Skip to main content

Abstract

A large amount of viral nucleotide sequences is available in databases that can be used to identify positively selected amino acid sites, and thus make inferences on which sites are important for immune system escape and adaptation to their host. Nevertheless, the software pipelines needed to analyse such large datasets usually imply long running times. Moreover, their power to identify positively selected amino acid sites may not be similar. Therefore, here we first analyse, under a variety of conditions, the performance of different software applications and then propose a protocol for the analysis of large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.viprbrc.org.

  2. 2.

    https://pegi3s.github.io/dockerfiles/.

  3. 3.

    https://www.hiv.lanl.gov.

  4. 4.

    https://www.sing-group.org/seda/.

  5. 5.

    http://bpositive.i3s.up.pt/.

  6. 6.

    https://www.maths.otago.ac.nz/~dbryant/software/PhiPack.tar.

  7. 7.

    https://www.ibm.com/analytics/spss-statistics-software.

References

  1. Twiddy, S.S., Woelk, C.H., Holmes, E.C.: Phylogenetic evidence for adaptive evolution of dengue viruses in nature. J. Gen. Virol. 83, 1679–1689 (2002). https://doi.org/10.1099/0022-1317-83-7-1679

    Article  Google Scholar 

  2. Woelk, C.H., Holmes, E.C.: Variable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV). J. Mol. Evol. 52, 182–192 (2001)

    Article  Google Scholar 

  3. Woelk, C.H., Jin, L., Holmes, E.C., Brown, D.W.G.: Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. J. Gen. Virol. 82, 2463–2474 (2001). https://doi.org/10.1099/0022-1317-82-10-2463

    Article  Google Scholar 

  4. Yang, Z.H.: PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). https://doi.org/10.1093/molbev/msm088

    Article  Google Scholar 

  5. Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky-Pond, S.L., Scheffler, K.: FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evol. 30, 1196–1205 (2013). https://doi.org/10.1093/molbev/mst030

    Article  Google Scholar 

  6. Shriner, D., Nickle, D.C., Jensen, M.A., Mullins, J.I.: Potential impact of recombination on sitewise approaches for detecting positive natural selection. Genet. Res. 81, 115–121 (2003)

    Article  Google Scholar 

  7. Anisimova, M., Nielsen, R., Yang, Z.H.: Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164, 1229–1236 (2003)

    Google Scholar 

  8. Wilson, D.J., McVean, G.: Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172, 1411–1425 (2006). https://doi.org/10.1534/genetics.105.044917

    Article  Google Scholar 

  9. Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Fonseca, N.A., Vieira, J.: ADOPS–Automatic Detection Of Positively Selected Sites. J. Integr. Bioinform. 9, 200 (2012). https://doi.org/10.2390/biecoll-jib-2012-200

    Article  Google Scholar 

  10. Vázquez, N., Vieira, C.P., Amorim, B.S.R., Torres, A., López-Fernández, H., Fdez-Riverola, F., Sousa, J.L.R., Reboiro-Jato, M., Vieira, J.: Large scale analyses and visualization of adaptive amino acid changes projects. Interdiscip. Sci. 10, 24–32 (2018). https://doi.org/10.1007/s12539-018-0282-7

    Article  Google Scholar 

  11. López-Fernández, H., Duque, P., Henriques, S., Vázquez, N., Fdez-Riverola, F., Vieira, C.P., Reboiro-Jato, M., Vieira, J.: Bioinformatics protocols for quickly obtaining large-scale data sets for phylogenetic inferences. Interdiscip. Sci. 11, 1–9 (2019). https://doi.org/10.1007/s12539-018-0312-5

    Article  Google Scholar 

  12. Bruen, T.C., Philippe, H., Bryant, D.: A simple and robust statistical test for detecting the presence of recombination. Genetics 172, 2665–2681 (2006). https://doi.org/10.1534/genetics.105.048975

    Article  Google Scholar 

  13. Kloepper, T.H., Huson, D.H.: Drawing explicit phylogenetic networks and their integration into SplitsTree. BMC Evol. Biol. 8, 22 (2008). https://doi.org/10.1186/1471-2148-8-22

    Article  Google Scholar 

  14. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). https://doi.org/10.1093/nar/gkh340

    Article  Google Scholar 

  15. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  Google Scholar 

  16. Weaver, S., Shank, S.D., Spielman, S.J., Li, M., Muse, S.V., Pond, S.L.K.: Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018). https://doi.org/10.1093/molbev/msx335

    Article  Google Scholar 

  17. Sievers, F., Higgins, D.G.: Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018). https://doi.org/10.1002/pro.3290

    Article  Google Scholar 

  18. Price, M.N., Dehal, P.S., Arkin, A.P.: FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010). https://doi.org/10.1371/journal.pone.0009490

    Article  Google Scholar 

  19. Liu, K., Linder, C.R., Warnow, T.: RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS ONE 6, e27731 (2011). https://doi.org/10.1371/journal.pone.0027731

    Article  Google Scholar 

Download references

Acknowledgments

This article is a result of the project Norte-01-0145-FEDER-000008 - Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). The SING group thanks the CITI (Centro de Investigación, Transferencia e Innovación) from the University of Vigo for hosting its IT infrastructure. This work was partially supported by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding ED431C2018/55-GRC Competitive Reference Group. H. López-Fernández is supported by a post-doctoral fellowship from Xunta de Galicia (ED481B 2016/068-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Fernández, H. et al. (2020). Inferring Positive Selection in Large Viral Datasets. In: Fdez-Riverola, F., Rocha, M., Mohamad, M., Zaki, N., Castellanos-Garzón, J. (eds) Practical Applications of Computational Biology and Bioinformatics, 13th International Conference. PACBB 2019. Advances in Intelligent Systems and Computing, vol 1005 . Springer, Cham. https://doi.org/10.1007/978-3-030-23873-5_8

Download citation

Publish with us

Policies and ethics