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Abstract. Given a graph G, a q-open neighborhood conflict-free color-
ing or q-ONCF-coloring is a vertex coloring c : V (G) → {1, 2, . . . , q} such
that for each vertex v ∈ V (G) there is a vertex in N(v) that is uniquely
colored from the rest of the vertices in N(v). When we replace N(v) by
the closed neighborhood N [v], then we call such a coloring a q-closed
neighborhood conflict-free coloring or simply q-CNCF-coloring. In this
paper, we study the NP-hard decision questions of whether for a constant
q an input graph has a q-ONCF-coloring or a q-CNCF-coloring. We will
study these two problems in the parameterized setting. First of all, we
study running time bounds on FPT-algorithms for these problems, when
parameterized by treewidth. We improve the existing upper bounds, and
also provide lower bounds on the running time under ETH and SETH.
Secondly, we study the kernelization complexity of both problems, using
vertex cover as the parameter. We show that both (q ≥ 2)-ONCF-
coloring and (q ≥ 3)-CNCF-coloring cannot have polynomial kernels
when parameterized by the size of a vertex cover unless NP ⊆ coNP/poly.
On the other hand, we obtain a polynomial kernel for 2-CNCF-coloring
parameterized by vertex cover. We conclude the study with some combi-
natorial results. Denote χON (G) and χCN (G) to be the minimum number
of colors required to ONCF-color and CNCF-color G, respectively. Upper
bounds on χCN (G) with respect to structural parameters like minimum
vertex cover size, minimum feedback vertex set size and treewidth are
known. To the best of our knowledge only an upper bound on χON (G)
with respect to minimum vertex cover size was known. We provide tight
bounds for χON (G) with respect to minimum vertex cover size. Also,
we provide the first upper bounds on χON (G) with respect to minimum
feedback vertex set size and treewidth.
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1 Introduction

Often, in frequency allocation problems for cellular networks, it is important
to allot a unique frequency for each client, so that at least one frequency is
unaffected by cancellation. Such problems can be theoretically formulated as a
coloring problem on a set system, better known as conflict-free coloring [5].
Formally, given a set system H = (U,F), a q-conflict-free coloring c : U →
{1, 2, . . . , q} is a function where for each set f ∈ F , there is an element v ∈ f
such that for all w �= v ∈ f , c(v) �= c(w). In other words, each set f has at
least one element that is uniquely colored in the set. This variant of coloring
has also been extensively studied for set systems induced by various geometric
regions [1,8,14].

A natural step to study most coloring problems is to study them in graphs.
Given a graph G, V (G) denotes the set of n vertices of G while E(G)
denotes the set of m edges in G. A q-coloring of G, for q ∈ N is a function
c : V (G) → {1, 2, . . . , q}. The most well-studied coloring problem on graphs
is proper-coloring. A q-coloring c is called a proper-coloring if for each edge
{u, v} ∈ E(G), c(u) �= c(v). In this paper, we study two specialized variants
of q-conflict-free coloring on graphs, known as q-ONCF-coloring and q-CNCF-
coloring, which are defined as follows.

Definition 1. Given a graph G, a q-coloring c : V (G) → {1, 2, . . . , q} is called
a q-ONCF-coloring, if for every vertex v ∈ V (G), there is a vertex u in the open
neighborhood N(v) such that c(u) �= c(w) for all w �= u ∈ N(v). In other words,
every open neighborhood in G has a uniquely colored vertex.

Definition 2. Given a graph G, a q-coloring c : V (G) → {1, 2, . . . , q} is called
a q-CNCF-coloring, if for for every vertex v ∈ V (G), there is a vertex u in the
closed neighborhood N [v] such that c(u) �= c(w) for all w �= u ∈ N [v]. In other
words, every closed neighborhood in G has a uniquely colored vertex.

Observe that by the above definitions, the q-ONCF-coloring (or q-CNCF-
coloring) problem is a special case of the conflict-free coloring of set systems.
Given a graph G, we can associate it with the set system H = (V (G),F), where
F consists of the sets given by open neighborhoods N(v) (respectively, closed
neighborhoods N [v]) for v ∈ V (G). A q-ONCF-coloring (or q-CNCF-coloring)
of G then corresponds to a q-conflict-free coloring of the associated set system.

Notationally, let χCF (H) denote the minimum number of colors required for
a conflict-free coloring of a set system H. Similarly, we denote by χON (G) and
χCN (G) the minimum number of colors required for an ONCF-coloring and a
CNCF-coloring of a graph G, respectively. The study of conflict-free coloring
was initially restricted to combinatorial studies. This was first explored in [5]
and [13]. Pach and Tardos [12] gave an upper bound of O(

√
m) on χCF (H) for
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a set system H = (U,F) when the size of F is m. In [12], it was also shown that
for a graph G with n vertices χCN (G) = O(log2 n). This bound was shown to
be tight in [7]. Similarly, [3] showed that χON (G) = Θ(

√
n).

However, computing χON (G) or χCN (G) is NP-hard. This is because deciding
whether a 2-ONCF-coloring or a 2-CNCF-coloring of G exists is NP-hard [6].
This motivates the study of the following decision problems under the lens of
parameterized complexity.

q-ONCF-Coloring

Input: A graph G.
Question: Is there a q-ONCF-coloring of G?

The q-CNCF-Coloring problem is defined analogously.
Note that because of the NP-hardness for q-ONCF-Coloring or q-CNCF-

Coloring even when q = 2, the two problems are para-NP-hard under the
natural parameter q. Thus, the problems were studied under structural param-
eters. Gargano and Rescigno [6] showed that both q-ONCF-Coloring and
q-CNCF-Coloring have FPT algorithms when parameterized by (i) the size
of a vertex cover of the input graph G, (ii) and the neighborhood diversity of
the input graph. Gargano and Rescigno also mention that due to Courcelle’s
theorem, for a non-negative constant q, the two decision problems are FPT with
the treewidth of the input graph as the parameter.

Our Results and Contributions. In this paper, we extend the parameterized
study of the above two problems with respect to structural parameters. Our
first objective is to provide both upper and lower bounds for FPT algorithms
when using treewidth as the parameter (Sect. 3). We show that both q-ONCF-

Coloring and q-CNCF-Coloring parameterized by treewidth t can be solved
in time (2q2)tnO(1). On the other hand, for q ≥ 3, both problems cannot be solved
in time (q − ε)tnO(1) under Strong Exponential Time Hypothesis (SETH). For
q = 2, both problems cannot be solved in time 2o(t)nO(1) under Exponential
Time Hypothesis (ETH).

We also study the polynomial kernelization question (Sect. 4). Observe that
both q-ONCF-Coloring and q-CNCF-Coloring cannot have polynomial
kernels under treewidth as the parameter, as there are straightforward and-
cross-compositions from each problem to itself.1 Therefore, we will study the
kernelization question by a larger parameter, namely the size of a vertex cover in
the input graph. The kernelization complexity of the q-Coloring problem (ask-
ing for a proper-coloring of the input graph) is very well-studied for this param-
eter, the problem admits a kernel of size ˜O(kq−1) [10] which is known to be tight
unless NP ⊆ coNP/poly [9]. From this perspective however, q-CNCF-Coloring

and q-ONCF-Coloring turn out to be much harder: q-CNCF-Coloring for
q ≥ 3 and q-ONCF-Coloring for q ≥ 2 do not have polynomial kernels under

1 This is true for a number of graph problems when parameterized by treewidth. For
more information, see [4, Theorem 15.12] and the example given for Treewidth

(parameterized by solution size) in [4, p. 534].
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the standard complexity assumptions, when parameterized by the size of a ver-
tex cover. Interestingly, 2-CNCF-Coloring parameterized by vertex cover size
does have a polynomial kernel and we obtain an explicit polynomial compression
for the problem. Although this does not lead to a polynomial kernel of reasonable
size, we study a restricted version called 2-CNCF-Coloring-VC-Extension

(Sect. 4.1) and show that this problem has a O(k2 log k) kernel where k is the ver-
tex cover size. Therefore, 2-CNCF-Coloring behaves significantly differently
from the other problems.

Finally, we obtain a number of combinatorial results regarding ONCF-
colorings of graphs. Denote by χ(G) the minimum q for which a q-proper-
coloring for G exists. While χCN (G) ≤ χ(G), the same upper bound does
not hold for χON (G) [6]. For a graph G, let vc(G), fvs(G) and tw(G) denote
the size of a minimum vertex cover, the size of a minimum feedback ver-
tex set and the treewidth of G, respectively. From the known result that
χ(G) ≤ tw(G) + 1 ≤ fvs(G) + 1 ≤ vc(G) + 1, we could immediately obtain the
fact that the same behavior holds for χCN (G). However, to show that χON (G)
behaves similarly more work needs to be done. To the best of our knowledge no
upper bounds on χON (G) with respect to fvs(G) and tw(G) were known, while
a loose upper bound was provided with respect to vc(G) in [6]. We give a tight
upper bound on χON (G) with respect to vc(G) and also provide the first upper
bounds on χON (G) with respect to fvs(G) and tw(G) (Sect. 5).

Our main contributions in this work are structural results for the conflict-free
coloring problem, which we believe gives more insight into the decision problems
on graphs. Firstly, the gadgets we build for the ETH-based lower bounds could
be useful for future lower bounds, but are also useful to understand difficult
examples for conflict-free coloring which have not been known in abundance so
far. We are able to reuse these gadgets in the constructions needed to prove
the kernelization lower bounds. Secondly, our combinatorial results also give
constructible conflict-free colorings of graphs and therefore provide more insight
into conflict-free colored graphs. Finally, the kernelization dichotomy we obtain
for q-ONCF-Coloring and q-CNCF-Coloring under vertex cover size as a
parameter is a very surprising one.

2 Preliminaries

For a positive integer n, we denote the set {1, 2, . . . , n} in short with [n]. For a
graph G, given a q-coloring c : V (G) → [q] and a subset S ⊆ V (G), we denote by
c|S the restriction of c to the subset S. For a graph G that is q-ONCF-colored by
a coloring c, for a vertex v ∈ V (G), suppose w ∈ N(v) is such that c(w) �= c(w′)
for each w′ �= w ∈ N(v); then c(w) is referred to as the ONCF-color of v.
Similarly, for a graph G that is q-CNCF-colored by a coloring c, for a vertex
v ∈ V (G), a unique color in N [v] is referred to as the CNCF-color of v.

An edge-star graph is a generalization of a star graph where there is a central
edge {u, v} and all other vertices w have N(w) = {u, v}. A triangle is an example
of an edge-star graph.
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For statements marked with a star (�), the (complete) proof can be found in
the full version of the paper [2].

2.1 Parameterized Complexity

Let Σ be a finite alphabet. A parameterized problem Q is a subset of Σ∗ ×N.

Definition 3 (Kernelization). Let Q,Q′ be two parameterized problems and
let h : N → N be some computable function. A generalized kernel from Q to Q′

of size h(k) is an algorithm that given an instance (x, k) ∈ Σ∗ × N, outputs
(x′, k′) ∈ Σ∗ × N in time poly(|x| + k) such that (i) (x, k) ∈ Q if and only if
(x′, k′) ∈ Q′, and (ii) |x′| ≤ h(k) and k′ ≤ h(k).

The algorithm is a kernel if Q = Q′. It is a polynomial (generalized) kernel
if h(k) is a polynomial in k.

3 Algorithmic Results Parameterized by Treewidth

In this section, we state the algorithmic results obtained for the ONCF-

Coloring and CNCF-Coloring problems parameterized by treewidth. On
the algorithmic side, we have the following theorem.

Theorem 1 (�). q-ONCF-Coloring and q-CNCF-Coloring parameterized
by treewidth t admits a (2q2)tnO(1) time algorithm.

We also obtain algorithmic lower bounds for the problems under standard
assumptions.

Theorem 2 (�). The following algorithmic lower bounds can be obtained:

1. For q ≥ 3, q-ONCF-Coloring or q-CNCF-Coloring parameterized by
treewidth t cannot be solved in (q − ε)tnO(1) time, under SETH.

2. 2-ONCF-Coloring or 2-CNCF-Coloring parameterized by treewidth t
cannot be solved in 2o(t)nO(1) time, under ETH.

Due to paucity of space, the full proofs of the Theorems above have been
omitted from this extended abstract. As a brief overview of our lower bound
techniques, in the remainder of section we will show the running time lower
bound on 2-ONCF-Coloring under ETH claimed in Theorem 2. The bound
will be obtained by giving a reduction from 3-SAT, to give the reduction we will
need the following type of gadget.

Definition 4. An ONCF-gadget is a gadget on ten vertices, as depicted in
Fig. 1.

The objective of this gadget is the following. The vertices {g1, g2, g3, g10} in
Fig. 1 will be the interaction points of the ONCF-gadget with the outside world.
As will be proved in the following two lemmas, the gadget is designed so as to
(i) disallow certain 2-ONCF-colorings and (ii) allow certain 2-ONCF-colorings
on its interaction points.
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Fig. 1. The ONCF-gadget (left). Observe that if g1, g2, and g3 are all red, then g9 must
also be red (middle), and if one of g1, g2, or g3 is blue, then g9 may be blue (right).
(Color figure online)

Lemma 1 (�). Let G be a ONCF-gadget with a coloring c : V (G) → {red,blue}
such that for all 4 ≤ i ≤ 9 the neighborhood of gi is ONCF-colored by c. If
c(g1) = c(g2) = c(g3) = red, then c(g9) = red.

Lemma 2 (�). Let G be a ONCF-gadget. Let c′ : {g1, g2, g3} → {red,blue} be
a partial 2-ONCF-coloring of G. If there exists i ∈ [3] such that c′(gi) = blue,
then c′ can be extended to a coloring c satisfying

1. For every 4 ≤ i ≤ 9, the neighborhood of vertex gi is ONCF-colored by c
(contains at most one red, or at most one blue vertex), and

2. c(g9) = blue, c(g8) = red, c(g4) = c(g5) = blue, and c(g10) = blue.

Now that we have introduced the necessary gadgets, we can prove the running
time lower bound for 2-ONCF-Coloring.

Lemma 3 (�). 2-ONCF-Coloring parameterized by treewidth t cannot be
solved in 2o(t)nO(1) time, under ETH.

Proof (Proof sketch). We show this by giving a reduction from 3-SAT. Given
an instance of 3-SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, create
a graph G as follows. Start by creating palette vertices R,R′, and B, and edges
{R,R′} and {R′, B}. For each variable i ∈ [n], create vertices ui, vi, wi and
add edges {ui, vi} and {vi, wi}. For each j ∈ [m], add an ONCF-gadget Gj

and connect g10 of this gadget to R. Add vertices s1j , s
2
j , and s3j and connect

sbj to gb in Gj for b ∈ [3]. Let clause Cj := (�1, �2, �3). Now if �b = xi for
some i ∈ [n], b ∈ [3], connect sbj to ui. Similarly, if �b = ¬xi, connect sbj to wi.
This concludes the construction of G. The main idea towards showing that ϕ is
satisfiable if and only if G is 2-ONCF-colorable is to let the situation where ui

is red and wi is blue mean that the corresponding variable is set to true. A more
detailed explanation can be found in the full version of this paper [2].

Note that the graph induced by V (G)\ ({R,R′, B}∪{ui, vi, wi | i ∈ [n]}) is a
disjoint union of ONCF-gadgets for which every gb for b ∈ [3] has an additional
degree-1 vertex attached to it. It is easy to see that every connected component of
this graph has treewidth two. Thus, G has treewidth at most 3n + 5. This implies
that a 3-SAT formula φ on n variables and m clauses is reduced to a graph G
with treewidth at most 3n + 5. Since 3-SAT cannot be solved in 2o(n)nO(1)
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time under ETH, this also implies that 2-CNCF-Coloring parameterized by
treewidth t cannot be solved in 2o(t)nO(1) time, under ETH. 
�

Note that a reduction from 3-SAT to 2-ONCF-Coloring was given in The-
orem 2 of [6]. However, that reduction led to a quadratic blow-up in the input
size. Hence, the need for the alternative reduction given above.

4 Kernelization

In this section, we will study the kernelizability of the ONCF- and CNCF-
coloring problems, when parameterized by the size of a vertex cover. We prove
the following two theorems to obtain a dichotomy on the kernelization question.

Theorem 3 (�). q-ONCF-Coloring for q ≥ 2 and q-CNCF-Coloring for
q ≥ 3, parameterized by vertex cover size do not have polynomial kernels, unless
NP ⊆ coNP/poly.

Theorem 4. 2-CNCF-Coloring parameterized by vertex cover size k has a
generalized kernel of size O(k10).

Note that by using an NP-completeness reduction, this results in a polyno-
mial kernel for 2-CNCF-Coloring parameterized by vertex cover size. We also
obtain an O(k2 log k) kernel for an extension problem of 2-CNCF-Coloring

and this is described in Sect. 4.1.
In the remainder of this section we will prove Theorem 4, by obtaining a

polynomial generalized kernel for 2-CNCF-Coloring parameterized by vertex
cover size. This result is in contrast to the kernelization results we obtain for
q-CNCF-Coloring for q ≥ 3 as well as q-ONCF-Coloring for q ≥ 2. We
will start by transforming an instance of 2-CNCF-Coloring to an equivalent
instance of another problem, namely d-Polynomial root CSP. We will then
carefully rephrase the d-Polynomial root CSP instance such that it uses only
a limited number of variables, such that we can use a known kernelization result
for d-Polynomial root CSP to obtain our desired compression. We start by
introducing the relevant definitions.

Define d-Polynomial root CSP over a field F as follows [11].

d-Polynomial root CSP

Input: A list L of polynomial equalities over variables V = {x1, . . . , xn}. An
equality is of the form f(x1, . . . , xn) = 0, where f is a multivariate polynomial
over F of degree at most d.
Question: Does there exist an assignment of the variables τ : V → {0, 1}
satisfying all equalities (over F ) in L?

A field F is said to be efficient if both the field operations and Gaussian
elimination can be done in polynomial time in the size of a reasonable input
encoding. In particular, Q is an efficient field by this definition. The following
theorem was shown by Jansen and Pieterse.
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Theorem 5 ([11, Theorem 5]). There is a polynomial-time algorithm that, given
an instance (L, V ) of d-Polynomial root CSP over an efficient field F , out-
puts an equivalent instance (L′, V ) with at most nd + 1 constraints such that
L′ ⊆ L.

Using the theorem introduced above, we can now prove Theorem 4.

Proof (Proof of Theorem 4). Given an input instance G with vertex cover S of
size k, we start by preprocessing G. For each set X ⊆ S with |X| ≤ 2, mark
3 vertices in v ∈ G \ S with N(v) = X (if there do not exist 3 such vertices,
simply mark all). Let S′ ⊆ V (G) \ S be the set of all marked vertices. Remove
all w ∈ V (G) \ (S ∪ S′) with deg(w) ≤ 2 from G. Let the resulting graph be G′.

Claim 1. G′ is 2-CNCF-colorable if and only if G is 2-CNCF-colorable.

Proof. In one direction, suppose G′ has a 2-CNCF coloring c using colors {r, b}.
Consider a vertex w ∈ V (G) \ V (G′). Let Xw ⊆ S be the neighborhood of w.
Note that |Xw| is at most 2. Consider N(Xw) ∩ S′. Since w was deleted, there
are 3 vertices in N(Xw) ∩ S′. Consider the color from {r, b} that appears in
majority on the vertices of N(Xw) ∩ S′. If we color w with the same color, it is
easy to verify that this extension of c to G is a 2-CNCF coloring of G.

In the reverse direction, suppose G has a 2-CNCF coloring c using colors
{r, b}. We describe a new coloring c′ for G as follows. Consider a subset X ⊆ S
of size at most 2 and let N be the set of vertices in G \ S that have X as their
neighborhood. If |N | > 3 and N \S′ has a vertex w that is uniquely colored in the
set N , then we arbitrarily choose a vertex w′ ∈ N ∩ S′. We define c′(w′) = c(w)
and c′(w) = c(w′). All other vertices have the same color in c and c′. It is easy
to verify that c′ is also a 2-CNCF coloring of G and the restriction of c′ to G′ is
a 2-CNCF coloring of G′. �

We continue by creating an instance of 2-Polynomial root CSP that is
satisfiable if and only if G′ is 2-CNCF-colorable. Let V := {rv, bv | v ∈ V (G)}
be the variable set. We create L over Q as follows.

1. For each v ∈ V (G′), add the constraint rv + bv − 1 = 0 to L.
2. For all v ∈ V (G′), add the constraint (−1+

∑

u∈N [v] rv) ·(−1+
∑

u∈N [v] bv) =
0.

3. For each v ∈ V (G′) \ (S ∪ S′) of degree dv = |N(v)| add the constraint

(
∑

u∈N(v)

ru)(−1 +
∑

u∈N(v)

ru)(−(dv − 1) +
∑

u∈N(v)

ru)(−dv +
∑

u∈N(v)

ru) = 0.

Note that such a constraint is a quadratic polynomial.

Intuitively, the first constraint ensures that every vertex is either red or blue.
The second constraint ensures that in the closed neighborhood of every vertex,
exactly one vertex is red or exactly one is blue. The third constraint is seemingly
redundant, saying that the open neighborhood of every vertex outside the vertex
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cover does not have two red or two blue vertices, which is clearly forbidden. The
requirement for these last constraints is made clear in the proof of Claim 4.

We show that this results in an instance that is equivalent to the original
input instance, in the following sense.

Claim 2 (�). (L, V ) is a yes-instance of 2-Polynomial root CSP if and only
if G′ is 2-CNCF-colorable.

Clearly, |V | = 2n if n is the number of vertices of G′. We will now show
how to modify L, such that it uses only variables for the vertices in S ∪ S′. To
this end, we introduce the following function. For v /∈ (S ∪ S′), let fv(V ) :=
g
(
∑

u∈N(v) ru, |N(v)|), where

g(x,N) = − (N − x)(x − 1)(N − 2(x + 1))
N(N − 2)

.

Note that for any fixed N > 2, g(x,N) describes a degree-3 polynomial in x over
Q. The following is easy to verify.

Observation 1. g(0, N) = g(N − 1, N) = 1, and g(N,N) = g(1, N) = 0 for all
N ∈ Z \ {0, 2}.
Observe that fv only uses variables defined for vertices that are in S. As such,
let V ′ := {rv, bv | v ∈ S} ∪ {rv, bv | v ∈ S′}, and let L′ be equal to L with every
occurrence of rv for v /∈ (S ∪ S′) substituted by fv and every occurrence of bv
for v /∈ (S ∪ S′) substituted by (1 − fv(V )).

Claim 3 (�). If τ : V → {0, 1} is a satisfying assignment for (L, V ), then τ |V ′

is a satisfying assignment for (L′, V ′).

The next claim shows the equivalence between (L′, V ′) and (L, V ).

Claim 4 (�). If τ : V ′ → {0, 1} is a satisfying assignment for (L′, V ′), then
there exists a satisfying assignment τ ′ : V → {0, 1} for (L, V ) such that τ ′|V ′ = τ .

Using the method described above, we obtain an instance (L, V ) of 2-
Polynomial root CSP such that (L, V ) has a satisfying assignment if and
only if G is 2-CNCF-colorable by Claims 1 and 2. Then we obtain an instance
(L′, V ′) such that (L′, V ′) is satisfiable if and only if (L, V ) is satisfiable by
Claims 3 and 4. As such, (L′, V ′) is a yes-instance if and only if G is 2-CNCF-
colorable and it suffices to give a kernel for (L′, V ′). Observe that |V ′| = O(k2).

We start by partitioning L′ into three sets L′
S , L′

1 and L′
2. Let L′

S contain all
equalities created for a vertex v ∈ S. Let L′

1 contain all equations that contain
at least one of the variables in {rv, bv | v ∈ S′} and let L2 contain the remaining
equalities. Observe that |L′

S | = k by definition. Furthermore, the polynomials in
L′
1 have degree at most 2, as they were created for vertices in V (G′) \ S, and

these are not connected. As such, we use Theorem 5 to obtain L′′
1 ⊆ L′

1 such that
|L′′

1 | = O((k2)2) = O(k4) and any boolean assignment satisfying all equalities in
L′′
1 satisfies all equalities in L′

1.
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Similarly, we observe that L′
2 by definition contains none of the variables

in {rv, bv | v ∈ S′}, implying that the equations in L′
2 are equations over only

k variables. Since the polynomials in L′
2 have degree at most 6, we can apply

Theorem 5 to obtain L′′
2 ⊆ L′

2 such that |L′′
2 | ≤ O(k6) and any assignment

satisfying all equations in L′′
2 satisfies all equalities in L′

2.
We now define L′′ := L′′

1 ∪ L′′
2 ∪ L′

S , and the output of our polynomial gener-
alized kernel will be (L′′, V ′). The correctness of the procedure is proven above,
it remains to bound the number of bits needed to store instance (L′′, V ′).

By this definition, |L′′| ≤ O(k6). To represent a single constraint, it is suffi-
cient to store the coefficients for each variable in V ′. The storage space needed
for a single coefficient is O(log(n)), as the coefficients are bounded by a polyno-
mial in n. Thereby, (L′′, V ′) can be stored in O(k6 · k2 log n) bits. To bound this
in terms of k, we observe that it is easy to solve 2-CNCF-Coloring in time
O(2k

2 ·poly(n)). This is done by guessing the coloring of S, extending this color-
ing to the entire graph (observe G \ S has no vertices of degree less than three)
and verifying whether this results in a CNCF-coloring. Therefore, we can assume
that log(n) ≤ k2, as otherwise we can solve the 2-CNCF-Coloring problem in
O(2k

2
poly(n)) time, which is then polynomial in n. Thereby we conclude that

(L′′, V ′) can be stored in O(k10) bits. 
�

4.1 Kernelization Bounds for Conflict-Free Coloring Extension

Wefurthermore provide kernelizationbounds for the following extensionproblems.

q-CNCF-Coloring-VC-Extension

Input: A graph G with vertex cover S and partial q-coloring c : S → [q].
Question: Does there exist a q-CNCF-coloring of G that extends c?

We define q-ONCF-Coloring-VC-Extension analogously.
We obtain the following kernelization results when parameterized by vertex

cover size, thereby classifying the situations where the extension problem has
a polynomial kernel. The extension problem turns out to have a polynomial
kernel in the same case as the normal problem. However, we manage to give a
significantly smaller kernel. Observe that the kernelization result is non-trivial,
since 2-CNCF-Coloring-VC-Extension is NP-hard (�).

Theorem 6 (�). The following results hold.

1. 2-CNCF-Coloring-VC-Extension has a kernel with O(k2) vertices and
edges that can be stored in O(k2 log k) bits. Here k is the size of the input
vertex cover S.

2. q-CNCF-Coloring-VC-Extension for any q ≥ 3, and 2-ONCF-

Coloring-VC-Extension parameterized by the size of a vertex cover do
not have a polynomial kernel, unless NP ⊆ coNP/poly.
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5 Combinatorial Bounds

Given a graph G, it is easy to prove that χCN(G) ≤ χ(G). However, there are
examples that negate the existence of such bounds with respect to χON [6]. In
this section, we prove combinatorial bounds for χON with respect to common
graph parameters like treewidth, feedback vertex set and vertex cover.

First, note that if G is a graph with isolated vertices then the graph can have
no ONCF-coloring. Therefore, in all the arguments below we assume that G does
not have any isolated vertices. We obtain the following result. Recall that for a
graph G, vc(G), fvs(G) and tw(G) denote the size of a minimum vertex cover,
the size of a minimum feedback vertex set and the treewidth of G, respectively.

Theorem 7 (�). Given a connected graph G,

1. χON(G) ≤ 2tw(G) + 1,
2. χON(G) ≤ fvs(G) + 3,
3. χON(G) ≤ vc(G) + 1. Furthermore, if G is not a star graph or an edge-star

graph, then χON(G) ≤ vc(G).

Here, we only give a proof sketch of the result with respect to vc(G) and
relegate the other two combinatorial results to the full version of the paper. The
next lemma bounds the value of χON(G) for graphs with a vertex cover of size k.
In particular, we improve the bound given by Gargano and Rescigno [6, Lemma
4], who showed that χON(G) ≤ 2k + 1.

Lemma 4 (�). Let G be a connected graph with vc(G) = k. Then χON(G) ≤ k+
1. Furthermore, if G is not a star graph or an edge-star graph, then χON(G) ≤ k.

Proof (Proof sketch). See Fig. 2 for a sketch of the colorings described in the
proof. We start by proving the bounds for the case where G is not a star and
not an edge-star. Let S be a minimum vertex cover of G and let k be the size of
S. We do a case distinction on the size and connectedness of S.

u* v* w*

x

u* v* w*u* w*

v

Fig. 2. (left) A coloring of the graph when all vertices in G[S] are isolated. (middle)
The case where G[S] contains an edge and the endpoints have a common neighbor.
(right) The case where G[S] contains an edge and the endpoints have no common
neighbors.

(k = 2 and S connected) First, we prove the bounds for k = 2 and G[S] is
an edge {u∗, v∗}. Note that G is not an edge-star graph. Therefore at least one
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of u∗ or v∗ have neighbors with degree exactly 1 in G \ S. As shown in the full
proof, it is possible to ONCF-color such a graph with 2 colors, namely r and b.

(G[S] disconnected or k ≥ 3) We now prove the bounds for k = 2 and
G[S] is disconnected, and k ≥ 3. We consider a number of cases.

(Suppose G[S] contains a connected component C of size at least three.) Let
v∗ ∈ C be a vertex such that G[C \{v}] remains connected. We color the vertices
in G as follows. For every vertex u ∈ S, let c(u) := cu. For every vertex u ∈ S
that is isolated in G[S], pick an arbitrary neighbor v /∈ S and (re)color v such
that c(v) := cu. Notice that a vertex v in G \ S may be picked multiple times as
the candidate for an arbitrary neighbor for an isolated vertex in S, and in this
case the color of this vertex v is set to the last color it is assigned. For every
vertex v that is not yet colored, let c(v) := cv∗ . It can be shown that c is the
required coloring.

(Suppose G[S] only contains connected components of size one.) Note that
|S| > 1. Start by letting c(v) := cv for every vertex v ∈ S. Since G is connected,
there exists v /∈ S such that |N(v)| ≥ 2. Pick two vertices u∗, w∗ ∈ N(v) with
u∗ �= w∗. Let c(v) := cu∗ . For every vertex u ∈ S \ {u∗, w∗} pick an arbitrary
neighbor v /∈ S and recolor v to cu. Color the vertices that remained uncolored
by this procedure with cw∗ . It can be shown that c is the required coloring.

(Otherwise.) In this case G[S] has size at least 3, contains multiple connected
components, and at least one such component has size two. This leads to two
further cases, that have been analyzed in the complete proof in the full version
of this paper.

If G is not a star and not an edge-star, we are in one of the cases above.
Otherwise, it is easy to observe that stars have a vertex cover of size one and
can always be colored with two colors, and edge-stars can be colored with three
colors while having a minimum vertex cover size of two. 
�

Observe that the bounds of Lemma 4 are tight. First, a star graph requires 2
colors and has vertex cover size 1 while an edge-star graph requires 3 colors and
has vertex cover size 2. On the other hand, given an q ≥ 3, taking the complete
graph Kq and subdividing each edge once results in a graph that requires q
colors [6] for an ONCF-coloring and has a vertex cover of size q.

6 Open Problems

The study in this paper leads to some interesting open questions. In this paper
we only exhibit a generalized kernel of size O(k10) for 2-CNCF-Coloring and
it remains to resolve the size of tight polynomial kernels for the problem. On
the combinatorial side, with respect to minimum vertex cover, we obtain tight
upper bounds on χON (G). It would be interesting to obtain corresponding tight
bounds for χON (G) with respect to feedback vertex set and treewidth.
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