Skip to main content

A Nonlinear Subgrid Stabilization Parameter-Free Method to Solve Incompressible Navier-Stokes Equations at High Reynolds Numbers

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

In this work we evaluate a Nonlinear Subgrid Stabilization parameter-free method to solve time-independent incompressible Navier-Stokes equations (NSGS-NS) at high Reynolds numbers, considering only the decomposition of the velocity field (not pressure) into coarse/resolved scales and fine/unresolved scales. In this formulation we use a dynamic damping factor which it is often essential for the nonlinear iterative process and for the reduction of the number of iterations. In order to reduce the computational costs typical of two-scale methods, the unresolved scale space is defined using bubble functions whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Accuracy comparisons with the streamline-upwind/Petrov-Galerkin (SUPG) formulation combined with the pressure stabilizing/Petrov-Galerkin (PSPG) are conducted based on 2D steady state benchmark problems with high Reynolds numbers, flow over a backward-facing step and lid-driven square cavity flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armaly, B.F., Durst, F., Pereira, J., Schönung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)

    Article  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the stokes equations. Calcolo 21(4), 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baptista, R., Bento, S.S., Santos, I.P., Lima, L.M., Valli, A.M.P., Catabriga, L.: A multiscale finite element formulation for the incompressible Navier-Stokes equations. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 253–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_18

    Chapter  Google Scholar 

  4. Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1–4), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York (2002)

    Book  MATH  Google Scholar 

  6. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: Math. Model. Numer. Anal. - Modélisation Mathématique et Analyse Numérique 8(R2), 129–151 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Bristeau, M., Franca, L., Mallet, M., Roge, G.: A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96(1), 117–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brooks, A.N., Hughes, T.J.R.: Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calo, V.M.: Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. Ph.D. thesis, Stanford University (2005)

    Google Scholar 

  10. Codina, R., Blasco, J.: A stabilized finite element method for generalized stationary incompressible flows. Comput. Methods Appl. Mech. Eng. 190, 2681–2706 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Codina, R., Badia, S., Baiges, J., Principe, J.: Variational Multiscale Methods in Computational Fluid Dynamics, pp. 1–28. American Cancer Society (2017)

    Google Scholar 

  12. Elias, R.N., Coutinho, A.L.G.A., Martins, M.A.D.: Inexact Newton-type methods for non-linear problems arising from the SUPG/PSPG solution of steady incompressible Navier-Stokes equations. J. Braz. Soc. Mech. Sci. Eng. 26, 330–339 (2004)

    Article  Google Scholar 

  13. Erturk, E.: Numerical solutions of 2-D steady incompressible flow over a backward-facing step, part i: high reynolds number solutions. Comput. Fluids 37(6), 633–655 (2008)

    Article  MATH  Google Scholar 

  14. Erturk, E., Corke, T.C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high reynolds numbers. Int. J. Numer. Methods Fluids 48(7), 747–774 (2005)

    Article  MATH  Google Scholar 

  15. Franca, L., Farhat, C.: Unusual stabilized finite element methods and residual free bubbles. Comput. Methods Appl. Mech. Eng. 123(1–4), 299–308 (1995)

    Article  MATH  Google Scholar 

  16. de Frutos, J., John, V., Novo, J.: Projection methods for incompressible flow problems with weno finite difference schemes. J. Comput. Phys. 309, 368–386 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gartling, D.K.: A test problem for outflow boundary conditions-flow over a backward-facing step. Int. J. Numer. Methods Fluids 11(7), 953–967 (1990)

    Article  Google Scholar 

  18. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gravemeier, V.: The variational multiscale method for laminar and turbulent flow. Arch. Comput. Methods Eng. 13(2), 249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high reynolds number. J. Comput. Phys. 229(23), 8643–8665 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hood, P., Taylor, C.: Navier-stokes equations using mixed interpolation. In: Finite Element Methods in Flow Problems, pp. 121–132 (1974)

    Google Scholar 

  22. Hughes, T.J.R.: Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hughes, T.J., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. v. circumventingthe Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986)

    Article  MATH  Google Scholar 

  24. Hughes, T., Tezduyar, T.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part ii-analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Eng. 197(21–24), 1997–2014 (2008)

    Article  MATH  Google Scholar 

  26. Lins, E.F., Elias, R.N., Guerra, G.M., Rochinha, F.A., Coutinho, A.L.G.A.: Edge-based finite element implementation of the residual-based variational multiscale method. Int. J. Numer. Methods Fluids 61(1), 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Masud, A., Khurram, R.: A multiscale finite element method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 195(13–16), 1750–1777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Santos, I.P., Almeida, R.C.: A nonlinear subgrid method for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 196, 4771–4778 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tezduyar, T.E.: Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS Computational Fluid Dynamics Conference, September 2001

    Google Scholar 

  30. Valli, A.M., Almeida, R.C., Santos, I.P., Catabriga, L., Malta, S.M., Coutinho, A.L.: A parameter-free dynamic diffusion method for advection-diffusion-reaction problems. Comput. Math. Appl. 75(1), 307–321 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riedson Baptista , Sérgio S. Bento or Isaac P. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baptista, R., Bento, S.S., Lima, L.M., Santos, I.P., Valli, A.M.P., Catabriga, L. (2019). A Nonlinear Subgrid Stabilization Parameter-Free Method to Solve Incompressible Navier-Stokes Equations at High Reynolds Numbers. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24302-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24301-2

  • Online ISBN: 978-3-030-24302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics