
Evaluation of Textual Similarity Techniques in
Code Level Traceability

Viktor Csuvik1, András Kicsi1, and László Vidács1,2

1 Department of Software Engineering
2 MTA-SZTE Research Group on Artificial Intelligence

University of Szeged, Hungary
{csuvikv,akicsi,lac}@inf.u-szeged.hu

Abstract. Automatic recovery of test-to-code traceability links is an
important task in many areas of software engineering, like quality assur-
ance and code maintenance. The research community has shown great
interest in such a topic and has developed several techniques that al-
ready made significant advances in the field. These techniques include
text-based learning algorithms, of which corpus is built from the source
code of the software components. Several techniques based on informa-
tion retrieval have been benchmarked, but the capabilities of many learn-
ing algorithms have not yet been tested. In this work we examine the
textual similarity measures produced by three different machine learning
techniques for the recovery of traceability information while also consid-
ering various textual representations of the source code. The obtained
results are evaluated on 4 open source systems based on naming conven-
tions. We have been able to improve the current textual similarity based
state-of-the-art results in the case of each evaluated system.

Keywords: traceability, testing, test-to-code, machine learning, text similarity

1 Introduction

True perfection in software engineering does not exist. Software testing, however,
constitutes a major aspect in the assurance of quality. Besides simply detecting
faults in software, tests are also essential for other areas in software engineering,
like Automatic Program Repair (APR), where tests are needed in the patch gen-
eration process, or code maintenance. The primary aspect of testing is to provide
information on whether the software achieves the general result its stakeholders
desire. Testing can provide an independent view of the software and opens new
opportunities in calculating the risks. It is known that complete testing is not
fully achievable, still writing tests on edge cases and increasing their amount
is considered to be a good coding practice. It is not a coincidence that large
systems often incorporate vast amounts of tests.

Considering tens of thousands of tests, their maintenance becomes cumber-
some and the goal of some tests may even become unknown. In these cases

recovering which test case assesses a specific part of code can prove to be a
challenge. Traceability in general stands for the task of tracing software items
through a variety of software products. The previously described specific prob-
lem is called test-to-code traceability. Traceability is a well-researched area with
a serious industrial background. While the most widespread problem in this field
is domain requirement traceability [3, 22], test-to-code traceability also gained
attention from the research community [35, 15, 5].

Using good coding practices [41] can make the task easier and with proper
naming conventions [35] very accurate results can be achieved. However, if a de-
veloper lacks these skills or proper foresight, the traceability problem becomes
non-trivial with many pitfalls. In these cases, automatic recovery approaches
should be introduced, which does not require such assumptions from the exam-
ined system. While several attempts have already been made to cope with this
problem, these techniques are limited since they typically depend on intuitive
features. In our previous work [15, 5] we provided a method, that automatically
links test cases and production classes relying only on conceptual information.
In the current paper, we make an attempt to improve our former results by
involving new machine learning techniques. We compare these results and also
show that combining them outperforms the current semantic information based
approaches in the traceability task.

The paper is organized as follows. We present a high-level overview of our
research in the following section by depicting the proposed approach to recover
test-to-code links and specify our research objectives. Next, we introduce the
examined database and its representations upon which the experiments were
carried out. Evaluation on four systems and analysis are presented in Section 5.
Related work is discussed in Section 6, and we conclude the paper in the last
section.

2 Overview

Test-to-code traceability means finding the links between test cases and pro-
duction code. More precisely for a test case we want to find certain parts of the
code which it was meant to test. For a large system, this task can be challenging,
particularly when the development lacks good coding practices [41] like proper
naming conventions. Using practices like naming the test classes after the tested
production code automatically creates a conceivable link between the test and
the tested artifact. It is well known, that with proper naming conventions, re-
trieving traceability links is a minor task [35]. If we consider, however, a system
where the targets of the test cases are unknown to us, other approaches should
be applied.

Figure 1 provides an illustration of the comprehensive approach we propose.
We consider a software system written in the Java programming language. It
contains both test classes and production classes and we aim to recover the
relationship between them. We made no assumptions about the names of the
software artifacts. From the raw source code, we extract the classes of the sys-

Source CodeJava

?

SRC AST IDENT

Textual
preprocessing

Ranked List of
Similar Classespublic class SomeClass {

public boolean doSomeStuff() {

//an example production code

...

}

}

public void otherTestMethod() {

// another example test method

assertFalse(x == y);

}

public void someTestMethod() {

// an example test method

assertTrue(z == w);

}

?

?

Test cases Prod. code

Extraction of different representations:

QUERY !CORPUS

Doc2Vec

1 0
1 1

LSI

TF-IDF
Term

is 2

a 1

Term count

Measuring similarities

Related classes

1.
2.
3.
4.

Fig. 1. A high-level illustration of our process.

tem using the Source Meter3 static analysis tool and separate test cases and
production code. We generate three diverse representations of the source code
(SRC, AST, IDENT) which we discuss in Section 3 and use machine learning
techniques to measure the similarity between code snippets. In the case of La-
tent Semantic Indexing (LSI) and Term Frequency-Inverse Document Frequency
(TF-IDF) methods the models are trained on the production code (corpus) and
the test cases are the queries. There is a slight difference in the case of Doc2Vec
since the training corpus consists of both the test and production classes. Af-
ter the models are trained, we measure the similarity between tests and code
classes, from which a ranked list is constructed. The basic idea is that test and
code classes are similar in some sense. Therefore, from the ranked similarity
list, we observe the first N production classes, allowing us to consider these
techniques as recommendation systems.

We recommend classes for a test case starting from the most similar and also
examine the top 2 and top 5 most similar classes. Looking at the outputs in such
a way holds a number of benefits. Foremost, if we would consider only the most
similar class then those instances when tests assess the proper functioning of
several classes rather than only one would be missed. Also, a class usually relies
on other classes, consequently a recommendation system can highlight the test
and code relationship more thoroughly. Since overly abundant recommendations
can result in a high number of false matches which can diminish the usefulness of
the information itself, we restricted the consideration to only the 5 most similar
classes in each case, keeping the technique as simple as possible. In our current
work we used our previously available tools for the generation of LSI-based
similarities [15, 5].

Summarizing our work, we organize our experiment along three research
points, and formulate the following research questions:

3 https://www.sourcemeter.com/

RQ1: How do various source code representations affect the operation of differ-
ent text-based techniques?
RQ2: How the assessed algorithms perform compared to each other?
RQ2: Does the combination of these techniques improve traceability link recov-
ery?

3 Data Collection

We designed our approach to be applicable projects written in Java, one of
the most popular programming languages in use [2]. In general, the featured
technique is independent of text representations, so the programming language
of the source code is not necessarily important. In Figure 2 one can observe the
projects, on which we evaluated our technique. We used the exact same versions
of the referenced projects in our previous work [15, 5].

COMMONS MATH V. 3.4.1

Tests: 3493
Methods: 14837
Classes: 2033

Tests: 2473
Methods: 6523
Classes: 596

COMMONS LANG V. 3.4

Tests: 2239
Methods: 11594
Classes: 953

JFREECHART V. 1.0.19 MONDRIAN V. 3.0.4

Tests: 1546
Methods: 12186
Classes: 1626

Fig. 2. Size and versions of the examined systems. The area of boxes is proportional
to the number of test cases.

The choice of the projects was influenced by several factors: (1) the projects
should be publicly available, so we could obtain the source code (2) proper
naming convention were followed to some extent (for further information see
Section 5), and (3) we refer to our previous work, where we used these projects
and found they are good representatives for the evaluation. Here we briefly in-
troduce them. Two of the systems strive to have minimal dependencies on other
libraries [4] and are modules of the Apache Commons project, these are Com-
mons Lang4 and Commons Math5. Mondrian6 has a large development history
(the development was started in 1997 [26]) and is an open source Online Ana-
lytical Processing system, which enables high-performance analysis on massive
amounts of data. JFreeChart7 is a relatively new software, its first release was
in 2013. The project is one of the most popular open source charting tools.

From these projects, we obtained three different textual representations to
measure similarity. We also described these representations in more detail in our
previous work [5]. Similar representations are widely used in other research ex-
periments, such as [38, 40]. Here we present brief summary of our representations
and through a brief example, we try to better explain them:

4 https://github.com/apache/commons-lang
5 https://github.com/apache/commons-math
6 https://github.com/pentaho/mondrian
7 https://github.com/jfree/jfreechart

– SRC: In this case, we process the source code as a structured text file. Only
splitting [12, 8] and stemming are applied. We split the source code along
special characters and compound words by the camel case rule. For example,
consider the code snippet int a = 12; where SRC only splits the text.

– AST: Initially, we construct the Abstract Syntax Tree (AST) for a code snip-
pet, then print the type of each node in a pre-order fashion. We employed
the publicly available JavaParser8 tool for AST generation. For the previ-
ous example, the representation would be: VariableDeclarationExpr Vari-
ableDeclarator PrimitiveType SimpleName IntegerLiteralExpr.

– IDENT: Like in the previous case, we construct the Abstract Syntax Tree
but instead of types we print the only the values and only for the terminal
nodes. In the postprocessing phase literals are replaced with placeholders.
These printed values are generally the identifiers and constants present in
the code. In the previous example, the representation replaces the integer
literal, so we get the following sentence: int a <INT >.

4 Experiment Design

In this section, we describe the experiments and utilized machine learning meth-
ods in detail. Let us consider a straightforward example. In Figure 3 a simple
JUnit test case is presented with its corresponding production code. The code
snippet is part of the Commons Lang project. It is easy to see, that the test
code chiefly consists of assert statements, where the tested methods header is
called many times. On the other hand, before the production code, in the com-
ments, the name of the method also often occurs. Notice, that in the IDENT
representation the string literals are replaced with placeholders so the method
calls will be practically identical in the test case. Although the bodies of the two
methods differ, some kind of similarity can be observed. In addition, we measure
the similarity between classes, so other methods also contribute to the results.
In the upcoming subsections, we explain the techniques used to obtain the sim-
ilarity between two parts of the source code. We used the Gensim [1] toolkit’s
implementation for all three machine learning methods.

4.1 Term Frequency–Inverse Document Frequency: TF-IDF

TF-IDF is an information retrieval method, that relies on numerical statistics
reflecting how important a word is to a document in a corpus [20]. It is basically
a metric and its value increases proportionally to the number of times a word
appears in the document but is offset by the frequency of the word in the corpus.
One can compute TF-IDF by multiplying a local component (term frequency)
with a global component (inverse document frequency) and normalizing the re-
sulting documents to unit length. The formula for a non-normalized weight of
term i in document j in a corpus of D documents is displayed in Equation 1.

8 https://github.com/javaparser/javaparser

@Test

public void testSubstringAfterLast_StringString() {

assertEquals("baz", StringUtils.substringAfterLast("fooXXbarXXbaz", "XX"));

assertEquals(null, StringUtils.substringAfterLast(null, null));

assertEquals(null, StringUtils.substringAfterLast(null, ""));

assertEquals(null, StringUtils.substringAfterLast(null, "XX"));

...

assertEquals("t", StringUtils.substringAfterLast("foot", "o"));

assertEquals("", StringUtils.substringAfterLast("abc", "c"));

assertEquals("", StringUtils.substringAfterLast("", "d"));

assertEquals("", StringUtils.substringAfterLast("abc", "")); }

/*StringUtils.substringAfterLast(null, *) = null

* StringUtils.substringAfterLast("", *) = "„

* ...

* StringUtils.substringAfterLast("a", "z") = "„

* ... */

public static String substringAfterLast(final String str, final String separator) {

if (isEmpty(str)) { return str; }

if (isEmpty(separator)) { return EMPTY; }

final int pos = str.lastIndexOf(separator);

if (pos==INDEX_NOT_FOUND || pos==str.length() - separator.length()) { return EMPTY; }

return str.substring(pos + separator.length());

}

main.java.org.apache.commons.lang3.StringUtils

test.java.org.apache.commons.lang3.StringUtilsSubstringTest

S
I

M

I

L

A

R

I

T

Y

?

Fig. 3. An example test case from Commons Lang and the associated production class.

One of the simplest ranking functions is computed by summing the weights for
each query term, but many more sophisticated ranking functions also exist [11,
28].

weightij =
(
frequencyij ∗ log2

D

DocumentFrequencyi

)
(1)

4.2 Document embeddings: Doc2Vec

Doc2Vec is originated from Word2Vec, which was introduced by Google’s devel-
opers in [25]. Word2Vec encodes words into vectors containing real numbers with
a neural network, these are called word embeddings. The basic idea is the follow-
ing: for a given surrounding, the model predicts the current word (CBOW model)
or the prediction goes in the opposite direction (Skip-gram model). The trick is
that the hidden layer of the shallow neural network used has fewer neurons than
the input and output layers, forcing the model to learn a compact representa-
tion. The weight in the hidden layers will provide the word embeddings and the
number of neurons will be the dimension of the embedding. Doc2Vec differs only
in small details: it can encode whole documents by adding a unique identifier of
the document to the input layer. This way a word can have multiple embeddings
in different documents (which is more realistic in some cases, e.g.: blue, bear).
Utilizing the embeddings, we can compute the similarity between documents.
We used the 3COSMUL metric proposed in [21], displayed in Equation 2 to
measure similarity between the vectors.

arg max
b∗∈V

(cos(b∗, b)cos(b∗, a∗)
cos(b∗, a) + ε

)
(2)

4.3 Latent Semantic Indexing: LSI

LSI is a technique in natural language processing of analyzing the relationships
between documents. During the learning procedure, a matrix is constructed,
which contains word counts. The elements inside the matrix are typically weighted
with the TF-IDF values, but note that the base process differs from the previ-
ous one. The main idea of LSI is that the matrix is transformed into a lower
dimension using singular value decomposition and in the resulting matrix the
conceptually more similar elements get more similar representations. The most
similar documents to a query can easily be found as the query also represents a
multidimensional matrix with which a suitable distance method can rank each
document by similarity.

..\lang3\StringUtils

..\lang3\builder\ToStringStyle

..\lang3\text\StrSubstitutor

..\lang3\builder\DiffBuilder

..\lang3\math\NumberUtils

..\lang3\concurrent\MultiBackgroundInitializer

..\lang3\tuple\Pair

..\lang3\tuple\MutablePair

..\lang3\Range

..\lang3\StringUtils

Doc2Vec

..\lang3\text\translate\EntityArrays

..\lang3\StringEscapeUtils

..\lang3\JavaVersion

..\lang3\CharEncoding

..\lang3\ClassPathUtils

TF-IDF LSI

Fig. 4. Ranked lists produced by different approaches for the StringUtilsSubstringTest
test class.

4.4 Result refinement with a combined technique

After test and code classes had been separated and the code representations had
been obtained, we trained the three models separately and investigated the sim-
ilarities. In Figure 4 we show the ranked lists of the three alternative methods
trained on the IDENT representation. For a given test class (StringUtilsSub-
stringTest) only the Doc2Vec method classified the desired code class (StringUtils)
as the most similar (while of course in a different case another one of the meth-
ods could provide the desired class). Additionally note, that TF-IDF put the
StringUtils class in the fifth place, while LSI didn’t rank it among the top-5
most similar classes (it was in the 11th place of the ranked list). This example
demonstrates that the ranked list of each technique can contain useful informa-
tion, the desired code class appears close to the top of every list. Thus it can
be possible to refine the obtained results one technique provides with the list of
other techniques. We defined a simple algorithm to achieve this goal, which is
shown in Listing 1. We filter the ranked list obtained from the first method with
the seconds ranked list. Since the ranked lists contain every code class, we limit
them to the top 100 most similar classes, this way the featured algorithm will
drop out classes from the first if those are not present on the second ranked list.
Note, that this refinement procedure cannot introduce new classes to the first
ranked list, only removes them.

1 # r a n k e d l i s t i : ranked l i s t from the i−th technique ,
which conta in s the top 100 most s i m i l a r c l a s s e s

2 r e s u l t = []
3 f o r c o d e c l a s s in r a n k e d l i s t 1 :
4 i f c o d e c l a s s in r a n k e d l i s t 2 :
5 r e s u l t . append (c o d e c l a s s)

Listing 1. Algorithm used to refine the obtained similarity lists.

5 Experiments and Analysis

In this section, we evaluate and discuss the featured text-based models and
source code representations. To evaluate our method, we should know whether
the proposed machine learning techniques recommend the correct production
class for a given test case. To achieve this, we used the existing naming con-
ventions used within the systems and defined the following rules: the class of
the test case must possess an identical name as the code class it tests, having
the word ”Test” before or after the name. Moreover, their directory structure
(i.e. package hierarchy) must be the same, so their qualified names also match.
For example, if the tested production code class is [CodeClass] than the test
should be named [CodeClassTest] or [TestCodeClass] and their package hierar-
chy should also match to be considered a correct pair. We calculated precision -
the proportion of correctly detected test-code pairs as can be seen in Equation 3,
where the upper part of the fraction denotes how many tests we could retrieve,
while the bottom is the number of test cases that match the naming convention.
This evaluation strategy is well suited for the listed systems since they are fairly
well covered by proper naming conventions.

precision =
|relevantTest ∩ retrievedTest|

|retrievedTest|
(3)

As detailed in the previous sections, we experimented with three different
source code representations and three text-based similarity techniques. We al-
ready know, that Doc2Vec and LSI are capable of recovering traceability links,
although we do not know how LSI performs on different source code represen-
tations. Figure 5 provides a comprehensive collection of the results obtained.
From this diagram, it’s clear at first glance, that the IDENT representation
surpassed all others and AST performed poorly. In some cases, the SRC repre-
sentation produced quite promising results (e.g.: with TF-IDF at the Commons
Math project), but in general, it achieved much lower precision than IDENT. We
experienced similar behavior in our previous work, so this confirms our preced-
ing assumption that IDENT is the most suitable representation for test-to-code
traceability, since other techniques also performed at lower precision using other
representations. Because IDENT seems to be prevalent in finding traceability
links correctly, we are going to focus on it in the upcoming discussions.

Answer to RQ1: Based on the results of each evaluated algorithm, we found
the IDENT representation to be the most appropriate for finding traceability
links correctly.

30%

14%
17%

22%

48%

26%

19%

46%

52%

22%

16%

30%

45%

21%
24%

33%

67%

35%

26%

56%

66%

30%

24%

45%

62%

33% 34%

49%

84%

50%

41%

67%

81%

43%

37%

58%

4%
1% 1% 0% 0%

2%
0% 0% 0%

2%
0% 0%

9%

2% 3%
0%

12%

20%

0% 0%

12%

20%

0% 0%

29%

8%
5%

25%

15%

22%

0% 0%

15%

22%

0% 0%

78%

40%
43%

67%
69%

32% 31%

73%

62%

18%

27%

21%

88%

52%
51%

69%

83%

40% 40%

74%

70%

22%

35%

24%

92%

63% 62%

75%

89%

67%

59%

86%

83%

30%

48%

74%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Commons Lang Commons Math JFreeChart Mondrian Commons Lang Commons Math JFreeChart Mondrian Commons Lang Commons Math JFreeChart Mondrian

Doc2Vec TF-IDF LSI

SRC top1 SRC top2 SRC top5 AST top1 AST top2 AST top5 IDENT top1 IDENT top2 IDENT top5

Doc2Vec TF-IDF LSI

Fig. 5. Results featuring the corpus built from different representations of the source
code provided by each technique evaluated.

By examining the results in more detail, we can see, that the precision of
Doc2Vec in most cases rises above the rest. Figure 6 presents the results of the
featured techniques trained on the IDENT representation. The figure showcases
the results we gathered with the most similar classes. It is visible that LSI per-
formed the lowest on the examined systems. TF-IDF’s case is a bit unusual since
it outperformed the Doc2Vec technique on the Mondrian project with 73% pre-
cision rate. The results from other systems also seem quite promising. Therefore
from our experiments, Doc2Vec seemed to be the best approach in the test-
to-code traceability task, although in some cases other text-based approaches
may overperform it. The results of Doc2Vec, in general, are quite convincing,
but the obtained matches could still be refined. Because TF-IDF found better
results in the Mondrian project than Doc2Vec, combining (for more detail about
combination refer to Section 5) these methods seems to be a rational idea.

Answer to RQ2: According to the data gathered, we find that in most cases
Doc2Vec achieves the best results, although in exceptional cases other text-based
techniques can still outperform it.

We investigated the combination possibilities among all the examined tech-
niques. The relation between them is asymmetric, since the first methods ranked
list refines the second ones. We found that combining LSI just with TF-IDF only
seems to damage the results in both directions, the average precision using this

Correct
69%

Incorrect
31%

Correct
32%

Incorrect
68%

Correct
31%

Incorrect
69%

Correct
73%

Incorrect
27%

TF-IDF

Correct Incorrect

Correct
78%

Incorrect
22% Correct

40%

Incorrect
60%

Correct
43%

Incorrect
58%

Correct
67%

Incorrect
33%

Doc2Vec

Correct Incorrect

Correct
62%

Incorrect
38%

Correct
18%

Incorrect
82%

Correct
27%

Incorrect
73%

Correct
21%

Incorrect
79%

LSI

Correct Incorrect

Lang

Math

JFREECHART

MONDRIAN

Lang

Math

JFREECHART

MONDRIAN

Lang

Math

JFREECHART

MONDRIAN

Fig. 6. Results featuring the three approaches, corpus built from the IDENT represen-
tation of the source code.

combination was merely 50% for most similar classes, while 70% for to top five
items in the ranked list. Combining LSI and TF-IDF with Doc2Vec in such a way
that they provide the base of the ranked list and being only refined by Doc2Vec
also performed poorly. However, the refinement of Doc2Vec’s ranked list with
both other techniques improved the results. The refinement of the similarity list
with LSI resulted in more than 2.5% improvement compared to Doc2Vec as a
standalone technique. Although TF-IDF also improved the values, the improve-
ment was just under 2%. Due to space limitations and to stick to the results
that seem more important we do not display these results in detail. We also ex-
perimented with the combination of all three techniques: the main similarity list
was provided by Doc2Vec and refined by TF-IDF and LSI. When we combined
Doc2Vec with both of the other methods, the obtained results were even better
than in the other cases. Table 1 presents the results of Doc2Vec as a standalone
technique, and as a combination with other approaches. If we compare these
results an advantage in the latter method’s precision can be recognized. If only
the most similar code class is considered, Doc2Vec’s average precision was 57%,
while with the combined technique we achieved nearly 60%. The most prominent
improvement can be identified at Commons Math (roughly 8%), but it is evident
that the precision values of every system have increased.

Answer to RQ3: Based on the results, we can clearly see that the combi-
nation of techniques has improved the performance in test-to-code traceability
link recovery.

While the produced model seems to outperform Doc2Vec in every aspect,
Mondrian still remains an outlier. As we saw before, TF-IDF resulted in an
outstanding 72.8% precision value, while Doc2Vec merely achieved 67.2%. The
deviation is also present if we consider the top 2 or top 5 most similar classes
(74%/68% and 86%/75% respectively). While the combined approach improved
the outcome of the basic Doc2Vec model, it did not reach the precision of TF-
IDF in this single case. Even this considered, on average the combined approach
improved the results compared to Doc2Vec by almost 4%.

Table 1. Results obtained from Doc2Vec as a standalone technique and as a mixed
approach.

Doc2Vec Doc2Vec-TFIDF-LSI
TopN results 1 2 5 1 2 5

Commons Lang 78.3% 88.4% 91.8% 78.3% 88.4% 93.1%
Commons Math 40.1% 52.3% 62.9% 48.2% 58.0% 68.2%
JFreeChart 42.5% 50.6% 62.0% 45.3% 55.2% 67.3%
Mondrian 67.2% 68.5% 75.1% 67.6% 70.2% 80.7%

Commons Lang

78.3% 1936

Correctly assigned test:

Commons Math

40.1% 1401

Correctly assigned test:

JFreeChart

42.5% 952

Correctly assigned test:

Mondrian

67.2% 1039

Correctly assigned test:

Commons Lang

78.3%

Commons Lang Commons Math

48.3%

Commons Math JFreeChart

45.3%

JFreeChart Mondrian

67.6%

Mondrian

1936
Correctly

assigned test:

Improvement:

0.0%

1687
Correctly

assigned test:

Improvement:

8.0%

1014
Correctly

assigned test:

Improvement:

2.8%

1045
Correctly

assigned test:

Improvement:

0.4%

Fig. 7. Result values of the combined Doc2Vec method, trained on the IDENT repre-
sentation of the source code.

6 Related work

Traceability in software engineering research typically refers to the discovery of
traceability links from requirements or related natural text documentation to-
wards the source code [3, 22]. Even as test-to-code traceability is not the most
fashionable topic among link recovery tasks, there are several well-known meth-
ods that aim to cope with this problem [35]. Test related traceability examples
also can be found [13, 35, 15, 31, 5], however no known perfect solution exists to
the problem. In the research community serious attempts have been made at
combating the problem via plugins in the development environment [29] or via
static or dynamic analysis [36]. The current state-of-the-art techniques [30] rely
on a combination of diverse methods. In this work, we also took advantage of
various textual similarity techniques, and the combination of these resulted in a
promising recovery precision.

Recommendation systems are also not new to software engineering [18, 33,
34], presenting a prioritized list of most likely solutions seems to be a more
resilient approach even in traceability research [15, 5].

Word2Vec [25] gained a lot of attention in recent years and became a very
popular approach in natural language processing. With this method, calculating
similarity between text elements became a mainstream process [19, 23, 38, 40, 44,
9, 43, 27]. Textual similarity is useful for example in the clone detection prob-
lem [40]. Doc2Vec [24] is an extension of the Word2Vec method dealing with
whole documents rather than single words. Although not enjoying the immense
popularity of Word2Vec, it is still prominent to the scientific community [46, 6,
39, 7]. In requirement traceability, researchers also made use of word embeddings
to recover appropriate links [9, 45, 44]. Our current approach differs from these

in many aspects. To begin with, we make use of three different similarity con-
cepts, not just one. Next, we compute document embeddings in one step, while
in other approaches this is usually achieved in several steps. Finally, our models
were trained only on source code (or on some representation which was obtained
from the source code) and there was no natural language based corpus.

Using TF-IDF for traceability is not a novelty in the software engineering
domain, however, most of the researchers cope with the requirement traceability
problem. For example, this technique was used in [42] to trace textual require-
ment elements to related textual defect reports, or in [10] for the after-the-fact
tracing problem. In requirement traceability the use of TF-IDF is so widespread,
that it is considered as a baseline method [37]. Our methods did not seem to
benefit from TF-IDF as a standalone technique, rather as a refinement for other
techniques.

LSI has been applied for recovering traceability links between various soft-
ware artifacts, even in feature extraction experiments [16]. LSI is already known
to be capable of producing good quality results combined with structural infor-
mation [17, 14]. Besides feature extraction, LSI as a standalone technique can be
applied to the test-to-code traceability task as well [15, 5].

Although natural language based methods are not the most effective stan-
dalone techniques, state-of-the-art test-to-code traceability methods like the
method provided by Qusef et al. [30, 32] incorporate textual analysis for more
precise recovery. In these papers, the authors named their method SCOTCH and
have proposed several improvements to it. Although their purpose is similar to
ours, a fundamental difference is that they used dynamic slicing and focus on
the last assert statement inside a test case. Their approach also relies on class
name similarity, while we encoded code snippets without any assumptions on
naming conventions. These methods use LSI for textual similarity evaluation,
while previous evaluations of word embeddings for this purpose are unknown.

7 Conclusions

Test-to-code traceability helps to find production code for a given test case. Our
assumption was that the related test and code classes are similar to each other in
some sense. We employed three different similarity concepts, based on Doc2Vec,
LSI and TF-IDF. Since these methods are intended for natural language texts,
we experimented with three different source code representations. Analyzing the
obtained data, we derived the conclusion that from simple source code repre-
sentations, IDENT performs more desirable in test traceability. We compared
the obtained results from the three textual similarity techniques and found that
the Doc2Vec based similarity performs better in the recovery task than other
approaches. Finally, we refined Doc2Vec’s ranked similarity list with the recom-
mendation of the other approaches. With this experiment we have successfully
improved the performance of Doc2Vec for every project, therefore introducing a
successful mixed approach for the textual matching of tests and their production
code.

Acknowledgements

This work was supported by the UNKP-18-2 New National Excellence Program
and the European Union, co-financed by the European Social Fund (EFOP-3.6.3-
VEKOP-16-2017-00002). The Ministry of Human Capacities, Hungary grant
20391-3/2018/FEKUSTRAT is also acknowledged.

References

1. Gensim gensim webpage. https://radimrehurek.com/gensim/, accessed: 2019
2. TIOBE programming community index. https://www.tiobe.com/tiobe-index, ac-

cessed: 2019
3. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-

ability links between code and documentation. IEEE Transactions on Software
Engineering 28(10), 970–983 (oct 2002)

4. Apache Commons webpage. http://commons.apache.org/ (2019)
5. Csuvik, V., Kicsi, A., Vidács, L.: Source code level word embeddings in aiding

semantic test-to-code traceability. In: 10th International Workshop at the 41st
International Conference on Software Engineering (ICSE) – SST 2019. IEEE (2019)

6. Dai, A.M., Olah, C., Le, Q.V.: Document Embedding with Paragraph Vectors (jul
2015)

7. DeFronzo, R.A., Lewin, A., Patel, S., Liu, D., Kaste, R., Woerle, H.J., Broedl, U.C.:
Combination of empagliflozin and linagliptin as second-line therapy in subjects
with type 2 diabetes inadequately controlled on metformin. Diabetes Care 38(3),
384–393 (jul 2015)

8. Dit, B., Guerrouj, L., Poshyvanyk, D., Antoniol, G.: Can Better Identifier Split-
ting Techniques Help Feature Location? In: Program Comprehension (ICPC), 2011
IEEE 19th International Conference on. pp. 11–20. ICPC ’11, IEEE, Washington,
DC, USA (2011)

9. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically Enhanced Software Trace-
ability Using Deep Learning Techniques. In: Proceedings - 2017 IEEE/ACM 39th
International Conference on Software Engineering, ICSE 2017. pp. 3–14. IEEE
(may 2017)

10. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Improving after-the-fact tracing and
mapping: Supporting software quality predictions. IEEE Software 22(6), 30–37
(nov 2005)

11. Hiemstra, D.: A probabilistic justification for using tf - idf term weighting in in-
formation retrieval. International Journal on Digital Libraries 3(2), 131–139 (aug
2000)

12. Hill, E., Binkley, D., Lawrie, D., Pollock, L., Vijay-Shanker, K.: An empirical study
of identifier splitting techniques. Empirical Software Engineering 19(6), 1754–1780
(dec 2014)

13. Kaushik, N., Tahvildari, L., Moore, M.: Reconstructing Traceability between Bugs
and Test Cases: An Experimental Study. In: 2011 18th Working Conference on
Reverse Engineering. pp. 411–414. IEEE (oct 2011)

14. Kicsi, A., Csuvik, V., Vidács, L., Horváth, F., Beszédes, Á., Gyimóthy, T., Koc-
sis, F.: Feature Analysis using Information Retrieval, Community Detection and
Structural Analysis Methods in Product Line Adoption. Journal of Systems and
Software (2019)

15. Kicsi, A., Tóth, L., Vidács, L.: Exploring the benefits of utilizing conceptual in-
formation in test-to-code traceability. Proceedings of the 6th International Work-
shop on Realizing Artificial Intelligence Synergies in Software Engineering pp. 8–14
(2018)

16. Kicsi, A., Vidács, L., Beszédes, A., Kocsis, F., Kovács, I.: Information retrieval
based feature analysis for product line adoption in 4gl systems. In: Proceedins of
the 17th International Conference on Computational Science and Its Applications
– ICCSA 2017. pp. 1–6. IEEE (2017)

17. Kicsi, A., Vidács, L., Csuvik, V., Horváth, F., Beszédes, A., Kocsis, F.: Supporting
product line adoption by combining syntactic and textual feature extraction. In:
International Conference on Software Reuse, ICSR 2018. Springer International
Publishing (2018)

18. Kochhar, P.S., Xia, X., Lo, D., Li, S.: Practitioners’ expectations on automated
fault localization. In: Proceedings of the 25th International Symposium on Software
Testing and Analysis - ISSTA 2016. pp. 165–176. ACM Press, New York, New York,
USA (2016)

19. Le, Q.V., Mikolov, T.: Distributed Representations of Sentences and Documents.
Tech. rep. (2014)

20. Lefebvre-Ulrikson, W., Da Costa, G., Rigutti, L., Blum, I.: Data Mining. New York
(2016)

21. Levy, O., Goldberg, Y.: Linguistic Regularities in Sparse and Explicit Word Rep-
resentations. Tech. rep. (2014)

22. Marcus, A., Maletic, J.I., Sergeyev, A.: Recovery of Traceability Links between
Software Documentation and Source Code. International Journal of Software En-
gineering and Knowledge Engineering pp. 811–836 (2005)

23. Mathieu, N., Hamou-Lhadj, A.: Word embeddings for the software engineering
domain. Proceedings of the 15th International Conference on Mining Software
Repositories - MSR ’18 pp. 38–41 (2018)

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed Represen-
tations of Words and Phrases and their Compositionality. Tech. rep. (2013)

25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. NIPS’13 Proceedings of
the 26th International Conference on Neural Information Processing Systems 2,
3111–3119 (dec 2013)

26. Mondrian webpage. http://www.theusrus.de/Mondrian/ (2019)
27. Nguyen, T.D., Nguyen, A.T., Phan, H.D., Nguyen, T.N.: Exploring API embed-

ding for API usages and applications. In: Proceedings - 2017 IEEE/ACM 39th
International Conference on Software Engineering, ICSE 2017. pp. 438–449. IEEE
(may 2017)

28. Paik, J.H.: A novel TF-IDF weighting scheme for effective ranking. In: Proceedings
of the 36th international ACM SIGIR conference on Research and development in
information retrieval - SIGIR ’13. p. 343. ACM Press, New York, New York, USA
(2013)

29. Philipp Bouillon, Jens Krinke, Nils Meyer, F.S.: EzUnit: A Framework for Associ-
ating Failed Unit Tests with Potential Programming Errors. In: Agile Processes in
Software Engineering and Extreme Programming, vol. 4536, pp. 101–104. Springer
Berlin Heidelberg (2007)

30. Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., Binkley, D.: Recovering test-
to-code traceability using slicing and textual analysis. Journal of Systems and
Software 88, 147–168 (2014)

31. Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., Binkley, D.: SCOTCH: Test-
to-code traceability using slicing and conceptual coupling. In: IEEE International
Conference on Software Maintenance, ICSM. pp. 63–72. IEEE (2011)

32. Qusef, A., Bavota, G., Oliveto, R., Lucia, A.D., Binkley, D.: Evaluating test-to-code
traceability recovery methods through controlled experiments. Journal of Software:
Evolution and Process 25(11), 1167–1191 (nov 2013)

33. Robillard, M., Walker, R., Zimmermann, T.: Recommendation Systems for Soft-
ware Engineering. IEEE Software 27(4), 80–86 (jul 2010)

34. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T.: Recommendation Sys-
tems in Software Engineering. Springer Publishing Company, Incorporated (2014)

35. Rompaey, B.V., Demeyer, S.: Establishing traceability links between unit test
cases and units under test. In: European Conference on Software Maintenance
and Reengineering, CSMR. pp. 209–218. IEEE (2009)

36. Sneed, H.: Reverse engineering of test cases for selective regression testing. In:
European Conference on Software Maintenance and Reengineering, CSMR 2004.
pp. 69–74. IEEE (2004)

37. Sundaram, S.K., Hayes, J.H., Dekhtyar, A.: Baselines in requirements tracing. In:
ACM SIGSOFT Software Engineering Notes. vol. 30, p. 1. ACM Press, New York,
New York, USA (2005)

38. Tufano, M., Watson, C., Bavota, G., Di Penta, M., White, M., Poshyvanyk, D.:
Deep learning similarities from different representations of source code. Proceedings
of the 15th International Conference on Mining Software Repositories - MSR ’18
18, 542–553 (2018)

39. Wang, S., Tang, J., Aggarwal, C., Liu, H.: Linked Document Embedding for Clas-
sification. In: Proceedings of the 25th ACM International on Conference on Infor-
mation and Knowledge Management - CIKM ’16. pp. 115–124. ACM Press, New
York, New York, USA (2016)

40. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code frag-
ments for code clone detection. Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering - ASE 2016 pp. 87–98 (2016)

41. Wilson, G., Aruliah, D.A., Brown, C.T., Chue Hong, N.P., Davis, M., Guy, R.T.,
Haddock, S.H., Huff, K.D., Mitchell, I.M., Plumbley, M.D., Waugh, B., White,
E.P., Wilson, P.: Best Practices for Scientific Computing. PLoS Biology 12(1),
e1001745 (jan 2014)

42. Yadla, S., Hayes, J.H., Dekhtyar, A.: Tracing requirements to defect reports: An
application of information retrieval techniques. Innovations in Systems and Soft-
ware Engineering 1(2), 116–124 (sep 2005)

43. Yang, X., Lo, D., Xia, X., Bao, L., Sun, J.: Combining Word Embedding with
Information Retrieval to Recommend Similar Bug Reports. In: Proceedings - In-
ternational Symposium on Software Reliability Engineering, ISSRE. pp. 127–137.
IEEE (oct 2016)

44. Ye, X., Shen, H., Ma, X., Bunescu, R., Liu, C.: From word embeddings to doc-
ument similarities for improved information retrieval in software engineering. In:
Proceedings of the 38th International Conference on Software Engineering - ICSE
’16. pp. 404–415. ACM Press, New York, New York, USA (2016)

45. Zhao, T., Cao, Q., Sun, Q.: An Improved Approach to Traceability Recovery Based
on Word Embeddings. In: Proceedings - Asia-Pacific Software Engineering Confer-
ence, APSEC. vol. 2017-Decem, pp. 81–89. IEEE (dec 2018)

46. Zhu, Z., Hu, J.: Context Aware Document Embedding (jul 2017)

