Skip to main content

Low Bit Rate 2D Seismic Image Compression with Deep Autoencoders

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Abstract

In this paper, we present a deep learning approach for very low bit rate seismic data compression. Our goal is to preserve perceptual and numerical aspects of the seismic signal whilst achieving high compression rates. The trade-off between bit rate and distortion is controlled by adjusting the loss function. 2D slices extracted from seismic 3D amplitude volumes feed the network for training two simultaneous networks, an autoencoder for latent space representation, and a probabilistic model for entropy estimation. The method benefits from the intrinsic characteristic of deep learning methods and automatically captures the most relevant features of seismic data. An approach for training different seismic surveys is also presented. To validate the method, we performed experiments in real seismic datasets, showing that the autoencoders can successfully yield compression rates up to 68:1 with an average PSNR around 40 dB.

Authors thank CAPES, FAPEMIG (grant CEX-APQ-01744-15) for the financial support, and NVIDIA for the donation of one GPU as part of the GPU Grant Program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Averbuch, A.Z., Meyer, F., Stromberg, J., Coifman, R., Vassiliou, A.: Low bit-rate efficient compression for seismic data. IEEE Trans. Image Process. 10(12), 1801–1814 (2001). https://doi.org/10.1109/83.974565

    Article  MathSciNet  MATH  Google Scholar 

  2. Villasenor, J.D., Ergas, R.A., Donoho, P.L.: Seismic data compression using high-dimensional wavelet transforms. In: Proceedings of Data Compression Conference-DCC 1996, pp. 396–405. IEEE (1996)

    Google Scholar 

  3. Zhang, Y., Da Silva, C., Kumar, R., Herrmann, F., et al.: Massive 3D seismic data compression and inversion with hierarchical tucker. In: 2017 SEG International Exposition and Annual Meeting. Society of Exploration Geophysicists (2017)

    Google Scholar 

  4. Liu, Y., Xiong, Z., Lu, L., Hohl, D.: Fast SNR and rate control for JPEG XR. In: 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–7. IEEE (2016)

    Google Scholar 

  5. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T., et al.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  6. Radosavljević, M., Xiong, Z., Lu, L., Vukobratović, D.: High bit-depth image compression with application to seismic data. In: Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2016)

    Google Scholar 

  7. Radosavljević, M., Xiong, Z., Lu, L., Hohl, D., Vukobratović, D.: HEVC-based compression of high bit-depth 3D seismic data. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 4028–4032. IEEE (2017)

    Google Scholar 

  8. Nuha, H., Mohandes, M., Liu, B.: Seismic-data compression using autoassociative neural network and restricted boltzmann machine. SEG Tech. Program Expanded Abs. 2018, 186–190 (2018)

    Google Scholar 

  9. Rippel, O., Bourdev, L.: Real-time adaptive image compression. In: International Conference on Machine Learning, pp. 2922–2930 (2017)

    Google Scholar 

  10. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Van Gool, L.: Conditional probability models for deep image compression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  11. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. CoRR abs/1703.00395 (2017)

    Google Scholar 

  12. Agustsson, E., et al.: Soft-to-hard vector quantization for end-to-end learning compressible representations. In: Advances in Neural Information Processing Systems, pp. 1141–1151 (2017)

    Google Scholar 

  13. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. In: International Conference on Learning Representations (2017). https://openreview.net/pdf?id=rJiNwv9gg

  14. Van Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning, pp. 1747–1756 (2016)

    Google Scholar 

  15. Li, M., Zuo, W., Gu, S., Zhao, D., Zhang, D.: Learning convolutional networks for content-weighted image compression. arXiv preprint arXiv:1703.10553 (2017)

  16. SEG: Open data (2019). http://wiki.seg.org/wiki/Open_data. Accessed 10 Jan 2019

  17. Sergeev, A., Balso, M.D.: Horovod: fast and easy distributed deep learning in TensorFlow. CoRR abs/1802.05799 (2018). http://arxiv.org/abs/1802.05799

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Schiavon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schiavon, A.P., Navarro, J.P., Bernardes Vieira, M., Cruz e Silva, P.M. (2019). Low Bit Rate 2D Seismic Image Compression with Deep Autoencoders. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics