Skip to main content

MiniBee: A Minature MAV for the Biomimetic Embodiment of Insect Brain Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11556))

Abstract

Flying insects embody many properties that are desirable for Micro Aerial Vehicles (MAVs) including agile flight, low weight, small size, and low energy consumption. Research into embodiment of insect brain models therefore provides a clear avenue for improving the capabilities of MAVs. Here the MiniBee is presented - an open source quadrotor platform design to facilitate such research. The final design exceeds the design requirements, weighting 200 g with a hover flight time of 7 min. The platform provides panoramic vision with onboard remapping and stabilisation, which can reproduce the visual field of the honeybee or other insects. Visual information and control signals are robustly transmitted wirelessly to a ground station for integration with insect brain models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Vicon Motion Tracking System, https://www.vicon.com/.

  2. 2.

    https://www.tomlawton.com/bubblescope.

  3. 3.

    eCalc https://www.ecalc.ch/.

  4. 4.

    BetaFlight https://github.com/betaflight/betaflight.

  5. 5.

    Blender https://www.blender.org/.

  6. 6.

    Mojo3D https://www.stratasys.com/.

  7. 7.

    Camera footage https://youtu.be/SLpMH2qa98o.

  8. 8.

    Minibee footage http://brainsonboard.co.uk/2018/10/26/introducing-the-minibee-v1/.

References

  1. Boeddeker, N., Dittmar, L., Stürzl, W., Egelhaaf, M.: The fine structure of honeybee head and body yaw movements in a homing task. Proc. Roy. Soc. Biol. Sci. 277(1689), 1899–1906 (2010). https://doi.org/10.1098/rspb.2009.2326

    Article  Google Scholar 

  2. Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying. https://doi.org/10.5075/EPFL-THESIS-3727

  3. Dyer, A.G., Spaethe, J., Prack, S.: Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J. Comp. Physiol. A 194(7), 617–627 (2008). https://doi.org/10.1007/s00359-008-0335-1

    Article  Google Scholar 

  4. Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., Lindemann, J.P.: Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front. Neural Circ. 6, 108 (2012). https://doi.org/10.3389/fncir.2012.00108

    Article  Google Scholar 

  5. Giger, A.: Honeybee vision: analysis of pattern orientation. Ph.D. thesis, Australian National University (1996)

    Google Scholar 

  6. Hecht, S., Wolf, E.: The visual acuity of the honeybee. J. Gen. Physiol. 12(6), 727–760 (1929)

    Article  Google Scholar 

  7. Labhart, T., Meyer, E.P.: Neural mechanisms in insect navigation: polarization compass and odometer. Curr. Opin. Neurobiol. 12(6), 707–714 (2002). https://doi.org/10.1016/S0959-4388(02)00384-7

    Article  Google Scholar 

  8. Mulgaonkar, Y., Whitzer, M., Morgan, B., Kroninger, C.M., Harrington, A.M., Kumar, V.: Power and weight considerations in small, agile quadrotors. Int. Soc. Opt. Photonics, p. 90831Q. https://doi.org/10.1117/12.2051112

  9. Olberg, R.M., Seaman, R.C., Coats, M.I., Henry, A.F.: Eye movements and target fixation during dragonfly prey-interception flights. J. Comp. Physiol. A Neuroethol. Sens. Neural Bhav. Physiol. 193(7), 685–693 (2007). https://doi.org/10.1007/s00359-007-0223-0

    Article  Google Scholar 

  10. Ruck, P.: A comparison of the electrical responses of compound eyes and dorsal ocelli in four insect species. J. Insect Physiol. 2(4), 261–274 (1958). https://doi.org/10.1016/0022-1910(58)90012-X

    Article  Google Scholar 

  11. Sabo, C., Chisholm, R., Petterson, A., Cope, A.: A lightweight, inexpensive robotic system for insect vision. Arthropod Struct. Dev. (2017). https://doi.org/10.1016/j.asd.2017.08.001

    Article  Google Scholar 

  12. Sabo, C., Cope, A., Gurny, K., Vasilaki, E., Marshall, J.: Bio-inspired visual navigation for a quadcopter using optic flow. In: AIAA Infotech @ Aerospace Conference (2016)

    Google Scholar 

  13. Sabo, C., et al.: An inexpensive flying robot design for embodied robotics research. In: Proceedings of the International Joint Conference on Neural Networks, May 2017. https://doi.org/10.1109/IJCNN.2017.7966383

  14. Seidl, R., Kaiser, W.: Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees. J. Comp. Physiol. A 143(1), 17–26 (1981). https://doi.org/10.1007/BF00606065

    Article  Google Scholar 

  15. Srinivasan, M., Zhang, S., Lehrer, M., Collett, T.: Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199(Pt 1), 237–244 (1996)

    Google Scholar 

  16. Srinivasan, M.V.: Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol. Rev. 91(2), 413–460 (2011). https://doi.org/10.1152/physrev.00005.2010

    Article  Google Scholar 

  17. Srinivasan, M.V., Lehrer, M.: Temporal acuity of honeybee vision: behavioural studies using moving stimuli. J. Comp. Physiol. A 155(3), 297–312 (1984). https://doi.org/10.1007/BF00610583

    Article  Google Scholar 

  18. Stürzl, W., Boeddeker, N., Dittmar, L., Egelhaaf, M.: Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system. Bioinspiration Biomimetics 5(3), 036002 (2010). https://doi.org/10.1088/1748-3182/5/3/036002

    Article  Google Scholar 

  19. Ward, T.A., Fearday, C.J., Salami, E., Binti Soin, N.: A bibliometric review of progress in micro air vehicle research. Int. J. Micro Air Veh. 9(2), 146–165 (2017). https://doi.org/10.1177/1756829316670671

    Article  Google Scholar 

  20. Weinstein, A., Cho, A., Loianno, G., Kumar, V.: VIO-Swarm: a swarm of vision based quadrotors. IEEE Robot. Autom. Lett. (2018)

    Google Scholar 

  21. Witthöft, W.: Absolute anzahl und verteilung der zellen im him der honigbiene. Zeitschrift für Morphologie der Tiere 61(1), 160–184 (1967). https://doi.org/10.1007/BF00298776

    Article  Google Scholar 

  22. Wu, W., Moreno, A.M., Tangen, J.M., Reinhard, J.: Honeybees can discriminate between Monet and Picasso paintings. J. Comp. Physiol. A 199(1), 45–55 (2013). https://doi.org/10.1007/s00359-012-0767-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex J. Cope .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cope, A.J., Ahmed, A., Isa, F., Marshall, J.A.R. (2019). MiniBee: A Minature MAV for the Biomimetic Embodiment of Insect Brain Models. In: Martinez-Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019. Lecture Notes in Computer Science(), vol 11556. Springer, Cham. https://doi.org/10.1007/978-3-030-24741-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24741-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24740-9

  • Online ISBN: 978-3-030-24741-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics