
Guiding High-Performance SAT Solvers with
Unsat-Core Predictions

Daniel Selsam1? and Nikolaj Bjørner2

1 Stanford University, Stanford CA 94305, USA
2 Microsoft Research, Redmond WA 98052, USA

Abstract. The NeuroSAT neural network architecture was introduced
in [37] for predicting properties of propositional formulae. When trained
to predict the satisfiability of toy problems, it was shown to find solu-
tions and unsatisfiable cores on its own. However, the authors saw “no
obvious path” to using the architecture to improve the state-of-the-art.
In this work, we train a simplified NeuroSAT architecture to directly
predict the unsatisfiable cores of real problems. We modify several high-
performance SAT solvers to periodically replace their variable activity
scores with NeuroSAT’s prediction of how likely the variables are to ap-
pear in an unsatisfiable core. The modified MiniSat solves 10% more
problems on SATCOMP-2018 within the standard 5,000 second timeout
than the original does. The modified Glucose solves 11% more problems
than the original, while the modified Z3 solves 6% more. The gains are
even greater when the training is specialized for a specific distribution
of problems; on a benchmark of hard problems from a scheduling do-
main, the modified Glucose solves 20% more problems than the original
does within a one-hour timeout. Our results demonstrate that NeuroSAT
can provide effective guidance to high-performance SAT solvers on real
problems.

1 Introduction

Over the past decade, neural networks have dramatically advanced the state
of the art on many important problems, most notably object recognition [22],
speech recognition [13], and machine translation [45]. There have also been sev-
eral attempts to apply neural networks to problems in discrete search, such
as program synthesis [33,7], first-order theorem proving [17,27] and higher-order
theorem proving [44,42,18,16]. More recently, [37] introduce a neural network ar-
chitecture designed for satisfiability problems, called NeuroSAT, and show that
when trained to predict satisfiability on toy problems, it learns to find solutions
and unsatisfiable cores on its own. Moreover, the neural network is iterative, and
the authors show that by running for many more iterations at test time, it can
solve problems that are bigger and even from completely different domains than

? This paper describes work performed while the first author was at Microsoft Re-
search.

ar
X

iv
:1

90
3.

04
67

1v
7 

 [
cs

.N
E

] 
 1

9 
Ju

l 2
01

9



2 D. Selsam and N. Bjørner

the problems it was trained on. While these results may be intriguing, the au-
thors’ motivation was to study the capabilities of neural networks rather than to
solve real SAT problems, and they admit to seeing “no obvious path” to beating
existing SAT solvers.

In this work, we make use of the NeuroSAT architecture, but whereas it
was originally used as an end-to-end solver on toy problems, here we use it to
help inform variable branching decisions within high-performance SAT solvers
on real problems. Given this goal, the main design decision becomes how to
produce data to train the network. Our approach is to generate a supervised
dataset mapping unsatisfiable problems to the variables in their unsatisfiable
cores. Note that perfect predictions would not always yield a useful variable
branching heuristic; for some problems, the smallest core may include every
variable, and of course for satisfiable problems, there are no cores at all. Thus,
our approach is pragmatic; we rely on NeuroSAT predicting imperfectly, and
hope that the probability NeuroSAT assigns to a given variable being in a core
correlates well with that variable being good to branch on.

The next biggest design decision is how to make use of the predictions inside
a SAT solver. Even if we wanted to query NeuroSAT for every variable branch-
ing decision, doing so would have severe performance implications, particularly
for large problems. A SAT solver makes tens of thousands of assignments ev-
ery second, whereas even with an on-device GPU, querying NeuroSAT on an
industrial-sized problem may take hundreds or even thousands of milliseconds.
We settle for complementing—rather than trying to replace—the efficient vari-
able branching heuristics used by existing solvers. All three solvers we extend
(MiniSat, Glucose, Z3) use the Exponential Variable State-Independent Decay-
ing Sum (EVSIDS) heuristic, which involves maintaining activity scores for ev-
ery variable and branching on the free variable with the highest score. The only
change we make is that we periodically query NeuroSAT on the entire problem
(i.e. not conditioning on the current trail), and set all variable activity scores at
once in proportion to how likely NeuroSAT thinks the variable is to be involved
in an unsat core. We refer to our integration strategy as periodic refocusing. We
remark that the base heuristics are already strong, and they may only need an
occasional, globally-informed reprioritization to yield substantial improvements.

We summarize our pipeline:

1. Generate many unsatisfiable problems by decimating existing problems.
2. For each such problem, generate a DRAT proof, and extract the variables

that appear in the unsat core.
3. Train NeuroSAT (henceforth NeuroCore) to map unsatisfiable problems to

the variables in the core.
4. Instrument state-of-the-art solvers (MiniSat, Glucose, Z3) to query Neuro-

Core periodically (using the original and the learnt clauses), and to reset
their variable activity scores according to NeuroCore’s predictions.

As a result of these modifications, the MiniSat solver solves 10% more prob-
lems on SATCOMP-2018 within the standard 5,000 second timeout. The modi-
fied Glucose 4.1 solves 11% more problems than the original, while the modified



Guiding High-Performance SAT Solvers with Unsat-Core Predictions 3

Z3 solves 6% more. The gains are even greater when the training is specialized
for a specific distribution of problems; our training set included (easy) subprob-
lems of a collection of hard scheduling problems, and on that collection of hard
problems the modified Glucose solves 20% more problems than the original does
within a one-hour timeout. Our results demonstrate that NeuroSAT (and in
particular, NeuroCore) can provide effective guidance to high-performance SAT
solvers on real problems. All scripts and sources associated with NeuroCore are
available from https://github.com/dselsam/neurocore-public.

2 Data generation

As discussed in §1, we want to train our neural network architecture to predict
which variables will be involved in unsat cores. Unfortunately, there are only
roughly one thousand unsatisfiable problems across all SATCOMP competitions,
and a network trained on such few examples would be unlikely to generalize
well to unseen problems. We overcome this limitation and generate a dataset
containing over 150,000 different problems with labeled cores by considering
unsatisfiable subproblems of existing problems.

Specifically, we generate training data as follows. We use the distributed exe-
cution framework ray [30] to coordinate one driver and hundreds of workers dis-
tributed over several machines. The driver maintains a queue of (sub)problems,
and begins by enqueuing all problems from SATCOMP (through 2017 only) as
well as a few hundred hard scheduling problems. It might help to initialize with
even more problems, but we did not find it necessary to do so. Whenever a
worker becomes free, the driver dequeues a problem and passes it to the worker.
The worker tries to solve it using Z3 with a fixed timeout (we used 60 seconds).
If Z3 returns sat, it does nothing, but if Z3 returns unsat, it passes the generated
DRAT proof [43] to DRAT-trim [43] to determine which of the original clauses
were used in the proof. It then computes the variables in the core by travers-
ing the clauses in the core, and finally generates a single datapoint in a format
suitable for the neural network architecture we will describe in §3. If Z3 re-
turns unknown, the worker uses a relatively expensive, hand-engineered variable
branching heuristic (specifically, Z3’s implementation of the March heuristic [29])
and returns the two subproblems to the driver to be added to the queue.

This process generates one datapoint roughly every 60 seconds per worker.
Some of the original problems are very difficult, and so the process may not
terminate in a reasonable amount of time; thus we stopped it once we had
generated 150,000 datapoints.

Note that our data generation process is not guaranteed to generate diverse
cores. To the extent that March is successful in selecting variables to branch on
that are in the core, the cores of the two subproblems will be different; if it fails to
do this, then the cores of the two subproblems may be the same (though the non-
core clauses will still be different). We remark that there are many other ways
one might augment the dataset, for example by including additional problems

https://github.com/dselsam/neurocore-public


4 D. Selsam and N. Bjørner

from synthetic distributions, or by directly perturbing the signs of the literals in
the existing problems. However, our simple approach proved sufficient.

We stress that predicting the (binary) presence of variables in the core is
simplistic. As mentioned in §1, for some problems, the smallest core may include
every variable, in which case the datapoint for that problem would contain no
information. Even if only a small fraction of variables are in the core, it may still
be that only a small fraction of those core variable would make good branches. A
more sophisticated approach would analyze the full DRAT proof and calculate
a more nuanced score for each variable that reflects its importance in the proof.
However, as we will see in §5, our simplistic approach of predicting the variables
in the core proved sufficient to achieve compelling results.

3 Neural Network Architecture

Background on neural networks. Before describing our simplified version of the
NeuroSAT architecture, we provide elementary background on neural networks.
A neural network can be thought of as a computer program that is differentiable
with respect to a set of real-valued, unknown parameters. There may be thou-
sands, millions, or even billions of such parameters, and it would be impossible
to specify them by hand. Instead, the practitioner specifies a second differen-
tiable program called the loss function, which takes a collection of input/output
pairs (i.e. training data), runs the neural network on the inputs, and computes
a scalar score that measures how much the neural network’s outputs disagree
with the true outputs. Numerical optimization is then used to find values of the
unknown parameters that make the loss function as small as possible.

The basic building block of neural networks is the multilayer perceptron
(MLP), also called a feed-forward network or a fully-connected network. An MLP
takes as input a vector x ∈ Rdin for a fixed din, and outputs a vector y ∈ Rdout

for a fixed dout. It computes y from x by applying a sequence of (parameterized)
affine transformations, each but the last followed by a component-wise nonlinear
function called an activation function. The most common activation function
(which we use in this work) is the rectified linear unit (ReLU), which is the
identity function on positive numbers and sets all negative numbers to zero.

Notation. We use function-call notation to denote the application of MLPs,
where the different arguments to the MLP are implicitly concatenated. Thus
if M : Rd1+d2 → Rdout is an MLP and x1 ∈ Rd1 , x2 ∈ Rd2 are vectors, we
write M(x1, x2) ∈ Rdout to denote the result of applying the MLP M to the
concatenation of x1 and x2. For performance reasons, one almost never applies
an MLP to an individual vector, and instead applies it to a batch of vectors of the
same dimension concatenated into a matrix. Thus if X1 ∈ Rk×d1 , X2 ∈ Rk×d2 ,
we write M(X1, X2) ∈ Rk×dout to denote the result of first concatenating X1 and
X2 into a Rk×(d1+d2) matrix, applying M to the each of the k rows separately
and then concatenating the k results back into a matrix.



Guiding High-Performance SAT Solvers with Unsat-Core Predictions 5

NeuroCore architecture. We now describe our simplified version of the NeuroSAT
architecture. We represent a Boolean formula in CNF with nv variables and nc
clauses by an nc×2nv sparse matrix G, where the (i, j)th element is 1 if and only
if the ith clause contains the jth literal. For example, we represent the formula
(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

c1

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c2

as the following 2× 6 (sparse) matrix:

G :
x1 x2 x3 x1 x2 x3

c1 1 1 1 0 0 0
c2 1 0 0 0 1 1

Our neural network itself is made up of three standard MLPs:

Cupdate : R2d → Rd,Lupdate : R3d → Rd,Vproj : R2d → R

where d is a fixed hyperparameter (we used d = 80). The network computes
forward as follows. First, it initializes two matrices C ∈ Rnc×d and L ∈ R2nv×d to
all ones. Each row of C corresponds to a clause, while each row of L corresponds
to a literal:

C =

— c1 —
...

— cnc —

 ∈ Rnc×d, L =



— x1 —
...

— xnv —
— x1 —

...
— xnv —


∈ R2nv×d

We refer to the row corresponding to a clause c or a literal ` as the embedding of
that clause or literal. Note that for notational convenience, we conflate clauses
and literals with their embeddings, so e.g. the symbol c may refer to the actual
clause or to the row of C that embeds the clause.

Define the operation Flip to swap the first half of the rows of a matrix with the
second half, so that in Flip(L), each literal’s row is swapped with its negation’s:

Flip(L) =



— x1 —
...

— xnv
—

— x1 —
...

— xnv
—


∈ R2nv×d

After initializing C and L, the network performs T iterations of “message
passing” (we used T = 4), where a single iteration consists of two updates.
First, each clause updates its embedding based on the current embeddings of
the literals it contains: ∀c, c ← Cupdate

(
c,
∑

`∈c `
)
. Next, each literal updates

its embedding based on the current embeddings of the clauses it occurs in, as



6 D. Selsam and N. Bjørner

well as the current embedding of its negation: ∀`, ` ← Lupdate(`,
∑

`∈c c, `). We
can express these updates compactly and implement them efficiently using the
matrix G and the Flip operator:

C ← Cupdate (C,GL)

L← Lupdate

(
L,G>C,Flip(L)

)
Define the operation Flop to concatenate the first half of the rows of a matrix
with the second half along the second axis, so that in Flop(L), the two vectors
corresponding to the same variable are concatenated:

Flop(L) =

— x1 — — x1 —
...

— xnv
— — xnv

—

 ∈ Rnv×2d

After T iterations, the network flops L to produce the matrix V ∈ Rnv×2d, and
then projects V into an nv-dimensional vector v̂ using the third MLP, Vproj:

v̂ ← Vproj(V ) ∈ Rnv

The vector v̂ is the output of NeuroCore, and consists of a numerical score for
each variable, which can be passed to the softmax function to define a probability
distribution p̂ over the variables. During training, we turn each labeled bitmask
over variables into a probability distribution p∗ by assigning uniform probability
to each variable in the core and zero probability to the others. We optimize the
three MLPs all at once to minimize the Kullback-Leibler divergence [23]:

DKL(p∗ ‖ p̂) =

nv∑
i=1

p∗i log (p∗i /p̂i)

Figure 1 summarizes the architecture.

Initialize:

C ← 1 ∈ Rnc×d

L← 1 ∈ R2nv×d

T times:
C ← Cupdate (C,GL)

L← Lupdate

(
L,G>C,Flip(L)

)
Finally:

V ← Flop(L) ∈ Rnv×2d

v̂ ← Vproj(V ) ∈ Rnv

C L

Cupdate Lupdate

GL

G>C

Flip(L)

Flop(L)Vprojv̂

Fig. 1. An overview of the NeuroCore architecture



Guiding High-Performance SAT Solvers with Unsat-Core Predictions 7

Comparison to the original NeuroSAT. While the original NeuroSAT architec-
ture was designed to solve small problems end-to-end, ours is designed to provide
cheap, heuristic guidance on (potentially) large problems. Accordingly, our net-
work differs from the original in a few key ways. First, ours only runs for 4
iterations at both train and test time, whereas the original was trained with 26
iterations and ran for upwards of a thousand iterations at test time. Second,
our update networks are simple MLPs, whereas the original used Long Short-
Term Memories (LSTMs) [14]. Third, as discussed above, ours is trained with
supervision at every variable and outputs a vector v̂ ∈ Rnv , whereas the original
is trained with only a single bit of supervision and accordingly only outputs a
single scalar.

Training NeuroCore. As we discussed in §1, our goal is not to learn a perfect core
predictor, but rather only to learn a coarse heuristic that broadly assigns higher
score to more important variables. Thus, fine-tuning the network is relatively
unimportant, and we only ever trained with a single set of hyperparameters.
We used the ADAM optimizer [19] with a constant learning rate of 10−4, and
trained asynchronously with 20 GPUs for under an hour, using distributed Ten-
sorFlow [1].

4 Hybrid Solving: Extending CDCL with NeuroCore

Background on CDCL. Modern SAT solvers are based on the Conflict-Driven
Clause Learning (CDCL) algorithm [28,21]. Before explaining how we integrate
NeuroCore with CDCL solvers , we briefly summarize the parts of CDCL that are
relevant to our work. At a high level, a CDCL solver works as follows. It maintains
a trail of literals that have been given tentative assignments, and continues to
assign variables and propagate the implications until reaching a contradiction.
It then analyzes the cause of the contradiction and learns a conflict clause that
is implied by the existing clauses and that would have helped avoid the current
conflict. Finally, it pops variables off the trail until all but one of the literals
in the learnt clause have been set to false, propagates the learnt clause, and
continues from there. Most CDCL solvers also periodically restart (clear the
trail), and also periodically simplify the clauses in various ways.

There are many crucial, heuristic decisions that a CDCL must make, such as
which variable to branch on next, what polarity to set it to, which learned clauses
to prune and when, and also when to restart. We only consider the first decision
in this work: which variable to branch on next. This decision has been the subject
of intense study for decades and many approaches have been proposed. See [4] for
a comprehensive overview. MiniSat, Glucose and Z3 all implement variants of the
Variable State-Independent Decaying Sum (VSIDS) heuristic (first introduced
in [31]) called Exponential-VSIDS (EVSIDS). The EVSIDS score of a variable x



8 D. Selsam and N. Bjørner

after the tth conflict is defined by:

InConflict(x, i) =

{
1 x was involved in the ith conflict

0 otherwise

EVSIDS(x, t) =
∑
i

InConflict(x, i)ρt−i

where ρ < 1 is a hyperparameter. Intuitively, the EVSIDS score of a variable
measures how many conflicts the variable has been involved in, with more recent
conflicts weighted much more than past conflicts. As we will discuss in §4, our
approach is to periodically reset these EVSIDS scores based on the outputs of
NeuroCore.

Integrating NeuroCore. As discussed in §1, it is too expensive to query Neuro-
Core for every variable branching decision, and so we settle for querying peri-
odically on the entire problem (i.e. not conditioning on the trail) and replacing
the variable activity scores with NeuroCore’s prediction. We now describe this
process in detail.

When we query NeuroCore, we build the sparse clause-literal adjacency ma-
trix G (see §3) as follows. First, we collect all non-eliminated variables that are
not units at level 0. These are the only variables we tell NeuroCore about. Sec-
ond, we collect all the clauses that we plan to tell NeuroCore about. We would
like to tell NeuroCore about all the clauses, both original and learnt, but the
size of the problem can get extremely large as the solver accumulates learnt
clauses. At some point the problem would no longer fit in GPU memory, and it
might be undesirably expensive even before that point. After collecting the orig-
inal clauses, we traverse the learned clauses in ascending size order, collecting
clauses until the number of literals plus the number of clauses plus the number
of cells (i.e. literal occurrences in clauses) exceed a fixed cutoff (we used 10 mil-
lion). If a problem is so big that the original clauses already exceed this cutoff,
then for simplicity we do not query NeuroCore at all, although we could have
still queried it on random subsets of the clauses. Finally, we traverse the chosen
clauses to construct G. Note that because of the learned clauses, the eliminated
variables, and the discovered units, NeuroCore is shown a substantially different
graph on each query even though we do not condition on the trail.

NeuroCore then returns a vector v̂ ∈ Rnv , where a higher score for a variable
indicates that NeuroCore thinks the corresponding variable is more likely to
be in the core. We turn v̂ into a probability distribution by dividing it by a
scalar temperature parameter τ (we used 0.25) and taking the softmax, and
then we scale the resulting vector by the number of variables in the problem,
and additionally by a fixed constant κ (we used 104). Finally, we replace all the
EVSIDS scores at once:3

∀i,EVSIDS(xi, t)← Softmax(v̂/τ)invκ

3 In MiniSat, this involves setting the activity vector to these values, resetting the
variable increment to 1.0, and rebuilding the order-heap.



Guiding High-Performance SAT Solvers with Unsat-Core Predictions 9

Note that the decay factor ρ is often rather small (MiniSat uses ρ = 0.95), and to
a first approximation solvers average ten thousand conflicts per second, so these
scores decay to 0 in only a fraction of a second. However, such an intervention
can still have a powerful effect by refocusing EVSIDS on a more important part
of the search space. We refer to our integration strategy as periodic refocusing to
stress that we are only refocusing EVSIDS rather than trying to replace it. Our
hybrid solver based on MiniSat only queries NeuroCore once every 100 seconds.

5 Solver Experiments

We evaluate the hybrid solver neuro-minisat (described in §4) and the original
MiniSat solver minisat on the 400 problems from the main track of SATCOMP-
2018, with the same 5,000 second timeout used in the competition. For each
solver, we solved the 400 problems in 400 different processes in parallel, spread
out over 8 identical 64-core machines, with no other compute-intensive processes
running on any of the machines. In addition, the hybrid solver also had network
access to 5 machines each with 4 GPUs, with the 20 GPUs split evenly and
randomly across the 400 processes. We calculate the running time of a solver by
adding together its process time with the sum of the wall-clock times of each of
the TensorFlow queries it requests on the GPU servers. We ignore the network
transmission times since in practice one would often use an on-device hardware
accelerator.

Note that although we did not train NeuroCore on any (sub)problems from
SATCOMP-2018, we did perform some extremely coarse tuning of hyperparam-
eters (specifically κ, which a-priori might reasonably span 100 orders of mag-
nitude) based on runs of the hybrid solver on problems from SATCOMP-2018.
In hindsight we regret not using alternate problems for this, but we strongly
suspect that we would have found a similar ballpark by only tuning on problems
from other sources.

Results. The main result, alluded to in §1, is that neuro-minisat solves 205
problems within the 5,000 second timeout whereas minisat only solves 187. This
corresponds to an increase of 10%. Most of the improvement comes from solving
more satisfiable problems: neuro-minisat solve 125 satisfiable problems compared
to minisat ’s 109, which is a 15% increase. On the other hand, neuro-minisat only
solved 3% more unsatisfiable problems (80 vs 78). Figure 3 shows a cactus plot of
the two solvers, which shows that neuro-minisat takes a substantial lead within
the first minutes and maintains the lead until the end. Figure 2 shows a scatter
plot of the same data, which shows there are quite a few problems that neuro-
minisat solves within a few minutes that minisat times out on. It also shows
that there are very few problems on which neuro-minisat is substantially worse
than minisat.

Glucose. As a follow-up experiment and sanity-check, we made the same modi-
fications to Glucose 4.1 and evaluated in the same way on SATCOMP-2018. To



10 D. Selsam and N. Bjørner

Fig. 2. Scatter plot comparing
NeuroCore-assisted MiniSat (neuro-
minisat) against (minisat). Several
problems are solved within a few
minutes by neuro-minisat for which
minisat times out. The converse
scenario is relatively rare.

Fig. 3. Cactus plot comparing NeuroCore-
assisted MiniSat (neuro-minisat) with the
original (minisat). It shows that neuro-
minisat takes a substantial within the first
few minutes and maintains the lead until the
end.

provide further assurance that our findings are robust, we altered the NeuroCore
schedule, changing from fixed pauses (100 seconds) to exponential backoff (5 sec-
onds at first with multiplier γ = 1.2). The results of the experiment are very
similar to the results from the MiniSat experiment described above. The num-
ber of problems solved within the timeout jumps 11% from 186 to 206. Figure 4
show the scatter plot comparing neuro-glucose to glucose. This comparison is
even more favorable to the NeuroCore-assisted solver than Figure 2, as it shows
that there are many problems neuro-glucose solves within seconds that glucose
times out on. The cactus plot for the Glucose experiment is almost identical to
the one in Figure 3 and so is not shown.

Z3. Lastly, we made the same modifications to Z3, except we once again altered
the NeuroCore schedule, this time from exponential backoff in terms of user-
time to geometric backoff in terms of the number of conflicts. Specifically, we
first query NeuroCore after 50,000 conflicts, and then each time wait 50,000 more
conflicts than the previous time before querying NeuroCore again. The modified
Z3 solves 170 problems within the timeout, up from 161 problems, which is a
6% increase.

Note that for the Z3 experiment, to save on computational costs, we evalu-
ated both solvers simultaneously instead of sequentially. To ensure fairness, we
ordered the task queue by problem rather than by solver. The lower absolute
scores compared to MiniSat and Glucose are partly the result of the increased
contention.



Guiding High-Performance SAT Solvers with Unsat-Core Predictions 11

Fig. 4. Scatter plot comparing NeuroCore-assisted Glucose (neuro-glucose) with the
original (glucose). It shows that there are quite a few problems that neuro-glucose
solves within a few seconds that glucose times out on, and there are very few problems
on which neuro-glucose is substantially worse than glucose.

A more favorable regime. It is worth remarking that SATCOMP-2018 is an
extremely unfavorable regime for machine learning methods. All problems are
arbitrarily out of distribution. The 2018 benchmarks include problems arising
from a dizzyingly diverse set of domains: proving theorems about bit-vectors,
reversing Cellular Automata, verifying floating-point computations, finding ef-
ficient polynomial multiplication circuits, mining Bitcoins, allocating time-slots
to students with preferences, and finding Hamiltonian cycles as part of a puzzle
game, among many others [12].

In practice, one often wants to solve many problems arising from a common
source over an extended period of time, in which case it could be worth training a
neural network specifically for the problem distribution in question. We approx-
imate this regime by evaluating the same trained network discussed above on
the set of 303 (non-public) hard scheduling problems that were included in the
data generation process along with SATCOMP 2013-2017. Note that although
NeuroCore may have seen the cores of subproblems of these problems during
training, most of the problems are so hard that many variables need to be set
before Z3 can solve them in under a minute. Also, at deployment time we are
passing the learned clauses to NeuroCore as well, which may vastly outnumber
the original clauses. Thus, although it clearly cannot hurt to train on subprob-
lems of the test problems, NeuroCore is still being queried on problems that are
substantially different than those it saw during training.

For this experiment, we compared glucose to neuro-glucose on the 303 schedul-
ing problems, using a one-hour timeout and the same setting of κ as for the
SATCOMP-2018 experiment above. As one might expect, the results are even



12 D. Selsam and N. Bjørner

better than in the SATCOMP regime. The hybrid neuro-glucose solver solves
20% more problems than glucose within the timeout. Figure 5 shows a cac-
tus plot comparing the two solvers. In contrast to Figure 3, which showed that
on SATCOMP-2018 neuro-minisat got off to an early lead and maintained it
throughout, here we see that the solvers are roughly tied for the first thirty min-
utes, at which point neuro-glucose begins to pull away, and continues to add to
its lead until the one-hour timeout.

Fig. 5. Cactus plot comparing NeuroCore-assisted Glucose (neuro-glucose) with the
original (glucose) on a benchmark of 303 (non-public) challenging scheduling problems,
for which some subproblems were included in the training set. In contrast to Figure 3,
which showed that on SATCOMP-2018 neuro-minisat got off to an early lead and
maintained it throughout, here we see that the solvers are roughly tied for the first
thirty minutes, at which point neuro-glucose begins to pull away, and continues to add
to its lead until the one-hour timeout.

Ablations. A previous version of this paper reported that periodically refocusing
with random scores (as opposed to with the NeuroCore scores) severely degraded
the performance of the solver; however, these findings were the result of an im-
plementation error that caused the activity scores to be randomly refocused on
every single branching decision.4 We have fixed the error and performed the fol-
lowing revised experiments. We modified neuro-glucose to use uniform random
logits in [−1, 1] in lieu of the NeuroCore scores, and evaluated the resulting solver
(henceforth rand-glucose) on both SATCOMP-2018 and the private scheduling
problems. On SATCOMP-2018, rand-glucose solved the same number of prob-
lems that neuro-glucose did, whereas on the private scheduling problems, rand-
glucose solved 2.5% fewer problems than glucose (while neuro-glucose solved

4 We thank Alvaro Sanchez for bringing this implementation error to our attention.



Guiding High-Performance SAT Solvers with Unsat-Core Predictions 13

20% more problems than glucose). The impressive performance of rand-glucose
on SATCOMP-2018 suggests that whatever signal may have been present in the
NeuroCore scores on these wildly out-of-distribution problems had little impact,
and that most (if not all) of the benefit came from the periodic refocusing. On
the other hand, the unimpressive performance of rand-glucose on the scheduling
problems suggests that there was indeed substantial signal in the NeuroCore
scores in this domain. Of course, the scheduling ablation does not rule out the
possibility that there may be a different heuristic that could do just as well as
NeuroCore without employing a neural network.

6 Related Work

Machine learning in automated deduction has been pursued in several guises.
Two established approaches are strategy selection [46] and axiom selection [41].

Strategy selection is to our knowledge mainly applied to setting configura-
tion parameters for SAT, MIP (Mixed-Integer Programming), TSP (the Trav-
eling Salesman Problem), and ATP (First-order Automated Theorem Proving)
systems, and enjoy the additional advantage that they can be used in a setting
where multiple systems are combined to approach a virtual best solver5. ATP
systems regularly use strategy selection especially when preparing for competi-
tions, e.g. [36], ever since Gandalf [40] won the 1996 ATP competition (known
as CASC [39]) by spending the first few minutes running a suite of different
strategies before selecting one that appeared to make the most progress. Strat-
egy selection as composing tactics [6] was pursued in [3] to speed up performance
over baseline tactics.

Axiom selection methods help focus search on a subset of input clauses.
The domain-specific Sine [15] method is a prominent example, and selects ax-
ioms that share infrequently-appearing symbols with the goal. ATP systems rely
on clause selection for driving inferences, and a recent use of machine learning
for clause selection [27] was integrated in the E theorem prover [35]. In SAT,
CDCL solvers select clauses using unit propagation and conflict analysis, and
rely on garbage collection of redundant clauses to balance available inferences
from memory and propagation overhead. Carefully crafted methods have been
introduced to balance different heuristics within SAT garbage collection, more
recently by [32], combining glue levels with activity scores. Ostensibly as a reac-
tion to the opacity and complexity of these heuristics, the CryptoMiniSat solver6

has recently integrated machine learning to eliminate redundant clauses. Sim-
ilar to our approach, their approach relies on information from DRAT proofs
to relate features of learned clauses (for example, their glue levels) with their
usefulness to a derivation. The CryptoMiniSat version of DRAT7 indeed collects

5 http://ada.liacs.nl/events/sparkle-sat-18/documents/

floc-18-sparkle-extended.pdf
6 https://github.com/msoos/cryptominisat/
7 https://github.com/msoos/drat-trim/

http://ada.liacs.nl/events/sparkle-sat-18/documents/floc-18-sparkle-extended.pdf
http://ada.liacs.nl/events/sparkle-sat-18/documents/floc-18-sparkle-extended.pdf
https://github.com/msoos/cryptominisat/
https://github.com/msoos/drat-trim/


14 D. Selsam and N. Bjørner

several more features than the original version of DRAT-trim8 that we used in
this work. Their approach then trains a succinct decision tree on this data, that
is compiled into a specialized version of CryptoMiniSat.

Integration of machine learning techniques for branch selection in SAT is
to our knowledge relatively unexplored. The VSIDS heuristic (and its descen-
dants such as EVSIDS) presented a breakthrough in SAT solving as it amplified
branching on variables that would maximize the conflict-to-branch ratio, thus
focusing search within clusters of related clauses. Several refinements of VSIDS
are used in newer SAT solvers, including CHB (Conflict History Based) [26]
and VMTF (Variable Move-To-Front) [34,4]. Branch selection heuristics within
CDCL solvers are finely tuned for performance because they are invoked on every
decision.

In contrast, look-ahead solvers [8] afford higher overhead during a look-ahead
phase to identify branch literals, also known as so-called cubes when look-ahead
solving is used in the cube-and-conquer paradigm [10]. Cubes are selected to
optimize a carefully crafted metric on clause reduction, such as weighing variable
occurrences inversely by the sizes of the clauses they appear in [11,9,24]. Cubing
is an appealing target for machine learning because it is used in phases where a
global analysis on a problem is feasible.

In MIP solvers, branch-and-bound methods [25] share many similarities to
cube-and-conquer methods in SAT. Branch operations split the search into
separate parts, and are relatively rare, as the main engine in state-of-the-art
MIP solvers remains dual-Simplex, often augmented by interior point methods.
Branching is applied when the linear programming optimization is unable to
find integral values for integer variables. State-of-the-art branching methods in
MIP solvers use heuristics that are related in spirit to look-ahead heuristics:
among a set of candidate branch variables they run a limited (cheap) form of
linear programming and assemble progress metrics for each candidate variable,
and branch on a variable that optimizes a selected metric. As a common trait,
these metrics depend on finely tuned parameters, and are therefore ripe targets
for machine learning techniques [2].

In the backdrop of the related work, the approach we pursue here is wedged
between the fine-grained branching preferences of CDCL solvers and the single-
step branch decisions of look-ahead solvers. NeuroCore performs a global analysis
to predict a good ordering among all unassigned variables, but does this only
periodically to allow the fine-grained built-in heuristics to take over during in-
ferences. It provides the capability to rehash a search into a different cluster of
clauses where CDCL can perform local tuning.

7 Discussion

There is a vast design space for how to train NeuroSAT and how to use it to
guide SAT solvers. This work has focused on only one tiny point in that design
space. We now briefly discuss other approaches we considered.

8 https://github.com/marijnheule/drat-trim

https://github.com/marijnheule/drat-trim


Guiding High-Performance SAT Solvers with Unsat-Core Predictions 15

For our first experiment predicting unsatisfiable cores, we trained NeuroSAT
on a synthetic graph coloring distribution that happened to have tiny cores.
NeuroSAT was able to predict these cores so accurately that we could get al-
most arbitrarily big speedups by only giving Z3 the tiny fraction of clauses that
NeuroSAT thought most likely to be in the core (and doubling the number of
clauses given as necessary until they included the core). Unfortunately, it is much
harder to learn a general-purpose core predictor than one on a particular syn-
thetic distribution for which instances may all have similar cores. Real problems
also rarely have such tiny cores, so even a perfect core predictor might not be
such a silver bullet. However, we do think that core predictions may nonetheless
be useful in guiding clause pruning. Our first efforts here were hampered by the
fact that we were rarely able to fit the majority of conflict clauses in GPU mem-
ory given our relatively large network architecture (i.e. d=80). Simply retraining
with a smaller d would address this problem, and we plan to pursue this in the
future.

We also experimented with training NeuroSAT to imitate the decisions of
the March cubing heuristic. Based on preliminary experiments in a challenging
scheduling domain, we found that NeuroSAT trained only to imitate March
may actually produce better cubes than March itself, though it remains to be
seen if this result holds up to greater scrutiny. In contrast, using the unsat
core predictions to make cubing decisions seemed to perform consistently worse
than the March baseline, though still vastly better than random. We also tried
using NeuroSAT’s March predictions to refocus the EVSIDS scores, and found
this to perform worse than its unsat core predictions. However, we note that
the March predictions were much peakier than the unsat core predictions, and
so the inferior performance may have been caused by an inappropriately low
temperature parameter τ .

We also briefly experimented with predicting models directly. Specifically,
we used existing solvers to find models of satisfiable problems, and then trained
NeuroSAT to predict the phases of each of the variables individually. Then, we
instrumented MiniSat to choose the phase of each decision variable in proportion
to NeuroSAT’s prediction. Note that this approach is extremely simplistic, since
a single problem may have many models; for example, if it suffices to assign
only ε% of the variables to satisfy all the clauses, then (1 − ε)% of the phases
will be arbitrary. Nonetheless, we still found some preliminary evidence that
even this simplistic approach may help in some cases, though the preliminary
results were insufficiently promising for us to pursue further at this stage. An
alternative approach to learning a phase heuristic may be to only predict the
phases of variables for which one literal has been proven to be entailed. It is
trivial to generate a huge amount of data for this task, since every learned
conflict clause provides datapoints: each literal in the learned clause is implied
from the remaining literals negated.

Lastly, inspired by the success of [38], we experimented with various forms
of Monte Carlo tree search and reinforcement learning, though the only compet-
itive heuristic we were able to learn de novo was a cubing strategy for uniform



16 D. Selsam and N. Bjørner

random problems. There are two main challenges for learning variable branching
heuristics by exploration alone: problems may have a huge number of variables,
and it may take substantial time to solve the (sub)problems in order to get
feedback about a given branching decision. The former challenge can be miti-
gated by beginning with imitation learning (e.g. by imitating March). We tried
to mitigate the latter by pretraining a value function based on data collected
from solving a collection of benchmarks, and then using the value function es-
timates to make cheap importance sampling estimates of the size of the search
tree under different policies as described in [20]. We found that even in the su-
pervised context, training the value function was difficult; without taking logs
it was numerically difficult, and with taking logs, we could get very low loss
while ignoring the relatively few hard subproblems towards the roots that make
the most difference. Ultimately, we think that the use of clausal proof traces for
satisfiability problems offers such great opportunities for post facto analysis and
principled credit assignment that there is simply no need to resort to generic
reinforcement learning methods.

We have only scratched the surface of this design space. We hope that our
promising initial results with NeuroCore inspire others to try leveraging Neu-
roSAT in other, creative ways.

8 Acknowledgments

We thank Percy Liang, David L. Dill, and Marijn J. H. Heule for helpful discus-
sions.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: 12th USENIX Symposium on Operating Systems Design and Imple-
mentation OSDI 16. pp. 265–283 (2016)

2. Balcan, M., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: Dy, J.G.,
Krause, A. (eds.) Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.
JMLR Workshop and Conference Proceedings, vol. 80, pp. 353–362. JMLR.org
(2018), http://proceedings.mlr.press/v80/balcan18a.html

3. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In: Ben-
gio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada. pp. 10338–10349 (2018), http://papers.nips.cc/paper/
8233-learning-to-solve-smt-formulas

4. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Interna-
tional Conference on Theory and Applications of Satisfiability Testing. pp. 405–
422. Springer (2015)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

http://proceedings.mlr.press/v80/balcan18a.html
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas


Guiding High-Performance SAT Solvers with Unsat-Core Predictions 17

6. De Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Auto-
mated Reasoning and Mathematics, pp. 15–44. Springer (2013)

7. Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.r., Kohli, P.: Ro-
bustfill: Neural program learning under noisy I/O. In: Proceedings of the 34th
International Conference on Machine Learning-Volume 70. pp. 990–998. JMLR.
org (2017)

8. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Biere et al. [5], pp.
155–184. https://doi.org/10.3233/978-1-58603-929-5-155

9. Heule, M.J.: Schur number five. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

10. Heule, M.J., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. In: Hand-
book of Parallel Constraint Reasoning, pp. 31–59. Springer (2018)

11. Heule, M.J., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: International Conference
on Theory and Applications of Satisfiability Testing. pp. 228–245. Springer (2016)

12. Proceedings of sat competition 2018; solver and benchmark descriptions (2018),
http://hdl.handle.net/10138/237063

13. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Kingsbury, B., et al.: Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal processing magazine 29 (2012)

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

15. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti,
N., Tiwari, A. (eds.) Automated Reasoning - 8th International Joint Confer-
ence, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 9706, pp. 313–329. Springer (2016).
https://doi.org/10.1007/978-3-319-40229-1 22

16. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: Gamepad: A learning environment
for theorem proving. arXiv preprint arXiv:1806.00608 (2018)

17. Irving, G., Szegedy, C., Alemi, A.A., Een, N., Chollet, F., Urban, J.: Deepmath-
deep sequence models for premise selection. In: Advances in Neural Information
Processing Systems. pp. 2235–2243 (2016)

18. Kaliszyk, C., Chollet, F., Szegedy, C.: Holstep: A machine learning dataset for
higher-order logic theorem proving. arXiv preprint arXiv:1703.00426 (2017)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of
computation 29(129), 122–136 (1975)

21. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 6: Satisfia-
bility (2015)

22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

23. Kullback, S., Leibler, R.A.: On information and sufficiency. The annals of mathe-
matical statistics 22(1), 79–86 (1951)

24. Kullmann, O.: Fundaments of branching heuristics. In: Biere et al. [5], pp. 205–244.
https://doi.org/10.3233/978-1-58603-929-5-205

25. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Operations re-
search 14(4), 699–719 (1966)

https://doi.org/10.3233/978-1-58603-929-5-155
http://hdl.handle.net/10138/237063
https://doi.org/10.1007/978-3-319-40229-1_22
https://doi.org/10.3233/978-1-58603-929-5-205


18 D. Selsam and N. Bjørner

26. Liang, J., K., H.G.V., Poupart, P., Czarnecki, K., Ganesh, V.: An empirical study
of branching heuristics through the lens of global learning rate. In: Lang, J. (ed.)
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. pp. 5319–5323.
ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/745, http://www.ijcai.org/
proceedings/2018/

27. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May
7-12, 2017. EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017),
http://www.easychair.org/publications/paper/340345

28. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

29. Mijnders, S., de Wilde, B., Heule, M.: Symbiosis of search and heuristics for random
3-sat. CoRR abs/1402.4455 (2010)

30. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol,
M., Yang, Z., Paul, W., Jordan, M.I., et al.: Ray: A distributed framework for
emerging {AI} applications. In: 13th USENIX Symposium on Operating Systems
Design and Implementation OSDI 18). pp. 561–577 (2018)

31. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient sat solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535. ACM (2001)

32. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:
Heule, M., Weaver, S. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings. Lecture Notes in Computer Science, vol. 9340, pp. 307–323.
Springer (2015). https://doi.org/10.1007/978-3-319-24318-4 23

33. Parisotto, E., Mohamed, A.r., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic
program synthesis. arXiv preprint arXiv:1611.01855 (2016)

34. Ryan, L.: Efficient algorithms for clause-learning SAT solvers (2004), masters thesis
35. Schulz, S.: E–a brainiac theorem prover. Ai Communications 15(2, 3), 111–126

(2002)
36. Schulz, S.: We know (nearly) nothing! but can we learn? In: Reger, G., Traytel,

D. (eds.) ARCADE 2017, 1st International Workshop on Automated Reasoning:
Challenges, Applications, Directions, Exemplary Achievements, Gothenburg, Swe-
den, 6th August 2017. EPiC Series in Computing, vol. 51, pp. 29–32. EasyChair
(2017), http://www.easychair.org/publications/paper/6kgF

37. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
SAT solver from single-bit supervision. In: International Conference on Learning
Representations (2019), https://openreview.net/forum?id=HJMC_iA5tm

38. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without
human knowledge. Nature 550(7676), 354–359 (2017)

39. Sutcliffe, G.: The CADE ATP System Competition - CASC. AI Magazine 37(2),
99–101 (2016)

40. Tammet, T.: Gandalf. J. Autom. Reasoning 18(2), 199–204 (1997).
https://doi.org/10.1023/A:1005887414560

41. Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: Malarea SG1- machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint

https://doi.org/10.24963/ijcai.2018/745
http://www.ijcai.org/proceedings/2018/
http://www.ijcai.org/proceedings/2018/
http://www.easychair.org/publications/paper/340345
https://doi.org/10.1007/978-3-319-24318-4_23
http://www.easychair.org/publications/paper/6kgF
https://openreview.net/forum?id=HJMC_iA5tm
https://doi.org/10.1023/A:1005887414560


Guiding High-Performance SAT Solvers with Unsat-Core Predictions 19

Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings.
Lecture Notes in Computer Science, vol. 5195, pp. 441–456. Springer (2008).
https://doi.org/10.1007/978-3-540-71070-7 37

42. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. In: Advances in Neural Information Processing Systems.
pp. 2786–2796 (2017)

43. Wetzler, N., Heule, M.J., Hunt, W.A.: Drat-trim: Efficient checking and trimming
using expressive clausal proofs. In: International Conference on Theory and Appli-
cations of Satisfiability Testing. pp. 422–429. Springer (2014)

44. Whalen, D.: Holophrasm: a neural automated theorem prover for higher-order
logic. arXiv preprint arXiv:1608.02644 (2016)

45. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

46. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008).
https://doi.org/10.1613/jair.2490

https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.1613/jair.2490

	Guiding High-Performance SAT Solvers with Unsat-Core Predictions

