Skip to main content

Anti-noise Quantum Network Coding Protocol Based on Bell States and Butterfly Network Model

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11634))

Included in the following conference series:

  • 1345 Accesses

Abstract

How to establish a secure and efficient quantum network coding algorithm is one of important research topics of quantum secure communications. Based on the butterfly network model and the characteristics of easy preparation of Bell states, a novel anti-noise quantum network coding protocol is proposed in this paper. The new protocol encodes and transmits classical information by virtue of Bell states. It can guarantee the transparency of the intermediate nodes during information, so that the eavesdropper Eve disables to get any information even if he intercepts the transmitted quantum states. In view of the inevitability of quantum noise in quantum channel used, this paper analyzes the influence of four kinds of noises on the new protocol in detail further, and verifies the efficiency of the protocol under different noise by mathematical calculation and analysis. In addition, based on the detailed mathematical analysis, the protocol has functioned well not only on improving the efficiency of information transmission, throughput and link utilization in the quantum network, but also on enhancing reliability and anti-eavesdropping attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, S.L., Pan, J.W.: I have a quantum dream in mind. The People’s Daily, 04 June 2014

    Google Scholar 

  2. Qu, Z.G., Zhu, T.C., Wang, J.W., Wang, X.J.: A novel quantum stegonagraphy based on brown states. Comput. Mater. Continua 56(1), 47–59 (2018)

    Google Scholar 

  3. Liu, W.J., Chen, Z.Y., Liu, J.S., Su, Z.F., Chi, L.H.: Full-blind delegating private quantum computation. Comput. Mater. Continua 56(2), 211–223 (2018)

    Article  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, vol. 175, pp. 175–179 (1984)

    Google Scholar 

  6. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 538 (2007)

    Article  MathSciNet  Google Scholar 

  7. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 610–621. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-3_52

    Chapter  Google Scholar 

  8. Shang, T., Zhao, X.J., Wang, C., et al.: Controlled quantum network coding scheme based on single controller. Acta Electronica Sinica 42(10), 1913–1917 (2014)

    Google Scholar 

  9. Bennett, C.H., Brassard, G., Crepeau, C.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  Google Scholar 

  10. Moroder, T., Kleinmann, M., Schindler, P., Monz, T., Gühne, O., Blatt, R.: Certifying systematic errors in quantum experiments. Phys. Rev. Lett. 110(18), 180401 (2012)

    Article  Google Scholar 

  11. Peng, C.Z., Yang, T., Bao, X.H., et al.: Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94(15), 150501 (2005)

    Article  Google Scholar 

  12. Yin, J., Ren, J.G., Lu, H., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185–188 (2013)

    Article  Google Scholar 

  13. Akter, L., Natarajan, B.: QoS constrained resource allocation to secondary users in cognitive radio networks. Comput. Commun. 32(18), 1923–1930 (2009)

    Article  Google Scholar 

  14. Ma, S.Y., Chen, X.B., Luo, M.X.: Probabilistic quantum network coding of M-qudit states over the butterfly network. Opt. Commun. 283(3), 497–501 (2009)

    Article  Google Scholar 

  15. Yan, S.S., Kuang, H.M., Guo, Y.: Quantum coding of butterfly network based on controlled quantum teleportation. National Sci. Paper Online Excellent Paper 5(20), 1996–2001 (2012)

    Google Scholar 

  16. Nishimura, H.: Quantum network coding — How can network coding be applied to quantum information. In: International Symposium on Network Coding, pp. 1–5. IEEE (2013)

    Google Scholar 

  17. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(81), 1334–1342 (2010)

    Google Scholar 

  18. Guan, X.W., Chen, X.B., Wang, L.C.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53(7), 2236–2245 (2014)

    Article  Google Scholar 

  19. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92(1), 012338 (2015)

    Google Scholar 

  20. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15(11), 4805–4818 (2016)

    Article  Google Scholar 

  21. Wang, M.M., Qu, Z.G., Wang, W.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16(5), 140 (2017). UNSP

    Article  Google Scholar 

  22. Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on joint remote preparation of multi-qubit state. Int. J. Quantum Inf. 15(02), 175–179 (2017)

    Article  MathSciNet  Google Scholar 

  23. Yu, W., Cioffi, J.M.: FDMA capacity of Gaussian multiple-access channels with ISI. In: IEEE International Conference on Communications, vol. 50, no. 1, pp. 102–111 (2002)

    Google Scholar 

  24. Iri, M.: On an extension of the maximum flow minimum cut theorem to multicommodity flows. J. Oper. Res. Soc. Japan 13, 129–135 (1971)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61373131, 61303039, 61772281, 61232016, 61501247), Natural Science Foundation of Jiangsu Province (Grant No. BK20171458), Sichuan Youth Science and Technique Foundation (No. 2017JQ0048), NUIST Research Foundation for Talented Scholars (2015r014), PAPD and CICAEET funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, Z., Zhang, Z., Cheng, Z. (2019). Anti-noise Quantum Network Coding Protocol Based on Bell States and Butterfly Network Model. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11634. Springer, Cham. https://doi.org/10.1007/978-3-030-24271-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24271-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24270-1

  • Online ISBN: 978-3-030-24271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics