Skip to main content

Virtually Redying Histological Images with Generative Adversarial Networks to Facilitate Unsupervised Segmentation: A Proof-of-Concept Study

  • Conference paper
  • First Online:
  • 1459 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11435))

Abstract

Approaches relying on adversarial networks facilitate image-to-image-translation based on unpaired training and thereby open new possibilities for special tasks in image analysis. We propose a methodology to improve segmentability of histological images by making use of image-to-image translation. We generate virtual stains and exploit the additional information during segmentation. Specifically a very basic pixel-based segmentation approach is applied in order to focus on the information content available on pixel-level and to avoid any bias which might be introduced by more elaborated techniques. The results of this proof-of-concept trial indicate a performance gain compared to segmentation with the source stain only. Further experiments including more powerful supervised state-of-the-art machine learning approaches and larger evaluation data sets need to follow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the provided PyTorch reference implementation [12].

References

  1. Barker, J., Hoogi, A., Depeursinge, A., Rubin, D.L.: Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Med. Image Anal. 30, 60–71 (2016)

    Article  Google Scholar 

  2. BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_53

    Chapter  Google Scholar 

  3. Gadermayr, M., Appel, V., Klinkhammer, B.M., Boor, P., Merhof, D.: Which way round? A study on the performance of stain-translation for segmenting arbitrarily dyed histological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 165–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_19

    Chapter  Google Scholar 

  4. Gadermayr, M., Dombrowski, A.K., Klinkhammer, B.M., Boor, P., Merhof, D.: CNN cascades for segmenting sparse objects in gigapixel whole slide images. Comput. Med. Imaging Graph. 71, 40–48 (2019)

    Article  Google Scholar 

  5. Gadermayr, M., Eschweiler, D., Jeevanesan, A., Klinkhammer, B.M., Boor, P., Merhof, D.: Segmenting renal whole slide images virtually without training data. Comput. Biol. Med. 90, 88–97 (2017)

    Article  Google Scholar 

  6. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the International Conference on Computer Vision (CVPR 2016) (2016)

    Google Scholar 

  7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR 2017) (2017)

    Google Scholar 

  8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  9. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2009), pp. 1107–1110 (2009). https://doi.org/10.1109/ISBI.2009.5193250

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Sertel, O., Kong, J., Shimada, H., Catalyurek, U.V., Saltz, J.H., Gurcan, M.N.: Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recognit. 42(6), 1093–1103 (2009)

    Article  Google Scholar 

  12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the International Conference on Computer Vision (ICCV 2017) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gadermayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadermayr, M., Klinkhammer, B.M., Boor, P. (2019). Virtually Redying Histological Images with Generative Adversarial Networks to Facilitate Unsupervised Segmentation: A Proof-of-Concept Study. In: Reyes-Aldasoro, C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds) Digital Pathology. ECDP 2019. Lecture Notes in Computer Science(), vol 11435. Springer, Cham. https://doi.org/10.1007/978-3-030-23937-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23937-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23936-7

  • Online ISBN: 978-3-030-23937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics