of the superellipsoid,
observation b, is measured and expected to be below a set threshold. From the
Cornell dataset, a subset of 65 random images was taken, including images from
different perspectives of the same object. These images were categorised into an
affordance group, illustrating their provided grasping label as a red rectangle on
the 2-D image, as seen in Figure 6. By measuring the Euclidean distance, 88% of
the calculated grasps using the KB proposed in this work fall inside the labelled
grasping regions. The other 12% falls either close to a valid region, or entirely
in a new area given that it has followed the constraints of the grasps depending
on the object affordance, as it is the case of the cup in Figure 6(b).

6 Conclusions and Future Work

Contrary to the available methods, the framework presented in this paper is
able to (i) reason on the affordance grasp-action of known and familiar objects
without previously acknowledging the grasping areas, thus (ii) offering a reason-
ing process for object interaction with autonomy capabilities. The results of the
evaluation performed on the framework support the hypothesis presented at the
beginning of this work: that the grasp-action affordance does not depend solely
on the object semantic features but on their combination with the features that
describe the environment. The results show that without any a-priori awareness
on the grasping regions, the designed KB can reason on the object’s affordance
grasping points. The presented framework has room for improvement. The per-
formance of the KB can be increased by adding more attributes to the base,
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as well as modifying the predictive model to classify more than one affordance
at the time (for example, an object’s affordance can be to hand over as well as
to clean). Furthermore, the dynamics and system control schemes of the robot
and the environment are considered out of the scope of the presented work.
Nonetheless, [18,19] offers a learning-based framework that comprises relative
and absolute robotic skills for dual-arm manipulation suitable for dynamic en-
vironments, that together with a dense context representation of the scenario
semantics offers a complete solution for an interactive object platform.
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