Skip to main content

Posture Classification Based on a Spine Shape Monitoring System

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11624))

Abstract

Lower back pain is one of the leading causes for musculoskeletal disability throughout the world. A large percentage of the population suffers from lower back pain at some point in their life. One non-invasive approach to reduce back pain is postural modification which can be learned through training. In this context, wearables are becoming more and more prominent since they are capable of providing feedback about the user’s posture in real-time. Optimal, healthy posture depends on the position (sitting, standing, hinging) the user is in. Meaningful feedback needs to adapt to the current position and, in the best case, identify the position automatically to minimize necessary interactions from the user. In this work, we present results of classifying the positions of users based on the readings of the device. We computed various features and evaluated the performance of K-Nearest Neighbors, Extra Trees, Artificial Neural Networks and AdaBoost for global inter-subject classification as well as for personalized subject-specific classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://gokhalemethod.com/.

References

  1. Vos, T., Abajobir, A.A., Abate, K.H., Abbafati, C., Abbas, K.M., et al.: Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet 390(10100), 1211–1259 (2017)

    Article  Google Scholar 

  2. NINDS: Low back pain fact sheet (2017). https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Low-Back-Pain-Fact-Sheet/. Accessed 16 May 2018

  3. Enterprises, G.M.: Gokhale spinetracker. https://gokhalemethod.com/. Accessed 23 July 2018

  4. Noiumkar, S., Tirakoat, S.: Use of optical motion capture in sports science: a case study of golf swing. In: 2013 International Conference on Informatics and Creative Multimedia, pp. 310–313. IEEE (2013)

    Google Scholar 

  5. MacIver, M., Sharabash, N., Nelson, M.: Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity. J. Exp. Biol. 204(3), 543–557 (2001)

    Google Scholar 

  6. Culhane, K.M., O’Connor, M., Lyons, D., Lyons, G.M.: Accelerometers in rehabilitation medicine for older adults. Age Ageing 34(6), 556–560 (2005)

    Article  Google Scholar 

  7. Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., Savatier, X.: A study of vicon system positioning performance. Sensors 17(7), 1591 (2017)

    Article  Google Scholar 

  8. Riaz, Q., Guanhong, T., Krüger, B., Weber, A.: Motion reconstruction using very few accelerometers and ground contacts. Graph. Models 79, 23–38 (2015)

    Article  Google Scholar 

  9. Slyper, R., Hodgins, J.K.: Action capture with accelerometers. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA 2008, pp. 193–199. Eurographics Association (2008)

    Google Scholar 

  10. Vlasic, D., et al.: Practical motion capture in everyday surroundings. ACM Trans. Graph. 26(3), 35 (2007)

    Article  Google Scholar 

  11. Farella, E., Benini, L., Riccò, B., Acquaviva, A.: MOCA: a low-power, low-cost motion capture system based on integrated accelerometers. Adv. Multimedia 2007(1), 1 (2007)

    Article  Google Scholar 

  12. Weise, T., Bouaziz, S., Li, H., Pauly, M.: Realtime performance-based facial animation. ACM Trans. Graph. 30(4), 77:1–77:10 (2011)

    Article  Google Scholar 

  13. Cao, C., Bradley, D., Zhou, K., Beeler, T.: Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34(4), 46:1–46:9 (2015)

    Article  Google Scholar 

  14. Hoffmann, J., Brüggemann, B., Krüger, B.: Automatic calibration of a motion capture system based on inertial sensors for tele-manipulation. In: 7th International Conference on Informatics in Control, Automation and Robotics, June (2010)

    Google Scholar 

  15. Ma, C.Z.H., Ling, Y.T., Shea, Q.T.K., Wang, L.K., Wang, X.Y., Zheng, Y.P.: Towards wearable comprehensive capture and analysis of skeletal muscle activity during human locomotion. Sensors 19(1), 195 (2019)

    Article  Google Scholar 

  16. Zhao, W., Chai, J., Xu, Y.Q.: Combining marker-based mocap and RGB-D camera for acquiring high-fidelity hand motion data. In: Proceedings of ACM SCA, pp. 33–42 (2012)

    Google Scholar 

  17. Stollenwerk, K., Vögele, A., Krüger, B., Hinkenjann, A., Klein, R.: Automatic temporal segmentation of articulated hand motion. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 433–449. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7_33

    Chapter  Google Scholar 

  18. Wan, C., Probst, T., Van Gool, L., Yao, A.: Dense 3D regression for hand pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2018)

    Google Scholar 

  19. Williams, J.M., Haq, I., Lee, R.Y.: Dynamic measurement of lumbar curvature using fibre-optic sensors. Med. Eng. Phys. 32(9), 1043–1049 (2010)

    Article  Google Scholar 

  20. Stollenwerk, K., Müllers, J., Müller, J., Hinkenjann, A., Krüger, B.: Evaluating an accelerometer-based system for spine shape monitoring. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 740–756. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_58

    Chapter  Google Scholar 

  21. Xu, W., et al.: MonoPerfCap: human performance capture from monocular video. ACM Trans. Graph. 37(2), 27:1–27:15 (2018)

    Article  Google Scholar 

  22. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human avatars from monocular video. In: International Conference on 3D Vision, pp. 98–109. IEEE (2018)

    Google Scholar 

  23. Iqbal, U., Doering, A., Yasin, H., Krüger, B., Weber, A., Gall, J.: A dual-source approach for 3D human pose estimation from single images. Comput. Vis. Image Underst. 172, 37–49 (2018)

    Article  Google Scholar 

  24. Dabral, R., Mundhada, A., Kusupati, U., Afaque, S., Sharma, A., Jain, A.: Learning 3D human pose from structure and motion. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 679–696. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_41

    Chapter  Google Scholar 

  25. Bernard, J., Dobermann, E., Vögele, A., Krüger, B., Kohlhammer, J., Fellner, D.: Visual-interactive semi-supervised labeling of human motion capture data. In: Visualization and Data Analysis, January (2017)

    Google Scholar 

  26. Baumann, J., Wessel, R., Krüger, B., Weber, A.: Action graph: a versatile data structure for action recognition. In: GRAPP 2014 - International Conference on Computer Graphics Theory and Applications, SCITEPRESS, January (2014)

    Google Scholar 

  27. Riaz, Q., Vögele, A., Krüger, B., Weber, A.: One small step for a man: estimation of gender, age, and height from recordings of one step by a single inertial sensor. Sensors 15(12), 31999–32019 (2015)

    Article  Google Scholar 

  28. Consmüller, T., et al.: Automatic distinction of upper body motions in the main anatomical planes. Med. Eng. Phys. 36(4), 516–521 (2014)

    Article  Google Scholar 

  29. Jeyhani, V., Mahdiani, S., Viik, J., Oksala, N., Vehkaoja, A.: A novel technique for analysis of postural information with wearable devices. In: IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks, March, 30–33 (2018)

    Google Scholar 

  30. Wong, W.Y., Wong, M.S.: Trunk posture monitoring with inertial sensors. Eur. Spine J. 17(5), 743–753 (2008)

    Article  Google Scholar 

  31. Voinea, G.D., Butnariu, S., Mogan, G.: Measurement and geometric modelling of human spine posture for medical rehabilitation purposes using a wearable monitoring system based on inertial sensors. Sensors 17(1), 3 (2017)

    Article  Google Scholar 

  32. Fathi, A., Curran, K.: Detection of spine curvature using wireless sensors. J. King Saud Univ.-Sci. 29(4), 553–560 (2017)

    Article  Google Scholar 

  33. Cajamarca, G., Rodríguez, I., Herskovic, V., Campos, M., Riofrío, J.C.: StraightenUp+: monitoring of posture during daily activities for older persons using wearable sensors. Sensors 18(10), 3409 (2018)

    Article  Google Scholar 

  34. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Tarca, A.L., Carey, V.J., Chen, X., Romero, R., Drăghici, S.: Machine learning and its applications to biology. PLoS Comput. Biol. 3(6), e116 (2007)

    Article  Google Scholar 

  36. Scikitlearn: Nearest neighbors. http://scikit-learn.org/stable/modules/neighbors.html. Accessed 19 Sept 2018

  37. Bhatia, N.: Vandana: Survey of nearest neighbor techniques. CoRR abs/1007.0085 (2010)

    Google Scholar 

  38. Lan, K., Wang, D.T., Fong, S., Liu, L.S., Wong, K.K., Dey, N.: A survey of data mining and deep learning in bioinformatics. J. Med. Syst. 42(8), 139:1–139:20 (2018)

    Article  Google Scholar 

  39. Ho, T.K.: Random decision forests. In: Third International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)

    Google Scholar 

  40. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  41. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49(11), 1225–1231 (1996)

    Article  Google Scholar 

  42. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  43. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Stat. Interface 2(3), 349–360 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Icxa Khandelwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khandelwal, I., Stollenwerk, K., Krüger, B., Weber, A. (2019). Posture Classification Based on a Spine Shape Monitoring System. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11624. Springer, Cham. https://doi.org/10.1007/978-3-030-24311-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24311-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24310-4

  • Online ISBN: 978-3-030-24311-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics