Skip to main content

Abstract

Currently, zero-day malware is a major problem as long as these specimens are a serious cyber threat. Most of the efforts are focused on designing efficient algorithms and methodologies to detect this type of malware; unfortunately models to simulate its behavior are not well studied. The main goal of this work is to introduce a new individual-based model to simulate zero-day malware propagation. It is a compartmental model where susceptible, infectious and attacked devices are considered. Its dynamics is governed by means of a cellular automaton whose local functions rule the transitions between the states. The propagation is briefly analyzed considering different initial conditions and network topologies (complete networks, random networks, scale-free networks and small-world networks), and interesting conclusions are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, X., Small, M., Chen, G.: Propagation Dynamics on Complex Networks. Wiley, Hoboken (2014)

    Book  Google Scholar 

  2. Hernández Guillén, J.D., Martín del Rey, A.: Modeling malware propagation using a carrier compartment. Commun. Nonlinear Sci. Numer. Simul. 56, 217–226 (2018)

    Article  MathSciNet  Google Scholar 

  3. Hosseini, S., Azgomi, M.A., Torkaman, A.R.: Agent-based simulation of the dynamics of malware propagation in scale-free networks. Simulation 92, 709–722 (2016)

    Article  Google Scholar 

  4. Hosseini, S., Azgomi, M.A.: A model for malware propagation in scale-free networks based on rumor spreading process. Comput. Netw. 108, 97–107 (2017)

    Article  Google Scholar 

  5. Hosseini, S., Azgomi, M.A.: The dynamics of a SEIRS-QV malware propagation model in heterogeneous networks. Phys. A 512, 803–817 (2018)

    Article  MathSciNet  Google Scholar 

  6. Hu, P., Ding, L., Hadzibeganovic, T.: Individual-based optimal weight adaptation for heterogeneous epidemic spreading networks. Commun. Nonlinear Sci. Numer. Simul. 63, 339–355 (2018)

    Article  MathSciNet  Google Scholar 

  7. Jackson, J.T., Creese, S.: Virus propagation in heterogeneous bluetooth networks with human behaviors. IEEE Trans. Dependable Secur. Comput. 9, 930–943 (2012)

    Article  Google Scholar 

  8. Karyotis, V., Khouzani, M.H.R.: Malware Diffusion Models for Modern Complex Networks. Morgan Kaufmann-Elsevier, Cambridge (2016)

    Google Scholar 

  9. Karyotis, V., Papavassiliou, S.: Macroscopic malware propagation dynamics for complex networks with churm. IEEE Commun. Lett. 19, 577–580 (2015)

    Article  Google Scholar 

  10. Kim, J.-Y., Bu, S.-J., Cho, S.-B.: Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders. Inform. Sci. 460, 83–102 (2018)

    Article  Google Scholar 

  11. Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G.: A multimodal deep learning method for Android malware detection using various features. IEEE Trans. Inf. Forensic Secur. 14, 773–788 (2019)

    Article  Google Scholar 

  12. Liu, W., Zhong, S.: A novel dynamic model for web malware spreading over scale-free networks. Phys. A 505, 848–863 (2018)

    Article  MathSciNet  Google Scholar 

  13. Martín del Rey, A.: Mathematical modeling of the propagation of malware: a review. Secur. Commun. Netw. 8, 2561–2579 (2015)

    Google Scholar 

  14. Martín del Rey, A., Rodríguez Sánchez, G.: A discrete mathematical model to simulate malware spreading. Int. J. Mod. Phys. C 23, 1–16 (2012). Article number 1250064

    Google Scholar 

  15. Rudd, E.M., Rozsa, A., Günter, M., Boult, T.E.: A survey of stealth malware attacks, mitigation measures, and steps toward autonomous open world solutions. IEEE Commun. Surv. Tutor. 19, 1145–1172 (2017)

    Article  Google Scholar 

  16. Sarkar, P.: A brief history of cellular automata. ACM Comput. Surv. 32, 80–107 (2000)

    Article  Google Scholar 

  17. Thomson, B., Morris-King, J.: An agent-based modeling framework for cybersecurity in mobile tactical networks. J. Def. Model. Simulat. 15, 204–218 (2018)

    Google Scholar 

  18. Tounsi, W., Rais, H.: A survey on technical threat intelligence in the age of sophisticated cyber attacks. Comput. Secur. 72, 212–233 (2018)

    Article  Google Scholar 

  19. Winkler, I., Treu Gomes, A.: Advanced Persistent Security. A Cyberwarfare Approach to Implementing Adaptive Enterprise Protection, Detection, and Reaction Strategies. Syngress-Elsevier, Cambridge (2017)

    Chapter  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain), Agencia Estatal de Investigación (AEI, Spain), and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project with reference TIN2017-84844-C2-2-R (MAGERAN) and the project with reference SA054G18 supported by Consejería de Educación (Junta de Castilla y León, Spain).

A. Bustos Tabernero thanks Ministerio de Educación y Formación Profesional (Spain) for his departmental collaboration grant in the Department of Applied Mathematics (University of Salamanca, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martín del Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martín del Rey, A., Queiruga Dios, A., Hernández, G., Bustos Tabernero, A. (2020). Modeling the Spread of Malware on Complex Networks. In: Herrera-Viedma, E., Vale, Z., Nielsen, P., Martin Del Rey, A., Casado Vara , R. (eds) Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions. DCAI 2019. Advances in Intelligent Systems and Computing, vol 1004. Springer, Cham. https://doi.org/10.1007/978-3-030-23946-6_12

Download citation

Publish with us

Policies and ethics