Skip to main content

Evolutionary Design of Approximate Sequential Circuits at RTL Using Particle Swarm Optimization

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11620))

Included in the following conference series:

  • 1789 Accesses

Abstract

Evolutionary circuit design has the ability to explore a wide part of the design space and can lead to satisfactory circuits without human experience and knowledge. In this work, we use Multi-Objective Particle Swarm Optimization to evolve approximate sequential circuits at Register-Transfer Level. A circuit is represented by a two-dimensional array. We aim to produce functional approximate circuits having good trade-off between accuracy, delay and area. The results show the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manovit, C., Aporntewan, C., Chongstitvatana, P.: Synthesis of synchronous sequential logic circuits from partial input/output sequences. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 98–105. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057611

    Chapter  Google Scholar 

  2. Soliman, A., Abbas, H.: Synchronous sequential circuits design using evolutionary algorithms. In: Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No. 04CH37513), pp. 2013–2016. IEEE (2004)

    Google Scholar 

  3. Liang, H., Luo, W., Wang, X.: A three-step decomposition method for the evolutionary design of sequential logic circuits. Genet. Program. Evolvable Mach. 10(3), 231–262 (2009)

    Article  Google Scholar 

  4. Tao, Y., Cao, J., Zhang, Y., Lin, J., Li, M.: Using module-level evolvable hardware approach in design of sequential logic circuits. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  5. Tao, Y., Zhang, Y.: An extrinsic EHW system for the evolutionary optimization and design of sequential circuit. In: Proceedings of the 2018 Artificial Intelligence and Cloud Computing Conference, pp. 174–180. ACM (2018)

    Google Scholar 

  6. Nedjah, N., Mourelle, L.D.M.: Encodings and genetic operators for efficient evolutionary design of digital circuits. Int. J. Bio-Inspired Comput. 9, 197–210 (2017)

    Article  Google Scholar 

  7. Nebro, A., Durillo, J., Garcıa-Nieto, J., Coello, C.A.C., Luna, F., Alba, E.: SMPSO: a new PSO metaheuristic for multi-objective optimization. In: Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Multi-criteria Decision-making, pp. 66–73 (2009)

    Google Scholar 

  8. Nedjah, N., Mourelle, L.d.M.: Evolutionary multi-objective optimisation: a survey. Int. J. Bio-Inspired Comput. 7(1), 1–25 (2015)

    Google Scholar 

  9. Strickler, A., Pozo, A.: Evolving connection weights of artificial neural network using a multi-objective approach with application to class prediction. In: Nedjah, N., Lopes, H.S., Mourelle, L.M. (eds.) Designing with Computational Intelligence. SCI, vol. 664, pp. 177–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44735-3_10

    Chapter  Google Scholar 

  10. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995

    Google Scholar 

  12. Moore, J., Chapman, R.: Application of particle swarm to multiobjective optimization, Technical report (1999)

    Google Scholar 

  13. Moller, N., Granlund, T.: Improved division by invariant integers. IEEE Trans. Comput. 60(2), 165–175 (2011)

    Article  MathSciNet  Google Scholar 

  14. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \({\varepsilon }\)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35

    Chapter  MATH  Google Scholar 

  15. De Oliveira, P.J.A., Nedjah, N., Mourelle, L.D.M.: Uma Heurística Geral Para a Comparação de Sinais. In: Proceedings of XXXVIII Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE), Florianópolis, SC, Brazil (2017)

    Google Scholar 

  16. Venkatesan, R., Agarwal, A., Roy, K., Raghunathan, A.: MACACO: modeling and analysis of circuits for approximate computing. In: 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 667–673. IEEE (2011)

    Google Scholar 

  17. Hashemi, S., Reda, S.: Approximate multipliers and dividers using dynamic bit selection. In: Reda, S., Shafique, M. (eds.) Approximate Circuits, pp. 25–44. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99322-5_2

    Chapter  Google Scholar 

  18. Jiang, H., Liu, L., Lombardi, F., Han, J.: Approximate arithmetic circuits: design and evaluation. In: Reda, S., Shafique, M. (eds.) Approximate Circuits, pp. 67–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99322-5_4

    Chapter  Google Scholar 

  19. Chen, L., Lombardi, F., Montuschi, P., Han, J., Liu, W.: Design of approximate high-radix dividers by inexact binary signed-digit addition. In: Proceedings of the on Great Lakes Symposium on VLSI 2017, pp. 293–298. ACM (2017)

    Google Scholar 

  20. Kahng, A.B., Kang, S.: Accuracy-configurable adder for approximate arithmetic designs. In: Proceedings of the 49th Annual Design Automation Conference, pp. 820–825. ACM (2012)

    Google Scholar 

  21. Lin, C.-H., Lin, C.: High accuracy approximate multiplier with error correction. In: 2013 IEEE 31st International Conference on Computer Design (ICCD), pp. 33–38. IEEE (2013)

    Google Scholar 

  22. Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., Raghunathan, A.: SALSA: systematic logic synthesis of approximate circuits. In: DAC Design Automation Conference 2012, pp. 796–801. IEEE (2012)

    Google Scholar 

  23. Venkataramani, S., Roy, K., Raghunathan, A.: Substitute-and-simplify: a unified design paradigm for approximate and quality configurable circuits. In: 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1367–1372. IEEE (2013)

    Google Scholar 

  24. Nepal, K., Li, Y., Bahar, R.I., Reda, S.: ABACUS: a technique for automated behavioral synthesis of approximate computing circuits. In: 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6. IEEE (2014)

    Google Scholar 

  25. Sekanina, L., Vasicek, Z.: Evolutionary computing in approximate circuit design and optimization. In: 1st Workshop on Approximate Computing (WAPCO 2015), pp. 1–6 (2015)

    Google Scholar 

  26. Vasicek, Z., Sekanina, L.: Evolutionary design of approximate multipliers under different error metrics. In: 17th International Symposium on Design and Diagnostics of Electronic Circuits & Systems, pp. 135–140. IEEE (2014)

    Google Scholar 

  27. Vasicek, Z., Sekanina, L.: Evolutionary design of complex approximate combinational circuits. Genet. Program. Evolvable Mach. 17(2), 169–192 (2016)

    Article  Google Scholar 

  28. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: design and architecture. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebiha Kemcha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kemcha, R., Nedjah, N., Maouche, A.R., Bougherara, M. (2019). Evolutionary Design of Approximate Sequential Circuits at RTL Using Particle Swarm Optimization. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11620. Springer, Cham. https://doi.org/10.1007/978-3-030-24296-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24296-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24295-4

  • Online ISBN: 978-3-030-24296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics