Skip to main content

Analytical Potential Energy Formulation for a New Theoretical Approach in Penning Ionization

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

The analysis of recent Penning ionization electron spectra as a function of the collision energy for both Ne*-Kr and Ne*-Xe autoionizing reactions allowed the development of a new general theoretical approach able to fully describe the stereodynamics of the Penning ionization reactions at a state to state level. Details on such a general and original approach based on the dependence of the reaction probability on the relative orientation of the atomic and molecular orbitals of reagents and products, are given. The mutual orientation of the collisional partners with respect to the intermolecular axis of the intermediate \([{{\rm Ne}}{\hbox{---}}{{\rm Rg}}]^* \) (with Rg = Kr or Xe) excited collision complex (i.e. the transition state of studied reactions) controls the characteristics of the intermolecular potential, which is formulated in a new analytical form whose details are presented and discussed. Obtained results refer to a statistical/random orientation of the open shell ionic core of Ne*, and in the two cases of Ne*-Kr and Ne*-Xe autoionizing collisions, we were able to reproduce and characterize the dependence on the collision energy of the experimental branching ratio between probabilities of spin-orbit resolved elementary processes already published. Such findings result from anisotropy effects connected to atomic orbital orientation/alignment, and their full understanding is a crucial point to describe the dependence of the stereo-dynamics on the electronic structure of the \([{{\rm Ne}}{\hbox{---}}{{\rm Rg}}]^* \) transition state. In this way, we are able to fully characterize the state to state reaction probability for the Penning ionization reactions involving Kr and Xe atoms with ionizing Ne* atoms in either 3P2 and 3P0 sublevels. This original methodology can be applied also to Penning ionization processes involving molecular targets, and in principle is able to point out the basic role of electronic rearrangements inside the transition state of various types of chemical reactions at thermal and sub-thermal collision energies which are of interest in astrochemical environments, being a much more arduous problem in order to be completely characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benz, A., Morgner, H.: Mol. Phys. 57, 319–336 (1986)

    Article  Google Scholar 

  2. Falcinelli, S., Bartocci, A., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(2), 764–771 (2016)

    Article  Google Scholar 

  3. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  4. Falcinelli, S., Capriccioli, A., Pirani, F., Vecchiocattivi, F., Stranges, S., Martì, C., et al.: Fuel 209, 802–811 (2017)

    Article  Google Scholar 

  5. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(35), 12518–12526 (2016)

    Article  Google Scholar 

  6. Cavallotti, C., Leonori, F., Balucani, N., Nevrly, V., Bergeat, A., et al.: J. Phys. Chem. Lett. 5, 4213–4218 (2014)

    Article  Google Scholar 

  7. Leonori, F., Balucani, N., Nevrly, V., Bergeat, A., et al.: J. Phys. Chem. C 119(26), 14632–14652 (2015)

    Article  Google Scholar 

  8. Leonori, F., Petrucci, R., Balucani, N., Casavecchia, P., Rosi, M., Berteloite, C., et al.: Phys. Chem. Chem. Phis. 11, 4701–4706 (2009)

    Article  Google Scholar 

  9. Leonori, F., Petrucci, R., Balucani, N., Hickson, K.M., Hamberg, M., Geppert, W.D., et al.: J. Phys. Chem. A 113, 4330–4339 (2009)

    Article  Google Scholar 

  10. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  11. Alagia, M., et al.: Chem. Phys. Lett. 432, 398–402 (2006)

    Article  Google Scholar 

  12. Alagia, M., et al.: J. Phys. Chem. A 113, 14755–14759 (2009)

    Article  Google Scholar 

  13. Alagia, M., et al.: Phys. Chem. Chem. Phys. 12, 5389–5395 (2010)

    Article  Google Scholar 

  14. Falcinelli, S., Pirani, F., Alagia, M., Schio, L., Richter, R., et al.: Chem. Phys. Lett. 666, 1–6 (2016)

    Article  Google Scholar 

  15. Falcinelli, S., Pirani, F., Vecchiocattivi, F.: Atmosphere 6(3), 299–317 (2015)

    Article  Google Scholar 

  16. Biondini, F., Brunetti, B.G., Candori, P., De Angelis, F., et al.: J. Chem. Phys. 122(16), 164307 (2005)

    Article  Google Scholar 

  17. Biondini, F., Brunetti, B.G., Candori, P., De Angelis, F., et al.: J. Chem. Phys. 122(16), 164308 (2005)

    Article  Google Scholar 

  18. Nicolaides, C.A.: Chem. Phys. Lett. 161(6), 547–553 (1989)

    Article  Google Scholar 

  19. Falcinelli, S., Fernandez-Alonso, F., Kalogerakis, K., Zare, R.N.: Mol. Phys. 88(3), 663–672 (1996)

    Article  Google Scholar 

  20. Tosi, P., Correale, R., Lu, W., Falcinelli, S., Bassi, D.: Phys. Rev. Lett. 82(2), 450–452 (1999)

    Article  Google Scholar 

  21. Thissen, R., Witasse, O., Dutuit, O., Wedlund, C.S., et al.: Phys. Chem. Chem. Phys. 13, 18264–18287 (2011)

    Article  Google Scholar 

  22. Alagia, M., Balucani, N., Candori, P., Falcinelli, S., Richter, R., et al.: Rendiconti Lincei Scienze Fisiche e Naturali 24, 53–65 (2013)

    Article  Google Scholar 

  23. Falcinelli, S., Rosi, M., Candori, P., Farrar, J.M., Vecchiocattivi, F., et al.: Planet. Space Sci. 99, 149–157 (2014)

    Article  Google Scholar 

  24. Falcinelli, S.: Acta Phys. Pol., A 131(1), 112–116 (2017)

    Article  Google Scholar 

  25. Ben Arfa, M., Lescop, B., Cherid, M., Brunetti, B., Candori, P., et al.: Chem. Phys. Lett. 308, 71–77 (1999)

    Article  Google Scholar 

  26. Brunetti, B.G., Candori, P., Ferramosche, R., Falcinelli, S., et al.: Chem. Phys. Lett. 294, 584–592 (1998)

    Article  Google Scholar 

  27. Pei, L., Carrascosa, E., Yang, N., Falcinelli, S., Farrar, J.M.: J. Phys. Chem. Lett. 6(9), 1684–1689 (2015)

    Article  Google Scholar 

  28. Falcinelli, S.: AIP Conference Proceedings, vol. 2075, p. 050003 (2019)

    Google Scholar 

  29. Bettoni, M., Candori, P., Falcinelli, S., Marmottini, F., Meniconi, S., Rol, C., Sebastiani, G.V.: J. Photochem. Photobiol., A 268, 1–6 (2013)

    Article  Google Scholar 

  30. Alagia, M., Candori, P., Falcinelli, S., Pirani, F., et al.: Phys. Chem. Chem. Phys. 13(18), 8245–8250 (2011)

    Article  Google Scholar 

  31. Alagia, M., Candori, P., Falcinelli, S., Lavollée, M., et al.: J. Chem. Phys. 126(20), 201101 (2007)

    Article  Google Scholar 

  32. Hotop, H., Illenberger, E., Morgner, H., Niehaus, A.: Chem. Phys. Lett. 10(5), 493–497 (1971)

    Article  Google Scholar 

  33. Brunetti, B.G., Candori, P., Cappelletti, D., Falcinelli, S., et al.: Chem. Phys. Lett. 539–540, 19–23 (2012)

    Article  Google Scholar 

  34. Bethe, H.A.: Phys. Rev. 57, 1125–1144 (1940)

    Article  Google Scholar 

  35. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Phys. Rev. Lett. 121(16), 163403 (2018)

    Article  Google Scholar 

  36. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: J. Chem. Phys. 150(4), 044305 (2019)

    Article  Google Scholar 

  37. Balucani, N., Bartocci, A., Brunetti, B., Candori, P., et al.: Chem. Phys. Lett. 546, 34–39 (2012)

    Article  Google Scholar 

  38. Miller, W.H., Morgner, H.: J. Chem. Phys. 67, 4923–4930 (1977)

    Article  Google Scholar 

  39. Brunetti, B., Candori, P., Falcinelli, S., Pirani, F., Vecchiocattivi, F.: J. Chem. Phys. 139(16), 164305 (2013)

    Article  Google Scholar 

  40. Falcinelli, S., Candori, P., Pirani, F., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 19(10), 6933–6944 (2017)

    Article  Google Scholar 

  41. Alagia, M., Brunetti, B.G., Candori, P., Falcinelli, S., et al.: J. Chem. Phys. 120(15), 6980–6984 (2004)

    Article  Google Scholar 

  42. Alagia, M., Biondini, F., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 121(21), 10508–10512 (2004)

    Article  Google Scholar 

  43. Candori, P., Falcinelli, S., Pirani, F., Tarantelli, F., Vecchiocattivi, F.: Chem. Phys. Lett. 436, 322–326 (2007)

    Article  Google Scholar 

  44. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  45. Cappelletti, D., Bartocci, A., Grandinetti, F., Falcinelli, S., et al.: Chem. Eur. J. 21(16), 6234–6240 (2015)

    Article  Google Scholar 

  46. Alagia, M., Brunetti, B.G., Candori, P., Falcinelli, S., et al.: J. Chem. Phys. 120(15), 6985–6991 (2004)

    Article  Google Scholar 

  47. Alagia, M., et al.: J. Chem. Phys. 136, 204302 (2012)

    Article  Google Scholar 

  48. Teixidor, M.M., Pirani, F., Candori, P., Falcinelli, S., Vecchiocattivi, F.: Chem. Phys. Lett. 379, 139–146 (2003)

    Article  Google Scholar 

  49. Alagia, M., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 124(20), 204318 (2006)

    Article  Google Scholar 

  50. Alagia, M., Candori, P., Falcinelli, S., Mundim, K.C., Mundim, M.S.P., Pirani, F., et al.: Chem. Phys. 398, 134–141 (2012)

    Article  Google Scholar 

  51. Cappelletti, D., Candori, P., Falcinelli, S., Albertì, M., Pirani, F.: Chem. Phys. Lett. 545, 14–20 (2012)

    Article  Google Scholar 

  52. Pirani, F., Maciel, G.S., Cappelletti, D., Aquilanti, V.: Int. Rev. Phys. Chem. 25, 165–199 (2006)

    Article  Google Scholar 

  53. Aquilanti, V., Luzzatti, E., Pirani, F., Volpi, G.G.: J. Chem. Phys. 89(10), 6165–6175 (1988)

    Article  Google Scholar 

  54. Aquilanti, V., Liuti, G., Pirani, F., Vecchiocattivi, F.: J. Chem. Soc., Faraday Trans. 85(8), 955–964 (1989)

    Article  Google Scholar 

  55. Tosi, P., et al.: J. Chem. Phys. 99(2), 985–1003 (1993)

    Article  Google Scholar 

  56. Bartocci, A., Belpassi, L., Cappelletti, D., Falcinelli, S., et al.: J. Chem. Phys. 142(18), 184304 (2015)

    Article  Google Scholar 

  57. Aquilanti, V., Cappelletti, D., Lorent, V., Pirani, F.: J. Phys. Chem. 97, 2063–2071 (1993)

    Article  Google Scholar 

  58. Krauss, M.: J. Chem. Phys. 67(4), 1712–1719 (1977)

    Article  Google Scholar 

  59. Brunetti, B., Candori, P., Falcinelli, S., Lescop, B., et al.: Eur. Phys. J. D 38, 21–27 (2006)

    Article  Google Scholar 

  60. Brunetti, B., Candori, P., De Andres, J., Pirani, F., Rosi, M., et al.: J. Phys. Chem. A 101(41), 7505–7512 (1997)

    Article  Google Scholar 

  61. Alagia, M., Boustimi, M., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 117(3), 1098–1102 (2002)

    Article  Google Scholar 

  62. Alagia, M., Candori, P., Falcinelli, S., Mundim, M.S.P., Pirani, F., et al.: J. Chem. Phys. 135(14), 144304 (2011)

    Article  Google Scholar 

  63. Alagia, M., Bodo, E., Decleva, P., Falcinelli, S., et al.: Phys. Chem. Chem. Phys. 15(4), 1310–1318 (2013)

    Article  Google Scholar 

  64. Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Chem. Eur. J. 23, 11752–11756 (2017)

    Article  Google Scholar 

  65. Pirani, F., et al.: Angew. Chem. Int. Ed. 58(13), 4195–4199 (2019)

    Article  Google Scholar 

  66. Gordon, S.D.S., Omiste, J.J., Zou, J., Tanteri, S., Brumer, P., Osterwalder, A.: Nat. Chem. 10, 1190–1195 (2018)

    Article  Google Scholar 

  67. Gordon, S.D.S., Zou, J., Tanteri, S., Jankunas, J., Osterwalder, A.: Phys. Rev. Lett. 119, 053001 (2017)

    Article  Google Scholar 

  68. Skouteris, D., Balucani, N., Faginas-Lago, N., et al.: A&A 584, A76 (2015)

    Article  Google Scholar 

  69. Skouteris, D., Balucani, N., Ceccarelli, C., Faginas Lago, N., et al.: MNRAS 482, 3567–3575 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is dedicated to our colleague and friend Jaime De Andres whose memory and love for science will inspire our future research. Financial support from MIUR, “Ministero dell’Istruzione, dell’Università e della Ricerca”, PRIN 2015 (STARS in the CAOS- Simulation Tools for Astrochemical Reactivity and Spectroscopy in the Cyberinfrastructure for Astrochemical Organic Species, 2015F59J3R). Support from Italian MIUR and University of Perugia (Italy) is acknowledged within the program “Dipartimenti di Eccellenza 2018–2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Falcinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcinelli, S., Rosi, M., Vecchiocattivi, F., Pirani, F. (2019). Analytical Potential Energy Formulation for a New Theoretical Approach in Penning Ionization. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24302-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24301-2

  • Online ISBN: 978-3-030-24302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics