Skip to main content

Using Machine Learning for Automatic Estimation of M. Smegmatis Cell Count from Fluorescence Microscopy Images

  • Chapter
  • First Online:
Precision Health and Medicine (W3PHAI 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 843))

Included in the following conference series:

Abstract

Relapse in Tuberculosis (TB) patients represents an important challenge to improve treatment. A large number of patients undergo relapse even after what was thought to be a successful treatment. Lipid rich (LR) bacteria, surviving treatment, are thought to play a key role in patient relapse. The presence of bacteria with intracellular lipid bodies in patients sputum was linked to higher risk of poor treatment outcome. LR bacteria can be stained and detected using fluorescence microscopy. However, manual counting of bacteria makes this method too labour intensive and potentially biased to be routinely used in practice or to foster large-scale data sets which would inform and drive future research efforts. In this paper we propose a new algorithm for automatic estimation of the number of bacteria present in images generated with fluorescence microscopy. Our approach comprises elements of image processing, computer vision and machine learning. We demonstrated the effectiveness of the method by testing it on fluorescence microscopy images of in vitro grown M. smegmatis cells stained with Nile red.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arandjelović, O.: Reimagining the central challenge of face recognition: turning a problem into an advantage. Pattern Recognit. 388–400 (2018)

    Article  Google Scholar 

  2. Arandjelović, O., Cipolla, R.: A new look at filtering techniques for illumination invariance in automatic face recognition. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 449–454 (2006)

    Google Scholar 

  3. Baron, V.O., Chen, M., Clark, S.O., Williams, A., Hammond, R.J., Dholakia, K., Gillespie, S.H.: Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease. Sci. Rep. 7(1), 1–9 (2017)

    Google Scholar 

  4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  7. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S., Barrell, B.G.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 396(6685), 1–27 (1998)

    Article  Google Scholar 

  8. Daniel, J., Kapoor, N., Sirakova, T., Sinha, R., Kolattukudy, P.: The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Mol. Microbiol. 101(5), 784–794 (2016)

    Article  Google Scholar 

  9. Daniel, J., Maamar, H., Deb, C., Sirakova, T.D., Kolattukudy, P.E.: Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7(6) (2011)

    Article  Google Scholar 

  10. Fan, J., Arandjelović, O.: Employing domain specific discriminative information to address inherent limitations of the LBP descriptor in face recognition. In: Proceedings of the IEEE International Joint Conference on Neural Networks (2018)

    Google Scholar 

  11. Garton, N.J., Christensen, H., Minnikin, D.E., Adegbola, R.A., Barer, M.R.: Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148(10), 2951–2958 (2002)

    Article  Google Scholar 

  12. Gillespie, S.H., Crook, A.M., McHugh, T.D., Mendel, C.M., Meredith, S.K., Murray, S.R., Pappas, F., Phillips, P.P.J., Nunn, A.J.: Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371(17), 1577–1587 (2014)

    Article  Google Scholar 

  13. Greenspan, P., Fowler, S.D.: Spectrofluorometric studies of the lipid probe, Nile Red. J. Lipid Res. 26(7), 781–789 (1985)

    Google Scholar 

  14. Hammond, R.J., Baron, V.O., Oravcova, K., Lipworth, S., Gillespie, S.H.: Phenotypic resistance in mycobacteria: is it because I am old or fat that I resist you? J. Antimicrob. Chemother. 70(10), 2823–2827 (2015)

    Article  Google Scholar 

  15. Jasmer, R.M., Bozeman, L., Schwartzman, K., Cave, M.D., Saukkonen, J.J., Metchock, B., Khan, A., Burman, W.J.: Recurrent tuberculosis in the United States and Canada: relapse or reinfection? Am. J. Respir. Crit. Care Med. 170(12), 1360–1366 (2004)

    Article  Google Scholar 

  16. Jindani, A., Harrison, T.S., Nunn, A.J., Phillips, P.P.J., Churchyard, G.J., Charalambous, S., Hatherill, M., Geldenhuys, H., McIlleron, H.M., Zvada, S.P., Mungofa, S., Shah, N.A., Zizhou, S., Magweta, L., Shepherd, J., Nyirenda, S., van Dijk, J.H., Clouting, H.E., Coleman, D., Bateson, A.L.E., McHugh, T.D., Butcher, P.D., Mitchison, D.A.: High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 371(17), 1599–1608 (2014)

    Article  Google Scholar 

  17. Karsten, J., Arandjelović, O.: Automatic vertebrae localization from CT scans using volumetric descriptors. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 576–579 (2017)

    Google Scholar 

  18. Kayigire, X.A., Friedrich, S.O., Van Der Merwe, L., Donald, P.R., Diacon, A.H.: Simultaneous staining of sputum smears for acid-fast and lipid-containing Myobacterium tuberculosis can enhance the clinical evaluation of antituberculosis treatments. Tuberculosis 95(6), 770–779 (2015)

    Article  Google Scholar 

  19. Kennedy, J.A., Baron, V.O., Hammond, R.J., Sloan, D.J., Gillespie, S.H.: Centrifugation and decontamination procedures selectively impair recovery of important populations in Mycobacterium smegmatis. Tuberculosis 112, 79–82 (2018)

    Article  Google Scholar 

  20. Li, J., Arandjelović, O.: Glycaemic index prediction: a pilot study of data linkage challenges and the application of machine learning. In: Proceedings of the IEEE International Conference on Biomedical and Health Informatics, pp. 357–360 (2017)

    Google Scholar 

  21. Lipworth, S., Hammond, R.J., Baron, V.O., Hu, Y., Coates, A., Gillespie, S.H.: Defining dormancy in mycobacterial disease. Tuberculosis 99, 131–142 (2016)

    Article  Google Scholar 

  22. Merle, C.S., Fielding, K., Sow, O.B., Gninafon, M., Lo, M.B., Mthiyane, T., Odhiambo, J., Amukoye, E., Bah, B., Kassa, F., N’Diaye, A., Rustomjee, R., de Jong, B.C., Horton, J., Perronne, C., Sismanidis, C., Lapujade, O., Olliaro, P.L., Lienhardt, C.: A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 371(17), 1588–1598 (2014)

    Article  Google Scholar 

  23. Neofytos, D., Arandjelović, O., Harrison, D., Caie, P.D.: Machine learning based prognosis of stage II colorectal cancer outcome. npj Digit. Med. (2018)

    Google Scholar 

  24. Phillips, P.P., Mendel, C.M., Burger, D.A., Crook, A., Nunn, A.J., Dawson, R., Diacon, A.H., Gillespie, S.H.: Limited role of culture conversion for decision-making in individual patient care and for advancing novel regimens to confirmatory clinical trials. BMC Med. 14(1), 1–11 (2016)

    Article  Google Scholar 

  25. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., Cadoret, J.P., Bougaran, G.: The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol. Biofuels 8(1), 1–16 (2015)

    Article  Google Scholar 

  26. Shapiro, L., Stockman, G.: Computer Vision. Pearson (2000)

    Google Scholar 

  27. Sloan, D.J., Mwandumba, H.C., Garton, N.J., Khoo, S.H., Butterworth, A.E., Allain, T.J., Heyderman, R.S., Corbett, E.L., Barer, M.R., Davies, G.R.: Pharmacodynamic modeling of bacillary elimination rates and detection of bacterial lipid bodies in sputum to predict and understand outcomes in treatment of pulmonary tuberculosis. Clin. Infect. Dis. 61(1), 1–8 (2015)

    Article  Google Scholar 

  28. Tun, W., Arandjelović, O., Caie, D.P.: Using machine learning and urine cytology for bladder cancer prescreening and patient stratification. In: Proceedings of the AAAI Conference on Artificial Intelligence Workshop on Health Intelligence, pp. 507–513 (2018)

    Google Scholar 

  29. World Health Organization: The Treatment of Tuberculosis: Guidelines. World Health Organization, Geneva (2010)

    Google Scholar 

  30. World Health Organization: WHO | Top 10 causes of death (2018)

    Google Scholar 

  31. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proceedings of the IMLS International Conference on Machine Learning, vol. 1, pp. 609–616 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ognjen Arandjelović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vente, D., Arandjelović, O., Baron, V.O., Dombay, E., Gillespie, S.H. (2020). Using Machine Learning for Automatic Estimation of M. Smegmatis Cell Count from Fluorescence Microscopy Images. In: Shaban-Nejad, A., Michalowski, M. (eds) Precision Health and Medicine. W3PHAI 2019. Studies in Computational Intelligence, vol 843. Springer, Cham. https://doi.org/10.1007/978-3-030-24409-5_6

Download citation

Publish with us

Policies and ethics