Introduction to Software Design with Java

Martin P. Robillard

Introduction to
Software Design
with Java

@ Springer

Martin P. Robillard

School of Computer Science
McGill University
Montreal, Québec, Canada

© 2017 Circlecreativestudio/iStock

ISBN 978-3-030-24093-6 ISBN 978-3-030-24094-3 (eBook)
https://doi.org/10.1007/978-3-030-24094-3

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-24094-3

Preface

This book is inspired by well over a decade of teaching software design at McGill
University. At first, my focus was to explain the software design know-how avail-
able from high-quality references. Soon, however, I realized that the main challenge
of teaching software design lay elsewhere. Communicating how to apply a design
technique or use a programming language mechanism was relatively easy. The real
struggle was to convey in which context we want to use a certain design technique,
and why. To do this, I needed to explain what is going on in a software developer’s
head. Over time, my lectures came to be more about exploring the space of alterna-
tive design decisions one can make in a given context.

The goal of this book is to help readers learn software design by discovering
the experience of the design process. I share my experience of designing software
through a narrative that introduces each element of design know-how in context, and
explores alternative solutions in that context. The narrative is supported by hundreds
of code fragments and design diagrams.

My hope is that this book can serve as an effective resource and guide for learning
software design. However, I do not believe that it is possible to develop significant
design skills solely by reading a book. In my own learning process, I have benefited
hugely from reading other people’s code, regularly writing code, and relentlessly
refactoring existing code to experiment with alternative design solutions. For this
reason, this book places a lot of emphasis on coding and experimentation as a nec-
essary complement to reading the text. To support this aspect of the learning process,
I provide a companion website with practice problems, and three example applica-
tions that capture numerous design decisions. An orientation through these example
applications is provided in a section called “Code Exploration”, at the end of each
chapter.

As its title indicates, this book provides an introduction to software design using
the Java language. The code used throughout the book, as well as the example ap-
plications, are in Java (version 8). My use of the Java language, however, is a means
to communicate design ideas, and not the topic of the book. I aimed to cover design
concepts and techniques that are applicable in a host of technologies. Many con-
cepts (such as encapsulation), will be generally relevant in any technology. Others

vi Preface

(such as inheritance) will be paradigm-specific, but usable in multiple programming
languages. For both general and paradigm-specific information, it should be possi-
ble to adapt the examples to other languages relatively easily. In a few cases, the
material needs to address a Java-specific mechanism with implications on design
(e.g., cloning). In such cases, I make sure to present the mechanism as one imple-
mentation of a more general technique.

This book is targeted at readers who have a minimum of programming experience
and want to move from writing small programs and scripts to tackling the develop-
ment of larger systems. This audience naturally includes students in university-level
computer science and software engineering programs. However, I kept the prerequi-
sites to specific computing concepts to a minimum, so the content is also accessible
to programmers without a primary training in computing. In a similar vein, under-
standing the code fragments requires only a bare minimum knowledge of the lan-
guage, such as would be taught in an introductory programming course. Information
about Java that is crucial to understand the text is provided in an appendix, more ad-
vanced features are introduced and explained as necessary, and I make a minimum of
references to specific elements of the language’s class library. My hope is thus that
the book can be useful to almost anyone who wants to write clean, well-designed
software.

Organization of the Book

The first chapter is a general introduction to software design. The subsequent chap-
ters provide a progressive coverage of design concepts and techniques presented as
a continuous narrative anchored in specific design problems. In addition to the main
content, the book includes different features to orient readers and help use the book
as a launchpad for further exploration and learning.

e Chapter Overview: At the beginning of each chapter, a callout lists the concepts
and principles, programming mechanisms, design techniques, and patterns and
antipatterns covered in the chapter.

e Design Context: Following the overview, a paragraph titled “Design Context”
introduces the design problems that are used as running examples in the chap-
ter. It is thus not necessary to read all previous chapters to understand the code
discussed in a given chapter.

e Diagrams: Each chapter includes numerous diagrams that illustrate design ideas.
Although they are provided to illustrate the ideas in the text, the diagrams are also
realistic illustrations of diagrams that can be used in practice as part of design
discussions.

e Code Fragments: Each chapter includes many code fragments. The code gen-
erally follows the conventions presented in Appendix B, with occasional con-
cessions made to make the code more compact. A complete version of the code
fragments can be downloaded from the companion website (see below).

o Insights: In each chapter, the main numbered sections are followed by an un-
numbered section titled “Insights”. This section forms an actionable summary of

Preface vii

the key information and advice provided in the chapter. It is meant as a sort of
catalog of applicable design knowledge, and assumes the material in the chapter
has been mostly assimilated. The insights are in bullet points to be easily perused.

e Code Exploration: Following the “Insights” section is a section titled “Code
Exploration” that provides a discussion of software design in practice. To facili-
tate good flow and avoid getting lost in details, the design contexts discussed in
the main chapters are kept as simple as possible. As a result, some interesting
aspects of the software design experience do get lost in the simplification. The
code exploration activity supported by this section is the opportunity to consider
how some of the topics presented in the chapter manifest themselves in reality.
The “Code Exploration” section points to specific parts of the code of the ex-
ample applications. Before reading the text in the Code Exploration section, I
recommend reviewing the code referenced and trying to understand it as much
as possible. The example applications discussed in the “Code Exploration™ sec-
tion are described in Appendix C. They include JetUML, the application used to
create all the diagrams in the book.

e Further Reading: The Further Reading section provides pointers to references
that complement the material presented in the chapter.

e Companion Website Additional resources for this book are available in the
repository https://github.com/prmr/DesignBook. The material in the repos-
itory includes a complete and commented version of the code that appears in the
chapter content, as well as practice exercises and their solutions.

o Example Applications The three Java applications described in Appendix C
were developed following many of the principles and techniques described in
the book, and are provided as an accessible basis for additional study and explo-
ration.

Acknowledgments

I am most grateful to Mathieu Nassif, who carried out a detailed technical re-
view of the entire manuscript, providing me with hundreds of corrections, sugges-
tions, and interesting points for discussion. I warmly thank Jin Guo for reviewing
most of chapters and testing some of the material in her own teaching, and Kaylee
Kutschera, Brigitte Pientka, and Clark Verbrugge for feedback on various parts of
the manuscript. I am also thankful to Ralf Gerstner, the executive editor in charge
of computer science at Springer, for believing in the project from the start and for
seeing it through with his usual diligence and professionalism.

Martin P. Robillard
April 2019

https://github.com/prmr/DesignBook

Contents

1 Introduction................... 1
1.1 Defining Software Design 4
1.2 Design in the Software Development Process 6
1.3 Capturing Design Knowledge 7
1.4 Sharing Design Know-How 9
Insights. ... 11
Further Reading i i 12
2 Encapsulation 13
2.1 Encapsulation and Information Hiding 14
2.2 Encoding Abstractions as Typesccooiiiiiiiinon. 14
2.3 Scopes and Visibility Restrictions 18
24 Object Diagramsttt 20
2.5 EscapingReferences............ i il 23
2.6 Immutability 26
2.7 ExposingInternal Data 28
2.8 Design by CONractovuuete et 31
InSights. . oo 34
Code Exploration i 34
Further Reading o i 37
3 TypesandInterfaces 39
3.1 Decoupling Behavior from Implementation 40
3.2 Specifying Behavior with Interfaces 43
33 ClassDiagrams ... 45
34 Function ObJectsvvieti e 47
35 Tteratorso i 50
3.6 The ITERATOR Design Pattern................................ 53
3.7 The STRATEGY DesignPattern 54
3.8 The Interface Segregation Principle 55
Insights. ..o 58

Contents

Code Exploration i 59
Further Reading 60
Object State 61
4.1 The Static and Dynamic Perspectives of a Software System 61
4.2 Defining Object Statet eitiinne e 62
4.3 State Diagrams. 64
4.4 Designing Object Life Cycles ..., 66
4.5 Nullability 68
4.6 Final Fields and Variables 74
4.7 Object Identity, Equality, and Uniqueness 76
4.8 The FLYWEIGHT Design Pattern 79
4.9 The SINGLETON Design Pattern 82
4.10 Objects of Nested Classesovvineiineiineineennnn. 83
Insights. 87
Code EXplorationcouuieunt i 88
Further Reading o i i 89
Unit Testing 91
5.1 Introduction to Unit Testing, 92
5.2 Unit Testing Framework Fundamentals with JUnit 94
5.3 Organizing TestCodeot 96
5.4 Metaprogramminguuet ittt 97
5.5 Structuring Tests oo ot 102
5.6 Tests and Exceptional Conditionscoouio... 106
5.7 Encapsulation and Unit Testing 108
5.8 Testingwith Stubs 110
5.9 TestCOVEIageottt 113
Insights. 116
Code EXplorationouuiouie et 117
Further Reading o i 118
Composition 119
6.1 Composition and Aggregationc.viiiieennnennn . 120
6.2 The COMPOSITE Design Pattern 123
6.3 Sequence Diagrams.t 127
6.4 The DECORATOR Design Pattern 131
6.5 Combining COMPOSITE and DECORATOR 136
6.6 Polymorphic Object Copying.............c.ciiiiiiiiio... 138
6.7 The PROTOTYPE Design Pattern 143
6.8 The COMMAND Design Pattern............................... 145
6.9 TheLawofDemeter............ccuuiiiiiiiniiiiiinnaan. 148
InSights. . o e 150
Code Exploration i 150

Further Reading 152

Contents xi

7

Inheritance 155
7.1 The Case for Inheritance.coiiiiiiiiiinna.. 156
7.2 Inheritance and Typingttt 158
7.3 Inheriting Fields i 161
7.4 Inheriting Methods 164
7.5 Overloading Methods i 168
7.6 Inheritance Versus COompositionooueuunna... 170
7.7 AbStract Classesottt 172
7.8 Revisiting the DECORATOR Design Pattern 175
7.9 The TEMPLATE METHOD Design Pattern 177
7.10 Proper Use of Inheritance 181
Insights. . ..o 186
Code ExXplorationuiiiiiu i 187
Further Reading i i 189
Inversionof Control 191
8.1 Motivating Inversion of Control 192
8.2 The Model-View—Controller Decomposition 194
8.3 The OBSERVER Design Pattern............................... 195
8.4 Applying the OBSERVER Design Pattern 205
8.5 Introduction to Graphical User Interface Development............ 208
8.6 Graphical User Interface Component Graphs.................... 211
87 EventHandling 217
8.8 The VISITOR Design Patterncooiviinao... 221
InSights. . o 233
Code Exploration i 234
Further Reading o i 236
Functional Design i, 237
9.1 First-Class Functions, 238
9.2 Functional Interfaces, Lambda Expressions, and Method References 239
9.3 Using Functions to Compose Behavior......................... 246
9.4 Using Functions as Suppliersof Data 250
9.5 First-Class Functions and Design Patterns 257
9.6 Functional-Style Data Processing 261
InSights. . ..o 269
Code ExXplorationuuiiiiiu i 269
Further Reading i i 272
Important Java Programming Concepts 273
A.1 Variablesand Types i 273
A.2 Objects and Classes.ottt 274
A3 StaticFields ... 275
A4 Methods . ..o 275

A.5 Packages and Importing i i 277

xii Contents
A6 Generic TYPeS . ..ot 277
A7 Collection ClasSes . ..o v vttt ettt e 278
A.8 ExceptionHandling.......... i 279
B Coding Conventions it 281
C Example Applications 285
References. i 287

	Preface
	Organization of the Book
	Acknowledgments

	Contents

