Skip to main content

Evaluation of Inertial Sensor Configurations for Wearable Gait Analysis

  • Chapter
  • First Online:
Big Data, Cloud Computing, and Data Science Engineering (BCD 2019)

Abstract

Gait analysis has potential use in various applications, such as health care, clinical rehabilitation, sport training, and pedestrian navigation. This paper addresses the problem of detecting gait events based on inertial sensors and body sensor networks (BSNs). Different methods have been presented for gait detection in the literature. Generally, straightforward rule-based methods involve a set of detection rules and associated thresholds, which are empirically predetermined and relatively brittle; whereas adaptive machine learning-based methods require a time-consuming training process and an amount of well-labeled data. This paper aims to investigate the effect of type, number and location of inertial sensors on gait detection, so as to offer some suggestions for optimal sensor configuration. Target gait events are detected using a hybrid adaptive method that combines a hidden Markov model (HMM) and a neural network (NN). Detection performance is evaluated with multi-subject gait data that are collected using foot-mounted inertial sensors. Experimental results show that angular rate hold the most reliable information for gait recognition during forward walking on level ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Analog Devices, ADIS16448 (2019-5-4). http://www.analog.com/en/products/sensors-mems/inertial-measurement-units/adis16448.html

  2. Oxford Metrics, Vicon Motion Systems (2019-5-4). https://www.vicon.com/products/camera-systems/vantage

  3. Abaid, N., Cappa, P., Palermo, E., Petrarca, M., Porfiri, M.: Gait detection in children with and without hemiplegia using single-axis wearable gyroscopes. PloS ONE 8(9), e73,152 (2013)

    Article  Google Scholar 

  4. Abdulrahim, K., Hide, C., Moore, H., Hill, C.: Aiding MEMS IMU with building heading for indoor pedestrian navigation. In: Ubiquitous Positioning Indoor Navigation and Location Based Service, pp. 1–6 (2010)

    Google Scholar 

  5. Abdulrahim, K., Hide, C., Moore, H., Hill, C.: Integrating low cost IMU with building heading in indoor pedestrian navigation. J. Glob. Position. Syst. 10(1), 30–38 (2011)

    Article  Google Scholar 

  6. Ayyappa, E.: Normal human locomotion, Part 1: Basic concepts and terminology. J. Prosthet. Orthot. 9(1), 10–17 (1997)

    Article  Google Scholar 

  7. Choe, N., Zhao, H., Qiu, S., So, Y.: A sensor-to-segment calibration method for motion capture system based on low cost MIMU. Measurement 131, 490–500 (2019)

    Article  Google Scholar 

  8. Evans, R.L., Arvind, D.: Detection of gait phases using orient specks for mobile clinical gait analysis. In: The 11th International Conference on Wearable and Implantable Body Sensor Networks, pp. 149–154 (2014)

    Google Scholar 

  9. Fischer, C., Sukumar, P.T., Hazas, M.: Tutorial: implementing a pedestrian tracker using inertial sensors. IEEE Pervasive Comput. 12(2), 17–27 (2013)

    Article  Google Scholar 

  10. Godha, S., Lachapelle, G.: Foot mounted inertial system for pedestrian navigation. Meas. Sci. Technol. 19(7), 1–9 (2008)

    Article  Google Scholar 

  11. Guenterberg, E., Yang, A.Y., Ghasemzadeh, H., Jafari, R., Bajcsy, R., Sastry, S.S.: A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 1019–1030 (2009)

    Article  Google Scholar 

  12. Hecht-Nielsen, R.: Theory of the Backpropagation Neural Network, pp. 65–93. Academic Press (1992)

    Google Scholar 

  13. Huang, M.H., Shilling, T., Miller, K.A., Smith, K., LaVictoire, K.: History of falls, gait, balance, and fall risks in older cancer survivors living in the community. Clin. Interv. Aging 10, 1497 (2015)

    Article  Google Scholar 

  14. Li, J., Wang, Z., Wang, J., Zhao, H., Qiu, S., Yang, N., Shi, X.: Inertial sensor-based analysis of equestrian sports between beginner and professional riders under different horse gaits. IEEE Trans. Instrum. Meas. 67(11), 2692–2704 (2018)

    Article  Google Scholar 

  15. Mannini, A., Sabatini, A.M.: Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope. Gait Posture 36(4), 657–661 (2012)

    Article  Google Scholar 

  16. Meng, X., Sun, S., Ji, L., Wu, J., Wong, W.: Estimation of center of mass displacement based on gait analysis. In: International Conference on Body Sensor Networks, pp. 150–155 (2011)

    Google Scholar 

  17. Morris, R., Hickey, A., Del Din, S., Godfrey, A., Lord, S., Rochester, L.: A model of free-living gait: a factor analysis in parkinson’s disease. Gait Posture 52, 68–71 (2017)

    Article  Google Scholar 

  18. Ogiela, M.R., Jain, L.C.: Computational Intelligence Paradigms in Advanced Pattern Classification. Springer, Berlin Heidelberg (2012)

    Book  Google Scholar 

  19. Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y., Fortino, G.: Body sensor network based robust gait analysis: toward clinical and at home use. IEEE Sens. J. (2018)

    Google Scholar 

  20. Skog, I., Händel, P., Nilsson, J.O., Rantakokko, J.: Zero-velocity detection—an algorithm evaluation. IEEE Trans. Biomed. Eng. 57(11), 2657–2666 (2010)

    Article  Google Scholar 

  21. Strömbäck, P., Rantakokko, J., Wirkander, S.L., Alexandersson, M., Fors, I., Skog, I., Händel, P.: Foot-mounted inertial navigation and cooperative sensor fusion for indoor positioning. In: Proceedings of the International Technical Meeting of the Institute of Navigation, pp. 89–98 (2010)

    Google Scholar 

  22. Wang, J., Wang, Z., Zhao, H., Qiu, S., Li, J.: Using wearable sensors to capture human posture for lumbar movement in competitive swimming. IEEE Trans. Hum. Mach. Syst. 49(2), 194–205 (2019)

    Article  Google Scholar 

  23. Wang, Z., Zhao, H., Qiu, S., Gao, Q.: Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system. IEEE/ASME Trans. Mechatron. 20(6), 3170–3181 (2015)

    Article  Google Scholar 

  24. Zhao, H., Wang, Z., Qiu, S., Shen, Y., Zhang, L., Tang, K., Fortino, G.: Heading drift reduction for foot-mounted inertial navigation system via multi-sensor fusion and dual-gait analysis. IEEE Sens. J. (2019)

    Google Scholar 

  25. Zhao, H., Wang, Z., Qiu, S., Wang, J., Xu, F., Wang, Z., Shen, Y.: Adaptive gait detection based on foot-mounted inertial sensors and multi-sensor fusion. Inf. Fusion 52, 157–166 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by National Natural Science Foundation of China no. 61873044, China Postdoctoral Science Foundation no. 2017M621131, Dalian Science and Technology Innovation Fund no. 2018J12SN077, and Fundamental Research Funds for the Central Universities no. DUT18RC(4)036 and DUT16RC(3)015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, H., Wang, Z., Qiu, S., Li, J., Gao, F., Wang, J. (2020). Evaluation of Inertial Sensor Configurations for Wearable Gait Analysis. In: Lee, R. (eds) Big Data, Cloud Computing, and Data Science Engineering. BCD 2019. Studies in Computational Intelligence, vol 844. Springer, Cham. https://doi.org/10.1007/978-3-030-24405-7_13

Download citation

Publish with us

Policies and ethics