Skip to main content

Molecular Simulations of CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O Gaseous Mixture Separation in Graphtriyne Membrane

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Graphynes are porous derivatives of graphene that can be considered as ideal 2D nanofilters. Here, we investigate by theoretical methods graphtriyne single layer, proposing them as membranes featuring pores of subnanometer size suitable for CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O separation and CO\(_{2}\) uptake. The potential energy surfaces, representing the intermolecular interactions within the CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O gaseous mixtures and between the graphtriyne single layer and the molecules, have been formulated in an internally consistent way, by adopting potential models far more accurate than the traditional Lennard-Jones functions, routinely used to predict static and dynamical properties of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (EPA), U.S. Environmental Protection Agency: Climate Change Indicators in the United States: Global Greenhouse Gas Emissions (2016)

    Google Scholar 

  2. (WRI), World Resources Institute: Climate Analysis Indicators Tool (CAIT) 2.0: WRI’s Climate Data Explorer

    Google Scholar 

  3. Huck, J.M., et al.: Evaluating different classes of porous materials for carbon capture. Energy Environ. Sci. 7, 4132–4146 (2014)

    Google Scholar 

  4. Bui, M., et al.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018)

    Google Scholar 

  5. Li, J.R., et al.: Porous materials with pre-designed single-molecule traps for CO\(_{2}\) selective adsorption. Nat. Commun. 4, 1538 (2014)

    Google Scholar 

  6. Celiberto, R., et al.: Atomic and molecular data for spacecraft re-entry plasmas. Plasma Sour. Sci. Technol. 25(3), 033004 (2016)

    Google Scholar 

  7. Smit, B.: Carbon capture and storage: introductory lecture. Faraday Discuss. 192, 9–25 (2016)

    Google Scholar 

  8. Srinivas, G., Krungleviciute, V., Guo, Z.X., Yildirim, T.: Exceptional CO\(_{2}\) capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7, 335–342 (2014)

    Google Scholar 

  9. Ganesan, A., Shaijumon, M.: Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 220, 21–27 (2015)

    Google Scholar 

  10. Ghosh, S., Sevilla, M., Fuertes, A.B., Andreoli, E., Ho, J., Barron, A.R.: Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxide-methane selectivity. J. Mater. Chem. A 4, 14739–14751 (2016)

    Google Scholar 

  11. Kim, J., Lin, L.C., Swisher, J.A., Haranczyk, M., Smit, B.: Predicting large CO\(_{2}\) adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J. Am. Chem. Soc. 134(46), 18940–18943 (2012)

    Google Scholar 

  12. Liu, B., Smit, B.: Molecular simulation studies of separation of CO\(_{2}\)/N\(_{2}\), CO\(_{2}\)/CH\(_{4}\), and CH\(_{4}\)/N\(_{2}\) by ZIFs. J. Phys. Chem. C 114(18), 8515–8522 (2010)

    Google Scholar 

  13. Lin, L.C., et al.: Understanding CO dynamics in metal-organic frameworks with open metal sites. Angew. Chem. Int. Ed. 52(16), 4410–4413 (2013)

    Google Scholar 

  14. Schrier, J.: Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl. Mater. Interfaces 4(7), 3745–3752 (2012)

    Google Scholar 

  15. Xiang, Z., et al.: Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015)

    Google Scholar 

  16. Liu, H., et al.: A hybrid absorption–adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014)

    Google Scholar 

  17. Liu, H., Dai, S., Jiang, D.: Insights into CO\(_{2}\)/N\(_{2}\) separation through nanoporous graphene from molecular dynamics. Nanoscale 5, 9984–9987 (2013)

    Google Scholar 

  18. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  19. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO\(_{2}\) molecules: cross sections and probabilities for Kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117(45), 11430–11440 (2013)

    Google Scholar 

  20. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  21. Pearlman, D., et al.: AMBER. A package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995)

    Google Scholar 

  22. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)

    Google Scholar 

  23. Vekeman, J., García Cuesta, I., Faginas-Lago, N., Wilson, J., Sánchez-Marín, J., Sánchez de Merás, A.: Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks. Phys. Chem. Chem. Phys. 20(18), 25518–25530 (2018)

    Google Scholar 

  24. Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: Energy transfer upon collision of selectively excited CO\(_{2}\) molecules: state-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. J. Chem. Phy. 143(3), 034307 (2015)

    Google Scholar 

  25. Faginas-Lago, N., Albertí, M., Costantini, A., Laganà, A., Lombardi, A., Pacifici, L.: An innovative synergistic grid approach to the computational study of protein aggregation mechanisms. J. Mol. Model. 20(7), 2226 (2014)

    Google Scholar 

  26. Boyd, P.G., Moosavi, S.M., Witman, M., Smit, B.: Force-field prediction of materials properties in metal-organic frameworks. J. Phys. Chem. Lett. 8(2), 357–363 (2017)

    Google Scholar 

  27. Lin, L.C., Lee, K., Gagliardi, L., Neaton, J.B., Smit, B.: Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal-organic frameworks. J. Chem. Theory Comput. 10(4), 1477–1488 (2014)

    Google Scholar 

  28. Lim, J.R., Yang, C.T., Kim, J., Lin, L.C.: Transferability of CO\(_{2}\) force fields for prediction of adsorption properties in all-silica zeolites. J. Phys. Chem. C 122(20), 10892–10903 (2018)

    Google Scholar 

  29. DuBay, K.H., Hall, M.L., Hughes, T.F., Wu, C., Reichman, D.R., Friesner, R.A.: Accurate force field development for modeling conjugated polymers. J. Chem. Theory Comput. 8(11), 4556–4569 (2012)

    Google Scholar 

  30. Bartolomei, M., Carmona-Novillo, E., Giorgi, G.: First principles investigation of hydrogen physical adsorption on graphynes’ layers. Carbon 95, 1076–1081 (2015)

    Google Scholar 

  31. Du, H., Li, J., Zhang, J., Su, G., Li, X., Zhao, Y.: Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115(47), 23261–23266 (2011)

    Google Scholar 

  32. James, A., et al.: Graphynes: indispensable nanoporous architectures in carbon flatland. RSC Adv. 8, 22998–23018 (2018)

    Google Scholar 

  33. Gao, X., et al.: Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4(7), eaat6378 (2018)

    Google Scholar 

  34. Faginas, N., Huarte-Larrañaga, F., Laganà, A.: Full dimensional quantum versus semiclassical reactivity for thebent transition state reaction N + N\(_2\). Chem. Phys. Lett. 464(4–6), 249–255 (2008)

    Google Scholar 

  35. Apriliyanto, Y.B., et al.: Nanostructure selectivity for molecular adsorption and separation: the case of graphyne layers. J. Phys. Chem. C 122(28), 16195–16208 (2018)

    Google Scholar 

  36. Faginas-Lago, N., Yeni, D., Huarte, F., Wang, Y., Alcamí, M., Martin, F.: Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120(32), 6451–6458 (2016)

    Google Scholar 

  37. Yeamin, M.B., Faginas-Lago, N., Albertí, M., García Cuesta, I., Sánchez-Marín, J., Sánchez de Merás, A.: Multi-scale theoretical investigation of molecular hydrogen adsorption over graphene: coronene as a case study. RSC Adv. 4, 54447–54453 (2014)

    Google Scholar 

  38. Barreto, P.R., et al.: Potential energy surfaces for interactions of H\(_{2}\)O with H\(_{2}\), N\(_{2}\) and O\(_{2}\): a hyperspherical harmonics representation, and a minimal model for the H\(_{2}\)O-rare-gas-atom systems. Comput.Theor. Chem. 990, 53–61 (2012)

    Google Scholar 

  39. Pallottelli, S., Tasso, S., Pannacci, N., Costantini, A., Lago, N.F.: Distributed and collaborative learning objects repositories on grid networks. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6019, pp. 29–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12189-0_3

    Chapter  Google Scholar 

  40. Lago, N., Laganá, A., Gargano, R., Barreto, P.: On the semiclassical initial value calculation of thermal rate coefficients for the reaction N + N\(_{2}\). J. Chem. Phys. 125(11), 114311 (2006)

    Google Scholar 

  41. Laganà, A., Faginas Lago, N., Rampino, S., Huarte-Larrañaga, F., García, E.: Thermal rate coefficients in collinear versus bent transition state reactions: the N + N\(_{2}\) case study. Phys. Scr. 78(5), 058116 (2008)

    Google Scholar 

  42. Rampino, S., Faginas-Lago, N., Laganà, A., Huarte-Larrañaga, F.: An extension of the grid empowered molecular simulator to quantum reactive scattering. J. Comput. Chem. 33, 708–714 (2012)

    Google Scholar 

  43. Laganà, A., Crocchianti, S., Faginas Lago, N., Pacifici, L., Ferraro, G.: A nonorthogonal coordinate approach to atom-diatom parallel reactive scattering calculations. Collect. Czech. Chem. Commun. 68(2), 307–330 (2003)

    Google Scholar 

  44. Faginas Lago, N., Lombardi, A., Pacifici, L., Costantini, A.: Design and implementation of a grid application for direct calculations of reactive rates. Comput. Theor. Chem. 1022, 103–107 (2013)

    Google Scholar 

  45. Lombardi, A., Faginas-Lago, N., Laganà, A.: Grid calculation tools for massive applications of collision dynamics simulations: carbon dioxide energy transfer. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 627–639. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_43

    Chapter  Google Scholar 

  46. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, 8 (2015)

    Google Scholar 

  47. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S\(_{2}\). Chem. Phys. Lett. 695, 87–93 (2018)

    Google Scholar 

  48. Podio, L., et al.: Silicon-bearing molecules in the shock L1157-B1: first detection of SiS around a Sun-like protostar. Mon. Not. Roy. Astron. Soc. Lett. 470(1), 16–20 (2017)

    Google Scholar 

  49. Battaglia, S., Faginas-Lago, N., Andrae, D., Evangelisti, S., Leininger, T.: Increasing radical character of large [n]cyclacenes unveiled by wave function theory. J. Phys. Chem. A 121(19), 3746–3756 (2017)

    Google Scholar 

  50. Bartolomei, M., Giorgi, G.: A novel nanoporous graphite based on graphynes: first-principles structure and carbon dioxide preferential physisorption. ACS Appl. Mater. Interfaces 8(41), 27996–28003 (2016). PMID: 27667472

    Google Scholar 

  51. Albertí, M., Aguilar, A., Cappelletti, D., Laganà, A., Pirani, F.: On the development of an effective model potential to describe ater interaction in neutral and ionic clusters. Int. J. Mass Spec. 280, 50–56 (2009)

    Google Scholar 

  52. Albertí, M., Pirani, F., Laganà, A.: Carbon dioxide clathrate hydrates: selective role of intermolecular interactions and action of the SDS catalyst. J. Phys. Chem. A 117(32), 6991–7000 (2013)

    Google Scholar 

  53. Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO\(_{2}\)-N\(_{2}\) collisions: selectivity control by the anisotropy of the interaction. J. Comput. Chem. 37(16), 1463–1475 (2016)

    Google Scholar 

  54. Bartolomei, M., Pirani, F., Laganà, A., Lombardi, A.: A full dimensional grid empowered simulation of the CO\(_{2}\) + CO\(_{2}\) processes. J. Comput. Chem. 33(22), 1806–1819 (2012)

    Google Scholar 

  55. Pirani, P., Brizi, S., Roncaratti, L., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5489 (2008)

    Google Scholar 

  56. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  57. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A., Pacifici, L., Costantini, A.: The molecular stirrer catalytic effect in methane ice formation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 585–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_40

    Chapter  Google Scholar 

  58. Faginas Lago, N., Albertí, M., Lombardi, A., Pirani, F.: A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theor. Chem. Acc. 135(7), 161 (2016)

    Google Scholar 

  59. Faginas-Lago, N., Albertí, M., Laganà, A., Lombardi, A.: Ion-water cluster molecular dynamics using a semiempirical intermolecular potential. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 355–370. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21407-8_26

    Chapter  Google Scholar 

  60. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004)

    Google Scholar 

  61. Pacifici, L., Verdicchio, M., Faginas-Lago, N.F., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_2\) + N\(_2\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013)

    Google Scholar 

  62. Faginas-Lago, N., Albertí, M., Laganà, A., Lombardi, A.: Water (H\(_2\)O)\(_m\) or Benzene (C\(_6\)H\(_6\))\(_n\) aggregates to solvate the K\(_+\)? In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_1

    Chapter  Google Scholar 

  63. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.: Accurate analytic intermolecular potential for the simulation of Na\(^{+}\) and K\(^{+}\) ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015)

    Google Scholar 

  64. Lombardi, A., Faginas-Lago, N., Gaia, G., Federico, P., Aquilanti, V.: Collisional energy exchange in CO\(_2\)–N\(_2\) Gaseous mixtures. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 246–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_19

    Chapter  Google Scholar 

  65. Albertí, M., Faginas-Lago, N.: Ion size influence on the Ar solvation shells of M\(^{+}\)C\(_{6}\)F\(_{6}\) clusters (M = Na, K, Rb, Cs). J. Phys. Chem. A 116(12), 3094–3102 (2012)

    Google Scholar 

  66. Aquilanti, V., Beddoni, A., Cavalli, S., Lombardi, A., Littlejohn, R.: Collective hyperspherical coordinates for polyatomic molecules and clusters. Mol. Phys. 98(21), 1763–1770 (2000)

    Google Scholar 

  67. Aquilanti, V., Beddoni, A., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for Kinematic rotations. Int. J. Quantum Chem. 89(4), 277–291 (2002)

    Google Scholar 

  68. Aquilanti, V., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for collective motions. Theoret. Chem. Acc. 111(2–6), 400–406 (2004)

    Google Scholar 

  69. Sevryuk, M.B., Lombardi, A., Aquilanti, V.: Hyperangular momenta and energy partitions in multidimensional many-particle classical mechanics: the invariance approach to cluster dynamics. Phys. Rev. A 72(3), 033201 (2005)

    MathSciNet  Google Scholar 

  70. Smith, W., Yong, C., Rodger, P.: \(\mathtt {DL\_POLY}\): application to molecular simulation. Mol. Simul. 28(5), 385–471 (2002)

    Google Scholar 

  71. Elliott, J., Lira, C.T.: Introductory Chemical Engineering Thermodynamics. Prentice Hall, New Jersey (2012)

    Google Scholar 

  72. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Google Scholar 

Download references

Acknowledgement

The authors thank MIUR and Perugia University for financial support through the AMIS project (“Dipartimenti di Eccellenza-2018–2022”). AL thanks the Italian MIUR for funding through the program PRIN 2015 (contract 2015F59J3R 002). AL and NFL also thanks the Dipartimento di Chimica, Biologia e Biotecnologie for funding under the program Fondo Ricerca di Base 2017. AL and NFL also thank the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma (OU) for allocated computing time. YBA thanks to the LCPQ - Université de Toulouse III for allocated computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Faginas-Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A. (2019). Molecular Simulations of CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O Gaseous Mixture Separation in Graphtriyne Membrane. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11624. Springer, Cham. https://doi.org/10.1007/978-3-030-24311-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24311-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24310-4

  • Online ISBN: 978-3-030-24311-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics