Skip to main content

A Parallel Implementation for Cellular Potts Model with Software Transactional Memory

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 13th International Conference (PACBB 2019)

Abstract

Cellular Potts Model is a mathematical model used to simulate biological systems in a wide scale range, from cells to organs. The model uses a Monte-Carlo approach to determinate for each cell, new state and actions like mitosis, movements or emission of pseudopods. Literature shows multiple implementations of CPM model, even incorporating parallel processing. These works use a data division approach that requires to take locks on data structures, or to spread information between tasks, slowing down simulations. This work proposes a fast implementation for CPM using software transactional memory to synchronize parallel tasks and to apply it to breast cancer in situ (DCIS). Execution times and speedups are calculated. Results show appreciable speedups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altrock, P., Liu, L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015)

    Article  Google Scholar 

  2. Byrne, H.: Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221–230 (2010)

    Article  Google Scholar 

  3. Chen, N., et al.: A parallel implementation of the Cellular Potts Model for simulation of cell-based morphogenesis. Comput. Phys. Commun. 176(11–12), 670–681 (2007)

    Article  Google Scholar 

  4. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  5. Enderling, H., Chaplain, M., Anderson, A., Vaidya, J.: A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007)

    Article  MathSciNet  Google Scholar 

  6. Erbas, B., Provenzano, E., Armes, J., Gertig, D.: The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res. Treat. 97(2), 135–144 (2006)

    Article  Google Scholar 

  7. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)

    Article  Google Scholar 

  8. Gevertz, J., Gillies, G., Torquato, S.: Simulating tumor growth in confined heterogeneous environments. Phys. Biol. 5(3) (2008)

    Article  Google Scholar 

  9. Giordano, A., et al.: Parallel execution of cellular automata through space partitioning: the landslide simulation Sciddicas3-Hex case study. In: Proceedings of 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 505–510 (2017)

    Google Scholar 

  10. Kang, S., et al.: Biocellion: accelerating computer simulation of multicellular biological systems models. Bioinformatics 30(21), 3101–3108 (2014)

    Article  Google Scholar 

  11. Kam, Y., Rejniak, K., Anderson, A.: Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J. Cell. Physiol. 227(2), 431–438 (2012)

    Article  Google Scholar 

  12. Monteagudo, A., Santos, J.: Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context. Biosystems 115, 46–58 (2014)

    Article  Google Scholar 

  13. Kumar, P.: Manual of Practical Pathology. CBS Publisher & Distributors P Ltd. (2011)

    Google Scholar 

  14. Norton, K., Wininger, M., Bhanot, G., Ganesan, S., Barnardh, N., Shinbrotb, T.: A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J. Theor. Biol. 263(4), 393–406 (2009)

    Article  Google Scholar 

  15. Salguero, A., Capel, M., Tomeu, A.: Parallel cellular automaton tumor growth model. Advances in Intelligent Systems and Computing (AISC), vol. 803 (2018). https://doi.org/10.1007/978-3-319-98702-6_21

    Google Scholar 

  16. Scianna, M., Preziosi, L.: Cellular Potts Models: Multiscale Extensions and Biological Applications. Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton (2013)

    Book  Google Scholar 

  17. Tomeu, A.J., Salguero, A.G., Capel, M.: Speeding up tumor growth simulations using parallel programming and cellular automata. IEEE Lat. Am. Trans. 14(11), 4603–4619 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Salguero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomeu, A.J., Gámez, A., Salguero, A.G. (2020). A Parallel Implementation for Cellular Potts Model with Software Transactional Memory. In: Fdez-Riverola, F., Rocha, M., Mohamad, M., Zaki, N., Castellanos-Garzón, J. (eds) Practical Applications of Computational Biology and Bioinformatics, 13th International Conference. PACBB 2019. Advances in Intelligent Systems and Computing, vol 1005 . Springer, Cham. https://doi.org/10.1007/978-3-030-23873-5_7

Download citation

Publish with us

Policies and ethics