
A SAT-based System for Consistent Query Answering

Akhil A. Dixit1 and Phokion G. Kolaitis1,2

1 University of California Santa Cruz
2 IBM Research - Almaden

Abstract. An inconsistent database is a database that violates one or more in-
tegrity constraints, such as functional dependencies. Consistent Query Answering
is a rigorous and principled approach to the semantics of queries posed against
inconsistent databases. The consistent answers to a query on an inconsistent
database is the intersection of the answers to the query on every repair, i.e., on ev-
ery consistent database that differs from the given inconsistent one in a minimal
way. Computing the consistent answers of a fixed conjunctive query on a given
inconsistent database can be a coNP-hard problem, even though every fixed con-
junctive query is efficiently computable on a given consistent database.
We designed, implemented, and evaluated CAvSAT, a SAT-based system for con-
sistent query answering. CAvSAT leverages a set of natural reductions from the
complement of consistent query answering to SAT and to Weighted MaxSAT.
The system is capable of handling unions of conjunctive queries and arbitrary
denial constraints, which include functional dependencies as a special case. We
report results from experiments evaluating CAvSAT on both synthetic and real-
world databases. These results provide evidence that a SAT-based approach can
give rise to a comprehensive and scalable system for consistent query answering.

1 Introduction

Managing inconsistencies in databases is a challenge that arises in several different
contexts. Data cleaning is the main approach towards managing inconsistent databases
(see the survey [16]). In data cleaning, clustering techniques and/or domain knowledge
are used to resolve violations of integrity constraints in a given inconsistent database,
thus producing a single consistent database. This approach, however, is often ad hoc;
for example, if a person has two different social security numbers in a database, which
of the two should be kept?

The framework of database repairs and consistent query answering, introduced by
Arenas, Bertossi, and Chomicki [3], is an alternative, and arguably more principled,
approach to data cleaning. In contrast to data cleaning, the inconsistent database is
left as is; instead, inconsistencies are handled at query time by considering all possi-
ble repairs of the inconsistent database, where a repair of an inconsistent database I
is a consistent database J that differs from I in a “minimal” way. The main algorith-
mic problem in this framework is to compute the consistent answers to a query q on
a given database I , that is, the tuples that lie in the intersection of the results of q ap-
plied on each repair of I (see the monograph [6]). Computing the consistent answers
to a query q on I can be computationally harder than evaluating q on I , because an

ar
X

iv
:1

90
5.

02
82

8v
1

 [
cs

.D
B

]
 7

 M
ay

 2
01

9

2 A. Dixit and Ph. Kolaitis

inconsistent database may have exponentially many repairs. By now there is an exten-
sive literature on the computational complexity of the consistent answers for different
classes of constraints and queries [7,17,21,28,29]. For key constraints (the most com-
mon constraints) and for conjunctive queries (the most frequently asked queries), the
consistent answers appear to exhibit an intriguing trichotomy, namely, the consistent
answers of every fixed conjunctive query under key constraints are either first-order
rewritable (hence, polynomial-time computable), or are polynomial-time computable
but not first-order rewritable, or are coNP-complete. So far, this trichotomy has been
proved for self-join free conjunctive queries by Koutris and Wijsen [20,21]. Moreover,
Koutris and Wijsen designed a quadratic algorithm that, given such a conjunctive query
and a set of key constraints, determines the side of the trichotomy in which the con-
sistent answers to the query fall. Prior to this work, Fuxman and Miller identified a
class of conjunctive queries, called Cforest, whose consistent answers are FO-rewritable
[11,13]. Membership in Cforest, however, is sufficient but not necessary condition for the
FO-rewritability of the consistent answers.

Several academic prototype systems for consistent query answering have been de-
veloped [4,5,9,11,12,14,18,23,24]. In particular, the ConQuer system [11,12] is tailored
to queries in the classCforest. Other systems use logic programming [5,14], compact rep-
resentations of repairs [8], or reductions to solvers. Specifically, the system in [23] uses
reductions to answer set programming, while the EQUIP system in [18] uses reductions
to binary integer programming and the subsequent deployment of CPLEX. It is fair to
say, however, no comprehensive and scalable system for consistent query answering ex-
ists at present; this state of affairs has impeded the broader adoption of the framework
of repairs and consistent answers as a principled alternative to data cleaning.

In this paper, we report on a SAT-based system for consistent query answering,
which we call CAvSAT (Consistent Answers via SAT). The CAvSAT system lever-
ages natural reductions from the complement of consistent query answering to SAT
and to WEIGHTED MAXSAT. As such, it can handle the consistent answers to unions
of conjunctive queries under denial constraints, a broad class of integrity constraints
that include functional dependencies (hence also key constraints) as a special case.
CAvSAT is the first SAT-based system for consistent query answering. We carried
out a preliminary stand-alone evaluation of CAvSAT on both synthetic and real-world
databases. The first set of experiments involved the consistent answers of conjunc-
tive queries under key constraints on synthetic databases in which each relation has
up to one million tuples. One of the a priori unexpected findings is that, for conjunc-
tive queries whose consistent answers are first-order rewritable, CAvSAT had compara-
ble or even better performance to evaluating the first-order rewritings using a database
engine, such as PostgreSQL. The second set of experiments involved the consistent
answers of (unions of) conjunctive queries under functional dependencies on restau-
rant inspection records in Chicago and New York with some of the relations exceed-
ing 200000 tuples. The CAvSAT source code is available at the GitHub repository
https://github.com/uccross/cavsat via a BSD-style license.

While much more work remains to be done, the experimental finding reported here
provide evidence that a SAT-based approach can indeed give rise to a comprehensive
and scalable system for consistent query answering.

https://github.com/uccross/cavsat

A SAT-based System for Consistent Query Answering 3

2 Basic Notions and Background
Databases, Constraints, and Queries A relational database schemaR is a finite col-
lection of relation symbols, each with a fixed positive integer as its arity. The attributes
of a relation symbol are names for its columns; attributes can also be identified by their
positions, thus Attr(R) = {1, ..., n} denotes the set of attributes of R. AnR-database
instance or, simply, an R-instance is a collection I of finite relations RI , one for each
relation symbol R in R. An expression of the form RI(a1, ..., an) is a fact of the in-
stance I if (a1, ..., an) ∈ RI . EveryR-instance can be identified with the (finite) set of
its facts. The active domain of I is the set of all values occurring in facts of I .

Relational database schemas are often accompanied by a set of integrity constraints
that impose semantic restrictions on the allowable instances. A functional dependency
(FD) x→ y on a relation symbol R is an integrity constraint asserting that if two facts
agree on the attributes in x, then they must also agree on the attributes in y. A key is a
minimal subset x of Attr(R) such that the FD x → Attr(R) holds. In this case, the
attributes in x are called key attributes of R and they are denoted by underlining their
corresponding positions; thus, R(A,B,C) denotes that the attributes A and B form a
key of R. Every functional dependency is expressible in first-order logic. For example,
the key constraint A,B → C in R(A,B,C) is expressed by the first-order formula

∀x, y, z, z′(R(x, y, z) ∧R(x, y, z′)→ z = z′)

Functional dependencies are an important special case of denial constraints (DCs),
which are expressible by first-order formulas of the form

∀x1, ..., xn¬(ϕ(x1, ..., xn) ∧ ψ(x1, ..., xn)),
or, equivalently,

∀x1, ..., xn(ϕ(x1, ..., xn)→ ¬ψ(x1, ..., xn)),
where ϕ(x1, ..., xn) is a conjunction of atomic formulas and ψ(x1, ..., xn) is a con-
junction of expressions of the form (xi op xj) with each op a built-in predicate, such
as =, 6=, <,>,≤,≥. In words, a denial constraint prohibits a set of tuples that satisfy
certain conditions from appearing together in a database instance.

Let k be a positive integer. A k-ary query on a relational database schema R is
a function q that takes an R-instance I as argument and returns a k-relation q(I) on
the active domain of I as value. A boolean query on R is a function that takes an R-
instance I as argument and returns true or false as value. As is well known, first-order
logic has been successfully used as a query language. In fact, it forms the core of SQL,
the main commercial database query language.

A conjunctive query is a first-order formula built using the relational symbols, con-
junctions, and existential quantifiers. Thus, each conjunctive query is expressible by a
first-order formula of the form

q(z) := ∃w (R1(x1) ∧ ... ∧Rm(xm)),

where each xi is a tuple consisting of variables and constants, z and w are tuples of
variables, and the variables in x1, ...,xm appear in exactly one of z and w. Clearly, a
conjunctive query with k free variables z is a k-ary query, while a conjunctive query
with no free variables (i.e., all variables are existentially quantified) is a boolean query.

4 A. Dixit and Ph. Kolaitis

Conjunctive queries are also known as select-project-join (SPJ) queries and are among
the most frequently asked queries in databases. For example, the binary conjunctive
query q(s, t) := ∃c(Enrolls(s, c)∧Teaches(t, c)) returns the set of all pairs (s, t) such
that student s is enrolled in a course taught by teacher t, while the boolean conjunctive
query q() := ∃x, y, z(E(x, y) ∧ E(y, z) ∧ E(z, x)) tests whether or not a graph with
an edge relation E contains a triangle.

Repairs and Consistent Answers Let R be a database schema and let Σ be a set of
integrity constraints on R. An R-instance I is consistent if I |= Σ, that is, I satisfies
every constraint in Σ; otherwise, I is inconsistent. A repair of an inconsistent instance
I w.r.t. Σ is a consistent instance J that differs from I in a “minimal” way. Different
notions of minimality give rise to different types of repairs (see [6] for a comprehensive
survey). Here, we focus on subset repairs, the most extensively studied type of repairs.
An instance J is a subset repair of an instance I if J ⊆ I (where I and J are viewed as
sets of facts), J |= Σ, and there exists no instance J ′ such that J ′ |= Σ and J ⊂ J ′ ⊂ I .
From now on, by repair we mean a subset repair. Arenas, Bertossi, and Chomicki [3]
used repairs to give rigorous semantics to query answering on inconsistent databases.
Specifically, assume that q is a query, I is an R-instance, and t is a tuple of values. We
say that t is a consistent answer (also referred as a certain answer) to q on I w.r.t. Σ
if t ∈ q(J), for every repair J of I . We write CONS(q, I,Σ) to denote the set of all
consistent answers to q on I w.r.t. Σ, i.e.,

CONS(q, I,Σ) =
⋂
{q(J) : J is a repair of I w.r.t. Σ}.

IfΣ is a fixed set of integrity constraints and q is a fixed query, then the main compu-
tational problem associated with the consistent answers is: given an instance I , compute
CONS(q, I , Σ). If q is a boolean query, then computing the certain answers becomes
the decision problem CERTAINTY(q,Σ): given an instance I , is q true on every repair
J of I w.r.t.Σ? When the constraints Σ are understood from the context, we will write
CONS(q, I) and CERTAINTY(q), instead of CONS(q, I,Σ) and CERTAINTY(q,Σ).

Computational Complexity of Consistent Answers If Σ is a fixed finite set of denial
constraints and q is a k-ary conjunctive query, where k ≥ 1, then the following problem
is in coNP: given an instance I and a tuple t, is t a certain answer to q on I w.r.t. Σ?
This is so because to check that t is not a certain answer to q on I w.r.t. Σ, we guess a
repair J of I and verify that t 6∈ q(J) (note that J is a subset of I , evaluating a fixed
conjunctive query on a given database is a polynomial-time task, and testing if J is a
repair of I w.r.t. denial constraints is a polynomial-time task as well). Similarly, if q is
a boolean conjunctive query, then the decision problem CERTAINTY(q,Σ) is in coNP.

Even for key constraints and boolean conjunctive queries, CERTAINTY(q,Σ) ex-
hibits a variety of behaviors within coNP. Indeed, consider the queries

1. PATH() := ∃x, y, z R(x, y) ∧ S(y, z);
2. CYCLE() := ∃x, y R(x, y) ∧ S(y, x);
3. SINK() := ∃x, y, z R(x, z) ∧ S(y, z).

Fuxman and Miller [13] showed that CERTAINTY(PATH) is FO-rewritable, i.e., there is
a first-order definable boolean query q′ such that CONS(PATH, Σ, I) = q′(I), for every
instance I . In fact, q′ is ∃x, y, z R(x, y) ∧ S(y, z) ∧ ∀y′(R(x, y′) → ∃z′S(y′, z′)).

A SAT-based System for Consistent Query Answering 5

Wijsen [27] showed that CERTAINTY(CYCLE) is in P, but it is not FO-rewritable, while
Fuxman and Miller [13] showed that CERTAINTY(SINK) is coNP-complete via a re-
duction from the complement of MONOTONE 3-SAT.

The preceding state of affairs sparked a series of investigations aiming to obtain
classification results concerning the computational complexity of the consistent answers
(e.g., see [15,17,22,26,27]). The most definitive result to date is a trichotomy theorem,
established by Koutris and Wijsen [19,20,21], for boolean self-join free conjunctive
queries, where a conjunctive query is self-join free if no relation symbol occurs more
than once in the query. This trichotomy theorem asserts that if q is a self-join free con-
junctive query with one key per relation symbol, then CERTAINTY(q) is FO-rewritable,
or in P but not FO-rewritable, or coNP-complete. Moreover, there is a quadratic algo-
rithm to decide, given such a query, which of the three cases of the trichotomy holds.
It remains an open problem whether or not this trichotomy extends to arbitrary boolean
conjunctive queries and to arbitrary functional dependencies or denial constraints.

3 Consistent Query Answering for Key Constraints
In this section, we assume that R is a database schema and Σ is a finite set of primary
key constraints on R, i.e., there is one key constraint per each relation of R. We first
consider boolean conjunctive queries and, for each fixed boolean conjunctive query q,
we give a natural polynomial-time reduction from CERTAINTY(q) to UNSAT. We then
extend this reduction to non-boolean conjunctive queries, so that for every fixed non-
boolean conjunctive query q, the consistent answers to q can be computed by iteratively
solving WEIGHTED MAXSAT instances. In what follows, we heavily use the notions
of key-equal groups of facts and minimal witnesses to a conjunctive query.

Definition 1. Key-Equal Group. Let I be an R-instance. We say that two facts of a
relation R of I are key-equal, if they agree on the key attributes of R. A set S of facts
of I is called a key-equal group of facts if every two facts in S are key-equal, and no
fact in S is key-equal to some fact in I\S.

Definition 2. Minimal Witness. Let I be an R-instance and let S be a sub-instance of
I . We say that S is a minimal witness to a conjunctive query q on I , if S |= q, and for
every proper subset S′ of S, we have that S′ 6|= q.

For each relation R of I , the key-equal groups of R are computed by an SQL query
that involves grouping the key attributes ofR. Similarly, the set of minimal witnesses to
a fixed conjunctive query q on I are computed efficiently as follows. A unique integer
factID is attached to each fact, by adding an attribute FactID to each relation in I that
appears in q. Thus, a new instance I ′ is built, where each relation R′(FactID,A,B) in
I ′ is obtained from a relationR(A,B) in I . A new non-boolean query q′ is constructed,
such that each atom R′(factIDR,x,y) in q′ is constructed from an atom R(x,y) of q.
The variables of q′ that correspond to the FactID attributes are not existentially quan-
tified. It is easy to see that each tuple (without duplicate factIDs) in q′(I ′) is in 1-1
correspondence with a minimal witness to q on I .

6 A. Dixit and Ph. Kolaitis

Boolean Conjunctive Queries Let q be a fixed boolean conjunctive query overR.

Reduction 1 Given anR-instance I , we construct a CNF-formula φ as follows.
For each fact fi of I , introduce a boolean variable xi, 1 ≤ i ≤ n. Let G be the set

of key-equal groups of facts of I , and letW be the set of minimal witnesses to q on I .

– For each Gj ∈ G, construct the clause αj = ∨
fi∈Gj

xi.

– For each Wj ∈ W , construct the clause βj = ∨
fi∈Wj

¬xi.

– Construct the boolean formula φ =

(
|G|
∧
i=1

αi

)
∧
(

|W|
∧

j=1
βj

)
.

Proposition 1. Let φ be the CNF-formula constructed using Reduction 1.

– The size of φ is polynomial in the size of I .
– The formula φ is satisfiable if and only if CERTAINTY(q, Σ) is false on I .

The proofs of all propositions are given in the Appendix.

Non-boolean Conjunctive Queries Let q be a fixed non-boolean query onR, i.e., q has
one or more free variables. We extend Reduction 1 to Reduction 2, so that one can rea-
son about the certain answers to q on an R-instance I using the satisfying assignments
of the CNF-formula φ constructed via Reduction 2.

We use the term potential answers to refer to the answers to q on I . If al is such a
potential answer, we write q[al] to denote the boolean conjunctive query obtained from
q by replacing the free variables in the body of q by corresponding constants from al.

Reduction 2 Given anR-instance I , we construct a CNF-formula φ as follows.
For each fact fi of I , introduce a boolean variable xi, 1 ≤ i ≤ n, Let G be the set

of key-equal groups of facts of I and let A be the set of potential answer to q on I . For
each al ∈ A, letW l denote the set of minimal witnesses to the boolean query q[al] on
I . For each al ∈ A, introduce a boolean variable p1, 1 ≤ l ≤ ..., |A|.

– For each Gj ∈ G, construct the clause αj = ∨
fi∈Gj

xi.

– For each al ∈ A and for each W l
j ∈ W l, construct the clause

βl
j =

(
∨

fi∈W l
j

¬xi
)
∨ ¬pl.

– Construct the boolean formula φ =

(
|G|
∧
i=1

αi

)
∧
(

|A|
∧
l=1

(
|Wl|
∧

j=1
βl
j

))
.

Proposition 2. Let φ be the CNF-formula constructed using Reduction 2.

– The size of φ is polynomial in the size I .
– There exists a satisfying assignment to φ in which a variable pl is set to 1 if and

only if al /∈ CONS(q, I).

A SAT-based System for Consistent Query Answering 7

Example 1. Consider the flights information database in Table 1. The database schema
has three relations, namely, Airlines, Tickets, and Flights; the key attributes of each
relation are underlined. This database is inconsistent, as the sets {f1, f3} and {f8, f9}
of facts violate the key constraints of the relations Airlines and Flights, respectively.

Suppose we want to find out the codes of the flights that belong to an airline from
Canada and fly to the airport OAK. This can be expressed by the unary conjunctive
query q(x) := Flights(x, y, z, p, ‘OAK’, q, r) ∧ Airlines(z, ‘Canada’).

Table 1: Flight information records.
Airlines

Fact AIRLINE COUNTRY

f1 Southwest United States
f2 Jazz Air Canada
f3 Southwest Canada

Tickets
Fact PNR CODE CLASS FARE

f4 MJ9C8R SWA 1568 Economy 430 USD
f5 KLF88V MI 471 First 914 USD
f6 NJ5RT3 SWA 1568 First 112 USD

Flights
Fact CODE DATE AIRLINE FROM TO DEPARTURE ARRIVAL

f7 JZA 8329 01/29/19 Jazz Air GEG OAK 16:12 PST 18:00 PST
f8 SWA 1568 01/29/19 Silkair YYZ YAM 18:55 EST 18:44 EST
f9 SWA 1568 01/29/19 Southwest LAX OAK 16:18 PST 17:25 PST

There are two potential answers to q, namely, ‘JZA 8329’ and ‘SWA 1568’, so we
introduce their corresponding variables p1 and p2. Since the facts f1 and f3 form a key-
equal group, we construct an α-clause (x1∨x3). Similarly, since the set {f2, f7} of facts
is a minimal witness to q[‘JZA 8329’], we construct the β-clause (¬x2 ∨ ¬x7 ∨ ¬p1).
By continuing this way, we obtain the following CNF-formula φ:
(x1∨x3)∧x2∧x4∧x5∧x6∧x7∧(x8∨x9)∧(¬x2∨¬x7∨¬p1)∧(¬x3∨¬x9∨¬p2).
Clauses x2, x7, and (¬x2 ∨ ¬x7 ∨ ¬p1) force p1 to take value 0 in each satisfying
assignment of φ, because the facts f2 and f7 appear in every repair of I , thus making
‘JZA 8329’ a consistent answer to q. In contrast, there is a satisfying assignment of φ
in which p2 is set to 1, which implies that ‘SWA 1568’ is not a consistent answer to q.

Optimizing the reductions In real-life applications, a large part of the inconsistent
database is consistent. For a boolean query q, if a minimal witness to q is present in the
consistent part of the database instance, then we can immediately conclude that CER-
TAINTY(q, I , Σ) is true. This can be checked with simple SQL queries that involve
grouping on the key attributes of each relation. Similarly, for non-boolean queries,
the consistent answers coming from the witnesses that belong to the consistent part
of the database can be computed efficiently using SQL queries. All additional consis-
tent answers can then be found using the preceding reduction. In this case, we need
to introduce boolean variables corresponding to only those facts that contribute to the
additional potential answers. This significantly reduces the size of the CNF-formulas

8 A. Dixit and Ph. Kolaitis

produced by Reductions 1 or 2. This optimization has been used earlier in [18], where
CONS(q, I , Σ) was reduced to an instance of binary integer programming.

4 Consistent Query Answering Beyond Key Constraints
In this section, we consider the broader class of denial constraints and the more expres-
sive class of unions of conjunctive queries. Note that computing the consistent answers
of unions of conjunctive queries under denial constraints is still in coNP, but the con-
sistent answers of a union Q := q1 ∪ . . . ∪ qk of conjunctive queries q1, . . . , qk is not,
in general, equal to the union of the consistent answers of q1, . . . , qk.

We give a polynomial-time reduction from CONS(Q, I , Σ) to UNSAT, where Σ is
a fixed finite set of denial constraints and Q is a fixed union of non-boolean conjunctive
queries. The potential answers toQ are treated in the same way as the potential answers
to the conjunctive query q in Reduction 2; to this effect, we introduce a boolean variable
for each potential answer. The reduction we give here relies on the notions of minimal
violations and near-violations to the set of denial constraints that we introduce next.

Definition 3. Minimal violation. Assume that Σ is a set of denial constraints, I is an
R-instance, and S is a sub-instance of I . We say that S is a minimal violation to Σ, if
S 6|= Σ and for every set S′ ⊂ S, we have that S′ |= Σ.

Definition 4. Near-violation. Assume that Σ is a set of denial constraints, I is an R-
instance, S is a sub-instance of I , and f is a fact of I . We say that S is a near-violation
w.r.t. Σ and f , if S |= Σ and S ∪ {f} is a minimal violation to Σ. As a special case,
if {f} itself is a minimal violation to Σ, then we say that there is exactly one near-
violation w.r.t. f , and it is the singleton {ftrue}, where ftrue is an auxiliary fact.

For a fixed finite set Σ of denial constraints, the set of minimal violations to Σ on
a given database instance I are computed as follows. The body of a denial constraint
d ∈ Σ is treated as a boolean conjunctive query qd, possibly containing atomic formulas
from d that use built-in predicates such as =, 6=, <, >, ≤, and ≥, in addition to the
relation symbols. The set of minimal witnesses to qd on I is computed as described in
Section 3, which is also, precisely, the set of minimal violations to d. The union of the
sets of minimal violations over all denial constraints in Σ gives us the set of minimal
violations to Σ. For each fact f ∈ I , the set of near-violations to Σ w.r.t. f can be
obtained by removing f from every minimal violation to Σ that contains f .

Let R be a database schema, let Σ be a fixed finite set of denial constraints on R,
and let Q := q1 ∪ . . . ∪ qk be a union of conjunctive queries q1, . . . , qk. Let I be anR-
instance, and let Q be the fixed union of k non-boolean conjunctive queries q1, . . . , qk.

Reduction 3 Given anR-instance I , we construct a boolean formula φ′ as follows.
Compute the following sets:
• V: the set of minimal violations to Σ on I .
• N i: the set of near-violations to Σ, on I , w.r.t. each fact fi ∈ I .
• A: the set of potential answers to Q on I .
• W l: the set of all minimal witnesses to Q[al] on I , for each al ∈ A.

A SAT-based System for Consistent Query Answering 9

For each fact fi of I , introduce a boolean variable xi, 1 ≤ i ≤ n. For the auxiliary
fact ftrue, introduce a constant xtrue = true. For each N i

j ∈ N i, introduce a boolean
variable yij , and for each al ∈ A, introduce a boolean variable pl.

1. For each Vj ∈ V , construct a clause αj = ∨
fi∈Vj

¬xi.

2. For each al ∈ A and for each W l
j ∈ W l, construct a clause

βl
j =

(
∨

fi∈W l
j

¬xi
)
∨ ¬pl.

3. For each fi ∈ I , construct a clause γi = xi ∨
(
∨

Ni
j∈N i

yij

)
.

4. For each variable yij , construct an expression θij = yij ↔
(
∧

fd∈Ni
j

xd

)
.

5. Construct the following boolean formula φ:

φ′ =

(
|V|
∧
i=1

αi

)
∧
(

|A|
∧
l=1

(
|Wl|
∧

j=1
βl
j

))
∧
(

|I|
∧
i=1

((|N i|
∧

j=1
θij

)
∧ γi

))
Proposition 3. Let φ′ be the boolean formula constructed using Reduction 3.

– The formula φ′ can be transformed to an equivalent CNF-formula φ whose size is
polynomial in the size of I .

– There exists a satisfying assignment to φ′ in which a variable pl is set to 1 if and
only if al 6∈ CONS(Q, I,Σ).

Example 2. Consider the database instance from Table 1. In addition to the three key
constraints from Example 1, suppose the schema now has two additional integrity con-
straints: (a) if a flight departs from YYZ, then its airline must be Jazz Air; and (b) for
Southwest airlines, if two tickets have the same code, then the ticket with an economy
class must have lower fare than the one with the first class. These can be expressed as
the following denial constraints:

(a) ∀x, y, z, w, p, q ¬(Flights(x, y, z, ‘YYZ’, w, p, q) ∧ z 6= ‘Jazz Air’)
(b) ∀x, y, z, w, p, q ¬(Flights(x, y, ‘Southwest’, z, w, p, q) ∧ Tickets(r, x, ‘First’, t)

∧ Tickets(r′, x, ‘Economy’, t′) ∧ t ≤ t′)
Let us say that we want to find the PNR numbers of the tickets booked with first

class, or with Silkair airlines. This can be expressed as the union Q := q1 ∪ q2 of two
unary conjunctive queries, where

q1(x) := ∃x, y, z Tickets(x, y, ‘First’, z)

q2(x) := ∃x, y, z, w, p, q, r, s, t Tickets(x, y, z, w) ∧ Flights(y, ‘Silkair’, p, q, r, s, t)

The minimal witnesses to Q, the minimal violations to Σ, and the near-violations
to Σ w.r.t. each fact of the database are shown in Figure 1. With these, we construct
the α-, β-, γ-clauses, and the θ-expressions of φ, as shown in Figure 2. Even though,
for simplicity, it is not mentioned in Reduction 3, we do the following optimization in
practice: if |N i

j | = 1, we do not introduce a variable yij , but, we use the x-variable
corresponding to the only fact in N i

j . In each satisfying assignment to φ, the variable p1

10 A. Dixit and Ph. Kolaitis

Fig. 1: Minimal violations, minimal witnesses, and near-violations in Example 2.

Minimal violations to Σ:

– {f1, f3}, {f8}, {f4, f6, f9}

Minimal witnesses to Q:

– {f5}, {f6}, {f4, f8}

Near-violations to Σ:

– f1 : {f3}
– f3 : {f1}
– f4 : {f6, f9}
– f6 : {f4, f9}

– f8 : {ftrue}
– f9 : {f4, f6}
– f2, f5, f7 : None

Fig. 2: The α-, β-, γ-clauses, and the θ-expressions in Example 2.

α-clauses: (¬x1 ∨ ¬x3), (¬x8), (¬x4 ∨ ¬x6 ∨ ¬x9)
β-clauses: (¬x5 ∨ ¬p1), (¬x6 ∨ ¬p2), (¬x4 ∨ ¬x8 ∨ ¬p3)

γ-clauses: (x1 ∨ y11), (x2), (x3 ∨ y31), (x4 ∨ y41), (x5), (x6 ∨ y61), (x7), (x8 ∨ y81), (x9 ∨ y91)

θ-expressions: (y11 ↔ x3), (y
3
1 ↔ x1), (y

4
1 ↔ (x6 ∧ x9)), (y61 ↔ (x4 ∧ x9)), (y81 ↔ xtrue),

(y91 ↔ (x4 ∧ x6))

must take the value 0. In contrast, this is not the case for p2 and p3. By Proposition 3,
‘KLF88V’ is a consistent answer to Q, but ‘MJ9C8R’ and ‘NJ5RT3’ are not.

5 Computing Consistent Answers via WEIGHTED MAXSAT
By Proposition 1, the consistent answer to a boolean conjunctive query over a schema
R with primary key constraints can be computed by solving the UNSAT instance con-
structed in Reduction 1. For non-boolean queries, however, in a CNF-formula φ con-
structed using Reduction 2 or 3, one needs to identify each variable pl such that there
exists at least one satisfying assignment to φ in which pl gets set to 1. By Proposition 3,
the corresponding potential answers can then be discarded for being inconsistent. One
way to do this is as follows. Add a clause (p1∨ ...∨p|A|) to φ, and solve φ using a SAT
solver. For each pl that gets set to 1 in the solution of φ, remove the literal pl from φ and
then solve φ again. Repeat this process until φ is no longer satisfiable. At the end of this
iterative process, the potential answers corresponding to the p-variables that still occur
positively in φ are precisely the consistent answers to Q on I . This approach, how-
ever, requires many SAT instances to be solved when the number of potential answers
is large. For this reason, we developed and tested a different method that uses solv-
ing WEIGHTED MAXSAT instances. The construction of these WEIGHTED MAXSAT
instances is described in Reduction 4.

Reduction 4 Let the setup be the same as that of Reduction 2 (or Reduction 3).

1. Construct a CNF-formula φ using Reduction 2 (or Reduction 3).
2. Make all clauses in φ hard.
3. For each al ∈ A, construct a unit ε-clause εl = (pl).
4. Make all ε-clauses soft, and of equal weights.

5. Construct the WCNF-formula ψ = φ ∧
(

|A|
∧
l=1

εl

)
.

A SAT-based System for Consistent Query Answering 11

Algorithm 1 Eliminating Inconsistent Potential Answers
1: procedure ELIMINATEWITHMAXSAT(ψ,A)
2: let ANS = bool array[|A|]
3: for l = 1 to |A| do
4: ANS[l]← true
5: let bool moreAnswers← true
6: while moreAnswers do
7: moreAnswers← false
8: let opt← MAXSAT(ψ) . Use WEIGHTED MAXSAT solver
9: for l = 1 to |A| do

10: if opt[pl] = 1 then
11: moreAnswers← true
12: ANS[l]← false
13: Remove the unit clause (pl) from ψ
14: Remove all clauses containing the literal ¬pl from ψ
15: Add a new unit hard clause (¬pl) to ψ
16: return ANS

The preceding Algorithm 1 computes the consistent answers by iteratively solving
WEIGHTED MAXSAT instances. It takes as inputs the instance ψ constructed using Re-
duction 4 and the set A of potential answers. The idea is to eliminate, in each iteration,
as many inconsistent answers from A as possible by solving ψ. After each iteration, ψ
is modified in such a way that additional inconsistent answers, if any, can be eliminated
in subsequent iterations. In Section 6, we carried out experiments in which it turned out
that the number of iterations taken by Algorithm 1 is less than 4, even when there is a
large number of potential answers.

Proposition 4. Algorithm 1 returns an array ANS such that al ∈ CONS(Q, I) if and
only if the entry ANS[l] is true.

6 Preliminary Experimental Results
We evaluated the performance of CAvSAT using two different scenarios. First, we ex-
perimented with large synthetically generated databases having primary key constraints.
We implemented Reduction 2 without the optimization mentioned in Section 3. We also
implement Reduction 4 and Algorithm 1. We found out that for seven non-boolean FO-
rewritable queries that were also used in [18], CAvSAT significantly outperformed the
database evaluation of the FO-rewritings obtained using the algorithm from [21]. We
also implemented Reduction 2 with the optimization, and evaluated its performance on
fourteen additional conjunctive queries whose consistent answers are coNP-complete or
are in P but are not FO-rewitable. In the second scenario, we evaluated the performance
of CAvSAT using Reduction 3 on a real-world database with functional dependencies.
The definitions of the queries used in the experiments, as well as the FO-rewritings of
the first seven queries, can be found in the Appendix.

Experimental Setup All experiments were carried out on a machine running on In-
tel Core i7 2.7 GHz, 64 bit Ubuntu 16.04, with 8GB of RAM. We used PostgreSQL

12 A. Dixit and Ph. Kolaitis

10.1 as an underlying DBMS, and MaxHS v3.0 solver [10] for solving the WEIGHTED
MAXSAT instances. Our system is implemented in Java 9.04.

6.1 Synthetic Data Generation

The synthetic data were generated in two phases: (a) generation of consistent data; (b)
injection of inconsistency into consistent data. The parameters used to generate the data
were the number of tuples per relation (rSize), degree of inconsistency (inDeg), and the
size of each key-equal group (kSize).
Generating consistent data Each relation in the consistent database was generated
with the same number of tuples, so that injecting inconsistency with specified kSize
and inDeg will make the total number of tuples in the relation equal to rSize. For each
query used in the experiment, the data was generated so the evaluation of the query on
the consistent database results in a relation that has the size 15% to 20% of rSize. The
values of the third attribute in all of the ternary relations, were chosen from a uniform
distribution in the range [1, rSize/10]. This was done to simulate a reasonably large
number of potential answers. The remaining attributes take values from randomly gen-
erated alphanumeric strings of length 10.
Injecting inconsistency In each relation, the inconsistency was injected by inserting
new tuples to the consistent data, that share the values of the key attributes with some
already existing tuples from the consistent data. The parameter inDeg denotes in per-
centage the number of tuples per relation, that participate in a key violation. We con-
ducted experiments with the varying values for inDeg, ranging from 5% to 15%. The
values of kSize were uniformly distributed between 2 to 5. The non-key attributes of the
newly injected tuples were uniform random alphanumeric strings of length 10.

6.2 Experimental Results

CAvSAT on FO-rewritable Queries In this set of experiments, we compare the per-
formance of CAvSAT against the FO-rewritings of seven queries over the database with
primary key constraints. For queries q1, . . . , q7, we computed the FO-rewritings using
the algorithm of Koutris and Wijsen in [21]. We refer to these FO-rewritings as KW-FO-
rewritings. Since the queries q1, . . . , q4 happen to be in the class Cforest, we computed
additional FO-rewritings for them using the algorithm implemented in the consistent
query answering system ConQuer [11]; we refer to these rewritings as ConQuer-FO-
rewritings. Each FO-rewriting was translated into SQL, and fed to PostgreSQL.

Table 2 shows the size of the WCNF-formulas produced by Reduction 4 without
optimization (where Reduction 2 is used inside Reduction 4), on these queries over the
databases having one million tuples per relation. Figure 3 shows the evaluation time of
CAvSAT with these formulas using MaxHS v3.0 solver [10]. The letter E denotes the
time required for encoding the problem into a WEIGHTED MAXSAT instance, and the
letter S denotes the time taken by Algorithm 1. The percentage adjacent to the letters
S and E denotes the degree of inconsistency. Figure 4 (left) shows the significant gain
in performance due to the optimization, for databases of size one million tuples per
relation and with 10% inconsistency. This is not surprising; since 90% of the data were
consistent, it is expected that most of the consistent answers lie in the consistent part of

A SAT-based System for Consistent Query Answering 13

the database. Table 3 shows the size of the WCNF-formulas produced by Reduction 4,
with the optimization in place.

Figure 4 (right) shows that for the queries q1, . . . , q4 in the class Cforest, the perfor-
mance of CAvSAT is slightly worse, but comparable, to their ConQuer-FO-rewritings.
For all seven queries q1, . . . , q7, however, CAvSAT significantly outperformed their
KW-FO-rewritings, as PostgreSQL hit the two hours timeout while evaluating each
KW-FO-rewriting. In fact, this timeout was hit by all seven queries even for databases
of size as small as 100K tuples per relation. For q1, . . . , q7, the average number of iter-
ations taken by Algorithm 1 to eliminate all inconsistent potential answers was 2.85.

Table 2: Size of CNF-formula

Query Variables Clauses

q1 2.08M 2.18M
q2 2.07M 2.12M
q3 3.15M 3.07M
q4 3.23M 3.07M
q5 2.07M 2.12M
q6 3.3M 3.06M
q7 3.25M 3.06M

Fig. 3: Evaluation time of CAvSAT without opti-
mization, for 1M tuples/relation.

q1 q2 q3 q4 q5 q6 q7

0

50

100

FO-rewritable queries

E
va

l.
tim

e
(s

ec
)

E, 10%

S, 10%

E, 05%

S, 05%

E, 15%

S, 15%

Fig. 4: Evaluation time of CAvSAT with and without optimization (left). Evaluation
time of CAvSAT with optimization, in comparison with the KW-FO-rewriting and the
ConQuer-FO-rewriting, for 1M tuples/relation with 10% inconsistency (right).

q1 q2 q3 q4 q5 q6 q7

0

20

40

60

80

FO-rewritable queries

E
va

l.
tim

e
(s

ec
)

E, Unopt

S, Unopt

E, Opt

S, Opt

q1 q2 q3 q4 q5 q6 q7

5

10

15

2hr+

FO-rewritable queries

E
va

l.
tim

e
(s

ec
)

KW-FO-rewriting
CavSAT
ConQuer-FO-rewriting

CAvSAT on Harder Queries In this set of experiments, we considered fourteen ad-
ditional non-boolean conjunctive queries whose consistent answers are coNP-complete
or in P but not FO-rewritable (Figure 7 in the Appendix). Figure 5 shows that the time
required for the optimizing and then constructing the WEIGHTED MAXSAT instance
using Reduction 4, dominates over the time taken by Algorithm 1. The solver takes
comparatively more time for the queries that have more free variables or more atoms.

14 A. Dixit and Ph. Kolaitis

Table 3 shows the size of the CNF-formulas constructed by Reduction 4 (where Reduc-
tion 2 is used inside Reduction 4) in this experiment. The average number of iterations
taken by Algorithm 1 to eliminate all inconsistent potential answers to a query was 3.2.

Table 3: The size of the CNF-formulas with optimization, for 1M tuples per relation.
Query Variables Clauses Query Variables Clauses Query Variables Clauses

q1 16.5K 20.9K q8 16.6K 16.8K q15 14.9K 15K
q2 68.6K 76.0K q9 58K 57.7K q16 58.8K 58.4K
q3 31.9K 36.8K q10 31.3K 36.6K q17 40.1K 41.4K
q4 117.2K 123.7K q11 105K 118.1K q18 107.5K 121.4K
q5 16.3K 20.6K q12 116.8K 123.4K q19 114.4K 120.7K
q6 32.8K 33.2K q13 63.2K 65.7K q20 53.4K 63.7K
q7 32.5K 33.8K q14 53.9K 59.2K q21 170K 199K

Fig. 5: Evaluation time of CAvSAT for conjunctive queries with varying data complex-
ity, with optimization, over the databases of size 1M tuples/relation.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21
0

5

10

15

20

Conjunctive queries with varying data complexity

E
va

l.
tim

e
(s

ec
)

E, 10%

S, 10%

E, 05%

S, 05%

E, 15%

S, 15%

Results on the Real-World Databases In this set of experiments, we evaluated the per-
formance of CAvSAT using Reduction 3 on real-world data having key constraints on
each relation, along with one functional dependency. The data used are about inspec-
tions of food establishments in New York and Chicago, and are taken from [2] and [1].
Part of this data have been previously used for evaluating data cleaning systems, such
as HoloClean [25]. Since the structure of the schema or the constraints on the database
were not specified by the source, we decomposed the data into four relations, and as-
sumed reasonable key constraints for all relations and also one additional functional
dependency, as shown in Table 4. We evaluated the performance of Reduction 3 on six
queries depicted in Figure 10 in the Appendix. For example, queryQ3 returns the names
of the restaurants, such that they are present in both New York and Chicago, and they
were inspected on the same day. Figure 6 shows that the solver took the most amount of
time to compute answers to this query. Not surprisingly, the evaluation time increases as
the number of atoms or the number of free variables in the query grow. Table 5 shows
the size of the CNF-formulas produced by Reduction 4 (where Reduction 3 is used
inside Reduction 4). No optimization was implemented in this set of experiments.

A SAT-based System for Consistent Query Answering 15

Table 4: The schema and the constraints of the real-world database.
Relation # Tuples
NY Insp (LicenseNo, Risk, InspDate, InspType, Result) 229K
NY Rest (Name, LicenseNo, Cuisine, Address, Zip) 26.5K
CH Insp (LicenseNo, Risk, InspDate, InspType, Result) 167K
CH Rest (Name, LicenseNo, Facility, Address, Zip) 31.1K

Constraint Type Violations
NY Insp (LicenseNo, InspDate, InspType→ Risk, Result) Key 25.6%
NY Rest (LicenseNo→ Name, Cuisine, Address, Zip) Key 0%
CH Insp (LicenseNo, InspDate, InspType→ Risk, Result) Key 0.07%
CH Rest (LicenseNo→ Name, Cuisine, Address, Zip) Key 5.86%
CH Rest (Name→ Zip) FD 9.73%

Fig. 6: Evaluation time of CAvSAT on real data.

Q1 Q2 Q3 Q4 Q5 Q6

0

20

40

Unions of conjunctive queries

E
va

l.
tim

e
(s

ec
) Encoding time

Solving time

Table 5: Size of the CNF-formula.

Query Variables Clauses

Q1 455.1K 793.7K
Q2 456.5K 794K
Q3 455.1K 671.5K
Q4 476K 861.5K
Q5 486.7K 836.2K
Q6 455.5K 1.12M

7 Concluding Remarks
We designed and implemented CAvSAT, the first SAT-based system for consistent query
answering. Our preliminary stand-alone evaluation shows that a SAT-based approach
can give rise to a scalable system for consistent query answering. We note that, on
queries with first-order rewritable consistent answers, CAvSAT had comparable or even
better performance to evaluating the first-order rewritings using a database engine. This
finding suggests a potential difference between theory and practice, since the study of
first-order rewritability of the consistent answers was motivated from having an efficient
evaluation of consistent answers using the database engine alone.

The next step in this investigation is to carry out an extensive comparative evaluation
of CAvSAT with other systems for consistent query answering and, in particular, with
systems that use reduction-based methods [18,23].
Acknowledgments Dixit is supported by the Center for Research in Open Source Soft-
ware (CROSS) at UC Santa Cruz. Kolaitis is supported by NSF Grant IIS:1814152.

16 A. Dixit and Ph. Kolaitis

References
1. Food Inspections, City of Chicago (Aug 2011), https://data.cityofchicago.

org/Health-Human-Services/Food-Inspections/4ijn-s7e5
2. New York City Restaurant Inspection Results, Department of Health and Mental

Hygiene (DOHMH) (Aug 2014), https://data.cityofnewyork.us/Health/
DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn8j

3. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases.
In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems. pp. 68–79. PODS ’99, ACM, New York, NY, USA (1999).
https://doi.org/10.1145/303976.303983, http://doi.acm.org/10.1145/303976.
303983

4. Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent
query answering in inconsistent databases. TPLP 3(4-5), 393–424 (2003).
https://doi.org/10.1017/S1471068403001832, https://doi.org/10.1017/
S1471068403001832

5. Barceló, P., Bertossi, L.E.: Logic programs for querying inconsistent databases. In: Practical
Aspects of Declarative Languages, 5th International Symposium, PADL 2003, New Orleans,
LA, USA, January 13-14, 2003, Proceedings. pp. 208–222 (2003). https://doi.org/10.1007/3-
540-36388-2 15, https://doi.org/10.1007/3-540-36388-2_15

6. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthe-
sis Lectures on Data Management, Morgan & Claypool Publishers (2011).
https://doi.org/10.2200/S00379ED1V01Y201108DTM020, https://doi.org/10.
2200/S00379ED1V01Y201108DTM020

7. ten Cate, B., Fontaine, G., Kolaitis, P.G.: On the data complexity of consistent query answer-
ing. In: Int. Conf. on Database Theory (ICDT). pp. 22–33 (2012)

8. Chomicki, J., Marcinkowski, J., Staworko, S.: Computing consistent query answers us-
ing conflict hypergraphs. In: Proceedings of the Thirteenth ACM International Confer-
ence on Information and Knowledge Management. pp. 417–426. CIKM ’04, ACM, New
York, NY, USA (2004). https://doi.org/10.1145/1031171.1031254, http://doi.acm.
org/10.1145/1031171.1031254

9. Chomicki, J., Marcinkowski, J., Staworko, S.: Hippo: A system for computing consistent
answers to a class of sql queries. In: Advances in Database Technology - EDBT 2004. pp.
841–844. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

10. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances.
In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP 2011. pp. 225–239.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

11. Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient management of inconsis-
tent databases. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data. pp. 155–166. SIGMOD ’05, ACM, New York, NY, USA
(2005). https://doi.org/10.1145/1066157.1066176, http://doi.acm.org/10.1145/
1066157.1066176

12. Fuxman, A., Fuxman, D., Miller, R.J.: ConQuer: A system for efficient querying over incon-
sistent databases. In: Proceedings of the 31st International Conference on Very Large Data
Bases. pp. 1354–1357. VLDB ’05, VLDB Endowment (2005), http://dl.acm.org/
citation.cfm?id=1083592.1083774

13. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J. Comput.
Syst. Sci. 73(4), 610–635 (2007)

14. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing
inconsistent databases. IEEE Trans. on Knowl. and Data Eng. 15(6), 1389–1408 (Nov

https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5
https://data.cityofnewyork.us/Health/DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn8j
https://data.cityofnewyork.us/Health/DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn8j
https://doi.org/10.1145/303976.303983
http://doi.acm.org/10.1145/303976.303983
http://doi.acm.org/10.1145/303976.303983
https://doi.org/10.1017/S1471068403001832
https://doi.org/10.1017/S1471068403001832
https://doi.org/10.1017/S1471068403001832
https://doi.org/10.1007/3-540-36388-2_15
https://doi.org/10.1007/3-540-36388-2_15
https://doi.org/10.1007/3-540-36388-2_15
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
https://doi.org/10.1145/1031171.1031254
http://doi.acm.org/10.1145/1031171.1031254
http://doi.acm.org/10.1145/1031171.1031254
https://doi.org/10.1145/1066157.1066176
http://doi.acm.org/10.1145/1066157.1066176
http://doi.acm.org/10.1145/1066157.1066176
http://dl.acm.org/citation.cfm?id=1083592.1083774
http://dl.acm.org/citation.cfm?id=1083592.1083774

A SAT-based System for Consistent Query Answering 17

2003). https://doi.org/10.1109/TKDE.2003.1245280, https://doi.org/10.1109/
TKDE.2003.1245280

15. Grieco, L., Lembo, D., Rosati, R., Ruzzi, M.: Consistent query answering under key and
exclusion dependencies: Algorithms and experiments. In: Proceedings of the 14th ACM In-
ternational Conference on Information and Knowledge Management. pp. 792–799. CIKM
’05, ACM, New York, NY, USA (2005). https://doi.org/10.1145/1099554.1099742, http:
//doi.acm.org/10.1145/1099554.1099742

16. Ilyas, I.F., Chu, X.: Trends in cleaning relational data: Consistency and deduplication. Foun-
dations and Trends in Databases 5(4), 281–393 (2015). https://doi.org/10.1561/1900000045,
https://doi.org/10.1561/1900000045

17. Kolaitis, P.G., Pema, E.: A dichotomy in the complexity of consistent query
answering for queries with two atoms. Inf. Process. Lett. 112(3), 77–85 (Jan
2012). https://doi.org/10.1016/j.ipl.2011.10.018, http://dx.doi.org/10.1016/j.
ipl.2011.10.018

18. Kolaitis, P.G., Pema, E., Tan, W.: Efficient querying of inconsistent
databases with binary integer programming. PVLDB 6(6), 397–408 (2013).
https://doi.org/10.14778/2536336.2536341, http://www.vldb.org/pvldb/vol6/
p397-tan.pdf

19. Koutris, P., Wijsen, J.: The data complexity of consistent query answering for self-join-
free conjunctive queries under primary key constraints. In: Proceedings of the 34th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. pp. 17–29.
PODS ’15, ACM, New York, NY, USA (2015). https://doi.org/10.1145/2745754.2745769,
http://doi.acm.org/10.1145/2745754.2745769

20. Koutris, P., Wijsen, J.: Consistent query answering for primary keys. SIGMOD Rec. 45(1),
15–22 (Jun 2016). https://doi.org/10.1145/2949741.2949746, http://doi.acm.org/
10.1145/2949741.2949746

21. Koutris, P., Wijsen, J.: Consistent query answering for self-join-free conjunctive queries
under primary key constraints. ACM Trans. Database Syst. 42(2), 9:1–9:45 (Jun 2017).
https://doi.org/10.1145/3068334, http://doi.acm.org/10.1145/3068334

22. Lembo, D., Rosati, R., Ruzzi, M.: On the first-order reducibility of unions of conjunc-
tive queries over inconsistent databases. In: Proceedings of the 2006 International Confer-
ence on Current Trends in Database Technology. pp. 358–374. EDBT’06, Springer-Verlag,
Berlin, Heidelberg (2006). https://doi.org/10.1007/11896548 28, http://dx.doi.org/
10.1007/11896548_28

23. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from different
perspectives: Theory and practice. CoRR abs/1107.4570 (2011), http://arxiv.org/
abs/1107.4570

24. Marileo, M.C., Bertossi, L.E.: The consistency extractor system: Answer set pro-
grams for consistent query answering in databases. Data Knowl. Eng. 69(6), 545–572
(2010). https://doi.org/10.1016/j.datak.2010.01.005, https://doi.org/10.1016/j.
datak.2010.01.005

25. Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: Holoclean: Holistic data repairs with
probabilistic inference. Proc. VLDB Endow. 10(11), 1190–1201 (Aug 2017).
https://doi.org/10.14778/3137628.3137631, https://doi.org/10.14778/
3137628.3137631

26. Wijsen, J.: Consistent query answering under primary keys: A characterization of tractable
queries. In: Proceedings of the 12th International Conference on Database Theory. pp. 42–52.
ICDT ’09, ACM, New York, NY, USA (2009). https://doi.org/10.1145/1514894.1514900,
http://doi.acm.org/10.1145/1514894.1514900

https://doi.org/10.1109/TKDE.2003.1245280
https://doi.org/10.1109/TKDE.2003.1245280
https://doi.org/10.1109/TKDE.2003.1245280
https://doi.org/10.1145/1099554.1099742
http://doi.acm.org/10.1145/1099554.1099742
http://doi.acm.org/10.1145/1099554.1099742
https://doi.org/10.1561/1900000045
https://doi.org/10.1561/1900000045
https://doi.org/10.1016/j.ipl.2011.10.018
http://dx.doi.org/10.1016/j.ipl.2011.10.018
http://dx.doi.org/10.1016/j.ipl.2011.10.018
https://doi.org/10.14778/2536336.2536341
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
https://doi.org/10.1145/2745754.2745769
http://doi.acm.org/10.1145/2745754.2745769
https://doi.org/10.1145/2949741.2949746
http://doi.acm.org/10.1145/2949741.2949746
http://doi.acm.org/10.1145/2949741.2949746
https://doi.org/10.1145/3068334
http://doi.acm.org/10.1145/3068334
https://doi.org/10.1007/11896548_28
http://dx.doi.org/10.1007/11896548_28
http://dx.doi.org/10.1007/11896548_28
http://arxiv.org/abs/1107.4570
http://arxiv.org/abs/1107.4570
https://doi.org/10.1016/j.datak.2010.01.005
https://doi.org/10.1016/j.datak.2010.01.005
https://doi.org/10.1016/j.datak.2010.01.005
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1145/1514894.1514900
http://doi.acm.org/10.1145/1514894.1514900

18 A. Dixit and Ph. Kolaitis

27. Wijsen, J.: A remark on the complexity of consistent conjunctive query answer-
ing under primary key violations. Information Processing Letters 110(21), 950
– 955 (2010). https://doi.org/https://doi.org/10.1016/j.ipl.2010.07.021, http://www.
sciencedirect.com/science/article/pii/S0020019010002395

28. Wijsen, J.: Certain conjunctive query answering in first-order logic. ACM Trans. Database
Syst. 37(2), 9:1–9:35 (Jun 2012). https://doi.org/10.1145/2188349.2188351, http://
doi.acm.org/10.1145/2188349.2188351

29. Wijsen, J.: Charting the tractability frontier of certain conjunctive query answering.
In: Proceedings of the 32Nd ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems. pp. 189–200. PODS ’13, ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2463664.2463666, http://doi.acm.org/10.1145/
2463664.2463666

https://doi.org/https://doi.org/10.1016/j.ipl.2010.07.021
http://www.sciencedirect.com/science/article/pii/S0020019010002395
http://www.sciencedirect.com/science/article/pii/S0020019010002395
https://doi.org/10.1145/2188349.2188351
http://doi.acm.org/10.1145/2188349.2188351
http://doi.acm.org/10.1145/2188349.2188351
https://doi.org/10.1145/2463664.2463666
http://doi.acm.org/10.1145/2463664.2463666
http://doi.acm.org/10.1145/2463664.2463666

A SAT-based System for Consistent Query Answering 19

Appendix
Proof of Proposition 1

Proposition 1. Let φ be the CNF-formula constructed using Reduction 1.

– The size of φ is polynomial in the size of I .
– The formula φ is satisfiable if and only if CERTAINTY(q, Σ) is false on I .

Proof. Let n be the number of facts in I . There are exactly n boolean variables used in
φ. Clearly, |G| ≤ n, therefore the number of α-clauses is bounded above by n. Similarly,
for each Gj ∈ G, we have that |Gj | ≤ n. Hence, the length of each α-clause is also at
most n. If d is the number of atoms in q, then we have that |W| ≤ nd; moreover, for
every Wj ∈ W , we have that |Wj | ≤ d. Hence, the number of β-clauses in φ is at most
nd, and the length of each β-clause is bounded above by d. Since the query q is not part
of the input to the problem CERTAINTY(q), we have that d is a fixed constant.

To prove the second part of the proposition, assume first that CERTAINTY(q) is false
on I . Hence, there exists a repair R of I that falsifies q. Construct an assignment â to
the variables in φ by setting â(xi) = 1 if and only if fi ∈ R. Since exactly one fact
from each key-equal group of I is present inR, exactly one variable from each α-clause
is set to 1 in â. Also, since R 6|= q, no minimal witness to q is in R. Therefore, at least
one variable from each β-clause is set to 0 in â. Hence, â satisfies φ. For the other
direction, let â be a satisfying assignment to φ. Since no two α-clauses share a variable,
we can construct a set X of variables by arbitrarily choosing exactly one xi from each
α-clause, such that â(xi) = 1. Construct a set R of facts of I , such that fi ∈ R if and
only if xi ∈ X . It is easy to see that R contains exactly one fact from each key-equal
group of I , and no minimal witness to q on I is present in R. Hence, R is a repair of I
that falsifies q.

Proof of Proposition 2

Proposition 2. Let φ be the CNF-formula constructed using Reduction 2.

– The size of φ is polynomial in the size I .
– There exists a satisfying assignment to φ in which a variable pl is set to 1 if and

only if al /∈ CONS(q, I).

Proof. Let n be the number of facts in I . Let m be the arity of the query q and let d
and the number of atoms of q. Since an answer to q is a set of m facts, we have that
|A| ≤ nm. For each l, the number of witnesses in W l is bounded by nd. Therefore,
there are at most nm+d β-clauses in φ, each of length at most d. Since the query q is not
part of the input to CONS(q), the quantities m and d can be treated are fixed constants.
It follows directly from Proposition 1 that both the number of α-clauses and the length
of each α-clause in φ are bounded above by n.

To prove the second part of the proposition, assume first that al /∈ CONS(q). Hence,
there exists a repair R of I , such that no minimal witness to q[al] is in R. Construct an
assignment â to the variables in φ as follows. Set â(xi) = 1 if and only if fi ∈ R. Set
â(pl) = 1, and set â(pj) = 0 for all j 6= l. Since exactly one fact from each key-equal

20 A. Dixit and Ph. Kolaitis

group of I is in R, the assignment sets to 1 exactly one variable from each α-clause.
Since no minimal witness to q[al] is in R, at least one variable from each βl-clause is
set to 0 in â, thus satisfying all βl-clauses, even when pl is set to 1. All other β-clauses
are satisfied trivially because of the assignment â(pj) = 0, for all j 6= l. In the other
direction, let â be the satisfying assignment to φ, such that â(pl) = 1. Since no two
α-clauses share a variable, we can construct a setX of variables by arbitrarily choosing
exactly one xi from each α-clause, such that â(xi) = 1. Construct a set R of facts of
I , such that fi ∈ R if and only if xi ∈ X . It is easy to see that exactly one fact from
each key-equal group of I is present in R. Since â(pl) = 1 and since all βl-clauses
are satisfied by â, at least one fact from each minimal witness to q[al] is missing in R.
Hence, R must be a repair of I such that R 6|= q[al].

Proof of Proposition 3

Proposition 3. Let φ′ be the boolean formula constructed using Reduction 3.

– The formula φ′ can be transformed to an equivalent CNF-formula φ whose size is
polynomial in the size of I .

– There exists a satisfying assignment to φ′ in which a variable pl is set to 1 if and
only if al 6∈ CONS(Q, I,Σ).

Proof. Let n be the number of facts of I . Let d1 be the smallest number such that there
exists no denial constraint inΣ whose number of database atoms is bigger than d1. Also,
let d2 be the smallest number such that there exists no conjunctive query in Q whose
number of database atoms is bigger than d2. Since Σ and Q are not part of the input to
CONS(Q), the quantities d1 and d2 are fixed constants. We also have that |V| ≤ nd1 ,
|N i| ≤ nd1 for 1 ≤ i ≤ n, |A| ≤ nd2 , and |W l| ≤ nd2 for 1 ≤ l ≤ |A|. The number of
x-, y-, and p-variables in φ′ is therefore bounded by n, nd1+1, and nd2 , respectively. The
formula φ′ contains as many α-clauses as |V|, and none of the α-clause’s length exceeds
n. Similarly, there are at most nd2 β-clauses, and none of their lengths exceeds d2 + 1.
The number of γ-clauses is precisely n, and each γ-clause is at most nd1+1 + 1 literals
long. There are as many θ-expressions as there are y-variables. Every θ-expression is of
the form y ↔ (x1 ∧ ... ∧ xd), where d is a constant obtained from the number of facts
in the corresponding near-violation. Each θ-expression can be equivalently written in a
constant number of CNF-clauses as ((¬y∨x1)∧ ...∧(¬y∨xd))∧(¬x1∨ ...∨¬xd∨y),
in which the length each clause is constant. This makes it possible to transform φ′ into
an equivalent CNF-formula φ, whose size is polynomial in the size of I .

To prove the second part of the proposition, assume first that â is a satisfying as-
signment to the variables in φ′ such that â(pl) = 1. Construct a database instance R
such that fi ∈ R if and only if â(xi) = 1. The α-clauses make sure that no minimal
violation to Σ is present in R, meaning that R is a consistent subset of I . The γ-clauses
and the θ-expressions encode the condition that, for every fact f ∈ I , either f ∈ R or
at least one near-violation w.r.t. Σ and f is in R. This condition makes sure that R is
indeed a repair of I . Since â(pl) = 1, the βl-clauses ensure that at least one fact from
each minimal witness to Q[al] is missing from R, meaning that al 6∈ Q(R).

In the other direction, given a repair R that falsifies Q[al], build an assignment â
as follows. Set â(xi) = 1 if and only if fi ∈ r. Set â(pl) = 1, and set â(pl′) = 0 for

A SAT-based System for Consistent Query Answering 21

all l′ 6= l. Since R |= Σ, no minimal violation to Σ is a subset of R, meaning that â
satisfies all α-clauses in φ′. Also, for every fact f ∈ I , it must be the case that either
f ∈ R or at least one near-violation w.r.t. Σ and f is in R (otherwise R would not have
been a repair of I). Therefore, all γ-clauses and θ-expressions are also satisfied by the
assignment â. Since R 6|= Q[al], at least one fact from each minimal witness to Q[al]
must be missing from R, meaning that there is at least one variable xi in each βl-clause
such that â(xi) = 0. Hence, all βl-clauses are satisfied by â, even when â(pl) = 1. All
other β-clauses are satisfied trivially, since â(pl′) = 0, for all l′ 6= l.

Proof of Proposition 4

We first state and prove Lemma 1, that reasons about the satisfying assignments to
the WCNF-formula ψ, constructed using Reduction 4. This lemma is used in proving
Proposition 4.

Lemma 1. Let φ′ be the CNF-formula constructed in Step 1 of Reduction 4, and ψi be
the WEIGHTED MAXSAT instance at the beginning of ith iteration of Algorithm 1. For
all i, every optimal solution of ψi satisfies all clauses in φ′.

Proof. We prove Lemma 1 by induction on i. The CNF-formula φ′ constructed in Step 1
of Reduction 4 can always be satisfied by setting all x-variables to 1, and all p-variables
to 0. The clauses in φ being hard, ε being soft ensures that every optimal solution of
ψ0 satisfies all clauses in φ. Assume that for some i ≥ 0, every optimal solution to
ψi satisfies all clauses in φ. At the end of iteration i + 1, if moreAnswers is true, the
formula ψi+1 is constructed from ψi by adding to ψi the unit hard clauses (¬pl). This
forces every optimal solution of ψi+1 to satisfy all of these added clauses. Since no pl
variable occurs positively in φ, we have that, for all i, every optimal solution to ψi+1

still satisfies φ.

Proposition 4. Algorithm 1 returns an array ANS such that al ∈ CONS(Q, I) if and
only if the entry ANS[l] is true.

Proof. In one direction, for every l, if al ∈ CONS(Q, I), then, by Proposition 3, the
variable pl takes value 0 in every assignment that satisfies φ. By Lemma 1, for every i,
the optimal solution of ψi also assigns value 0 to the variable pl. As a result, Line 12
never gets executed, and the entry ANS[l] remains true.

For the other direction, we first prove that Algorithm 1 always terminates. Observe
that at the end of the ith iteration, for every l, a unit clause (pl) is present in ψi if and
only if ANS[l] is true. Hence, at the end of ith iteration, if moreAnswers is true, then
the optimal solution to ψi must have assigned value 1 to at least one variable pl such
that ANS[l] was previously true. Therefore, at the end of ith iteration, at least i entries
in ANS are false. It follows that the algorithm terminates after at most |A| iterations.

Since no clause in φ contains a positive literal pl, the addition of a unit hard clause
(¬pl) to ψi does not suppress any satisfying assignments to φ while finding the optimal
solution to ψi+1. Therefore, in every iteration, the optimal solution of ψ guarantees to
satisfy the maximum number of pl variables for which the unit clause (pl) is still in ψ.
As a result, Algorithm 1 does not terminate until it marks the entries ANS[l] false, for

22 A. Dixit and Ph. Kolaitis

all l, for which there exists a satisfying assignment to φ in which pl gets assigned to 1.
In other words, by Proposition 3, for every inconsistent answer al, the entry ANS gets
marked as false.

Fig. 7: Queries used in the experiments with synthetic data.

FO-rewritable consistent answers:
q1(z) := ∃x, y, v, w (R1(x, y, z) ∧R2(y, v, w))
q2(z, w) := ∃x, y, v (R1(x, y, z) ∧R2(y, v, w))
q3(z) := ∃x, y, v, u, d (R1(x, y, z) ∧R3(y, v) ∧R2(v, u, d))
q4(z, d) := ∃x, y, v, u (R1(x, y, z) ∧R3(y, v) ∧R2(v, u, d))
q5(z) := ∃x, y, v, w (R1(x, y, z) ∧R4(y, v, w))
q6(z) := ∃x, y, x′, w, d (R1(x, y, z) ∧R2(x

′, y, w) ∧R5(x, y, d))
q7(z) := ∃x, y, w, d (R1(x, y, z) ∧R2(y, x, w) ∧R5(x, y, d))

In P, but not FO-rewritable, consistent answers:
q8(z, w) := ∃x, y (R1(x, y, z) ∧R2(y, x, w))
q9(z) := ∃x, y, w, u, d (R1(x, y, z) ∧R2(y, x, w) ∧R4(y, u, d))
q10(z, w, d) := ∃x, y, u (R1(x, y, z) ∧R2(y, x, w) ∧R4(y, u, d))
q11(z) := ∃x, y, w (R1(x, y, z) ∧R2(y, x, w))
q12(v, d) := ∃x, y, z, u (R3(x, y) ∧R6(y, z) ∧R1(z, x, d) ∧R4(x, u, v))
q13(v) := ∃x, y, z, u (R3(x, y) ∧R6(y, z) ∧R7(z, x) ∧R4(x, u, v))
q14(d) := ∃x, y, z, u (R3(x, y) ∧R6(y, z) ∧R1(z, x, d) ∧R7(x, u))

coNP-complete consistent answers:
q15(z) := ∃x, y, x′, w (R1(x, y, z) ∧R2(x

′, y, w))
q16(z, w) := ∃x, y, x′ (R1(x, y, z) ∧R2(x

′, y, w))
q17(z) := ∃x, y, x′, w, u, d (R1(x, y, z) ∧R2(x

′, y, w) ∧R4(y, u, d))
q18(z, w) := ∃x, y, x′, u, d (R1(x, y, z) ∧R2(x

′, y, w) ∧R4(y, u, d))
q19(z, w, d) := ∃x, y, x′, u (R1(x, y, z) ∧R2(x

′, y, w) ∧R4(y, u, d))
q20(z) := ∃x, y, x′, w, u, d, v (R1(x, y, z) ∧R2(x

′, y, w) ∧R4(y, u, d) ∧R3(u, v))
q21(z, w) := ∃x, y, x′, u, d, v (R1(x, y, z) ∧R2(x

′, y, w) ∧R4(y, u, d) ∧R3(u, v))

A SAT-based System for Consistent Query Answering 23

Fig. 8: The KW-FO-rewritings of the consistent answers to queries q1 to q7.

q1(f
(1)) := ∃s1 ∈ R1(∀r1 ∈ R1(∃s2 ∈ R2(∀r2 ∈ R2

(s1.1 6= r1.1 ∨ s2.1 6= r2.1 ∨ (r1.2 = r2.1 ∧ r1.3 = f.1)))))

q2(f
(2)) := ∃s1 ∈ R1(∀r1 ∈ R1(∃s2 ∈ R2(∀r2 ∈ R2

(s1.1 6= r1.1 ∨ s2.1 6= r2.1 ∨ (r2.3 = f.1 ∧ r1.2 = r2.1 ∧ r1.3 = f.2)))))

q3(f
(1)) := ∃s1 ∈ R1(∀r1 ∈ R1(∃s2 ∈ R3(∀r2 ∈ R3(∃s3 ∈ R2(∀r3 ∈ R2

((s1.1 6= r1.1 ∨ s2.1 6= r2.1 ∨ s3.1 6= r3.1 ∨ (r2.2 = r3.1 ∧ r1.2 = r2.1 ∧ r1.3 = f.1))))))))

q4(f
(2)) := ∃s1 ∈ R1(∀r1 ∈ R1(∃s2 ∈ R3(∀r2 ∈ R3(∃s3 ∈ R2(∀r3 ∈ R2

(s1.1 6= r1.1 ∨ s2.1 6= r2.1 ∨ s3.1 6= r3.1

∨ (r3.3 = f.1 ∧ r2.2 = r3.1 ∧ r1.2 = r2.1 ∧ r1.3 = f.2)))))))

q5(f
(1)) := ∃s1 ∈ R1(∀r1 ∈ R1(∃s2 ∈ R4(∀r2 ∈ R4

(s1.1 6= r1.1 ∨ s2.1 6= r2.1 ∨ s2.2 6= r2.2 ∨ (r1.2 = r2.1 ∧ r1.3 = f.1)))))

q6(f
(1)) := ∃s1 ∈ R2(∀r1 ∈ R2(∃s2 ∈ R5(∀r2 ∈ R5(∃s3 ∈ R1(∀r3 ∈ R1

(s1.1 6= r1.1 ∨ s2.1 6= r2.1 ∨ s3.1 6= r3.1

∨ (r2.1 = r3.1 ∧ r1.2 = r2.2 ∧ r1.2 = r3.2 ∧ r3.3 = f.1)))))))

q7(f
(1)) := ∃s1 ∈ R2(∀r1 ∈ R2(∃s2 ∈ R5(∀r2 ∈ R5(∃s3 ∈ R1(∀r3 ∈ R1

(s1.1 6= r1.1 ∨ s2.1 6= r2.1 ∨ s3.1 6= r3.1

∨ (r1.2 = r2.1 ∧ r1.2 = r3.1 ∧ r1.1 = r2.2 ∧ r1.1 = r3.2 ∧ r3.3 = f.1)))))))

All variables range over tuples in relations; f (i) denotes a tuple with i elements, i = 1, 2.

24 A. Dixit and Ph. Kolaitis

Fig. 9: The SQL translations of the ConQuer-FO-rewritings of the consistent answers
to queries q1 to q4.

q1(R1 3) :
Candidates as (
select distinct R1.3 as R1 3,R1.1 as R1 1
from R1, R2
where (R1.2 = R2.1))

Filter as (select R1 1
from Candidates C join R1 on C.R1 1 =
R1.1
left outer join R2 on R1.2 = R2.1
where (R2.1 is null)
union all select C.R1 1 from Candidates C
group by C.R1 1
having count(*) > 1)

select R1 3
from Candidates C
where not exists
(select * from Filter F where C.R1 1 =
F.R1 1)

q3(R1 3) :
Candidates as (
select distinct R1.3 as R1 3, R1.1 as R1 1
from R1, R3, R2
where (R3.2 = R2.1) and (R1.2 = R3.1))

Filter as (
select R1 1
from Candidates C join R1 on C.R1 1 =
R1.1
left outer join R3 on R1.2 = R3.1 left outer
join R2 on R3.2 = R2.1
where (R3.1 is null OR R2.1 is null)
union all select C.R1 1 from Candidates C
group by C.R1 1
having count(*) > 1)

select R1 3
from Candidates C
where not exists
(select * from Filter F where C.R1 1 =
F.R1 1)

q2(R1 3, R2 3) :
Candidates as (
select distinct R1.3 as R1 3, R2.3 as R2 3,
R1.1 as R1 1 from R1, R2
where (R1.2 = R2.1))

Filter as (select R1 1
from Candidates C join R1 on C.R1 1 =
R1.1
left outer join R2 on R1.2 = R2.1
where (R2.1 is null)
union all select C.R1 1 from Candidates C
group by C.R1 1
having count(*) > 1)

select R1 3, R2 3
from Candidates C
where not exists
(select * from Filter F where C.R1 1 =
F.R1 1)

q4(R1 3, R2 3) :
Candidates as (
select distinct R1.3 as R1 3, R2.3 as
R2 3,R1.1 as R1 1
from R1, R3, R2
where (R3.2 = R2.1) and (R1.2 = R3.1))

Filter as (select R1 1
from Candidates C join R1 on C.R1 1 =
R1.1
left outer join R3 on R1.2 = R3.1 left outer
join R2 on R3.2 = R2.1
where (R3.1 is null or R2.1 is null)
union all select C.R1 1 from candidates C
group by C.R1 1
having count(*) > 1)

select R1 3, R2 3
from Candidates C
where not exists
(select * from Filter F where C.R1 1 =
F.R1 1)

A SAT-based System for Consistent Query Answering 25

Fig. 10: Queries used on the real-world database.

Q1() := ∃x, y, z, w, v, y′, z′, w′, v′ (NY Rest(x, y, z, w, v) ∧ CH Rest(x, y′, z′, w′, v′))

Q2(x) := ∃y, z, w, v, y′, z′, w′, v′ (NY Rest(x, y, z, w, v) ∧ CH Rest(x, y′, z′, w′, v′))

Q3(x) := ∃y, z, w, v, y′, z′, w′, v′, q, r, s, t, q′, s′, t′ (NY Rest(x, y, z, w, v) ∧ CH Rest(x, y′, z′, w′, v′)

∧ NY Insp(y, q, r, s, t) ∧ CH Insp(y′, q′, r, s′, t′))

Q4(x, y) := ∃z, w, v, q, r, s (CH Rest(x, y, z, w, v) ∧ CH Insp(y, q, r, s, ‘Pass’))

Q5(x) := ∃y, z, w, v, q, r, s (CH Rest(x, y, z, w, v) ∧ CH Insp(y, q, r, s, ‘Fail’)) ∪
∃y, z, w, v, q, r, s (NY Rest(x, y, z, w, v) ∧ NY Insp(y, q, r, s, ‘Fail’))

Q6(x, v) := ∃y, z, w, y′, z′, w′, v′, q, r, s (CH Rest(x, y, z, w, v) ∧ NY Rest(x, y′, z′, w′, v′)

∧ NY Insp(y′, ‘Not Critical’, q, r, s))

	A SAT-based System for Consistent Query Answering

