Skip to main content

A Novel Noise Filter Based on Multiple Voting

  • Conference paper
  • First Online:
  • 1695 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11632))

Abstract

Label noises exist in many applications, which usually add difficulties for data analysis. A straightforward and effective method is to detect and filter out them prior to training. Ensemble learning based filter has shown promising performances. We define an important parameter to improve the performance of the algorithm. The proposed method is cost sensitive which integrates the mislabeled training dataset and noise costs for learning. Finally, the experimental results on the benchmark datasets show the superiority of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  MATH  Google Scholar 

  2. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  3. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. J. Artif. Intell. Res. 11, 131–167 (1999)

    Article  MATH  Google Scholar 

  4. Gamberger, D., Lavrač, N., Džeroski, S.: Noise elimination in inductive concept learning: a case study in medical diagnosis. In: Arikawa, S., Sharma, Arun K. (eds.) ALT 1996. LNCS, vol. 1160, pp. 199–212. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61863-5_47

    Chapter  MATH  Google Scholar 

  5. Gamberger, D., Lavrac, N., Dzeroski, S.: Noise detection and elimination in data preprocessing: experiments in medical domains. Appl. Artif. Intell. 14(2), 205–223 (2000)

    Article  Google Scholar 

  6. Rico-Juan, J.R., Inesta, J.M.: Adaptive training set reduction for nearest neighbor classification. Neurocomputing 138, 316–324 (2014)

    Article  Google Scholar 

  7. Calvo-Zaragoza, J., Valero-Mas, J.J., Rico-Juan, J.R.: Improving kNN multi-label classification in Prototype Selection scenarios using class proposals. Pattern Recogn. 48(5), 1608–1622 (2015)

    Article  Google Scholar 

  8. Kanj, S., Abdallah, F., Denoeux, T., Tout, K.: Editing training data for multi-label classification with the k-nearest neighbor rule. Pattern Anal. Appl. 19(1), 145–161 (2015)

    Article  MathSciNet  Google Scholar 

  9. Roli, F.: Multiple classifier systems. In: Li, S.Z., Jain, A.K. (eds.) Encyclopedia of Biometrics. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7488-4

    Chapter  Google Scholar 

  10. Wozniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  11. Kuncheva, L.I., Rodriguez, J.J.: A weighted voting framework for classifiers ensembles. Knowl. Inf. Syst. 38(2), 259–275 (2014)

    Article  Google Scholar 

  12. Sun, S.: Local within-class accuracies for weighting individual outputs in multiple classifier systems. Pattern Recogn. Lett. 31(2), 119–124 (2010)

    Article  Google Scholar 

  13. Saez, J.A., Galar, M., Luengo, J., Herrera, F.: Tackling the problem of classification with noisy data using multiple classifier systems: analysis of the performance and robustness. Inf. Sci. 247, 1–20 (2013)

    Article  Google Scholar 

  14. Saez, J.A., Galar, M., Luengo, J., Herrera, F.: Analyzing the presence of noise in multi-class problems: alleviating its influence with the one-vs-one decomposition. Knowl. Inf. Syst. 38(1), 179–206 (2014)

    Article  Google Scholar 

  15. Barandela, R., Valdovinos, R.M., Sanchez, J.S.: New applications of ensembles of classifiers. Pattern Anal. Appl. 6(3), 245–256 (2003)

    Article  MathSciNet  Google Scholar 

  16. Sanchez, J.S., Kuncheva, L.I.: Data reduction using classifier ensembles. In: ESANN, pp. 379–384 (2007)

    Google Scholar 

  17. Cui, J., Zhang, Y., Cai, Z., et al.: Securing display path for security-sensitive applications on mobile devices. CMC Comput. Mat. Continua 55(1), 017–035 (2018)

    Google Scholar 

  18. Liu, Y., Peng, H., Wang, J.: Verifiable diversity ranking search over encrypted outsourced data. CMC Comput. Mat. Continua 55(1), 037–057 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W., Yuan, H., Wang, L., Wan, M., Li, X., Ren, J. (2019). A Novel Noise Filter Based on Multiple Voting. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11632. Springer, Cham. https://doi.org/10.1007/978-3-030-24274-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24274-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24273-2

  • Online ISBN: 978-3-030-24274-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics