
On Polynomial-Time Combinatorial Algorithms for
Maximum L-Bounded Flow

Kateřina Altmanová, Petr Kolman, Jan Voborník
Department of Applied Mathematics
Faculty of Mathematics and Physics

Charles University, Prague

February 21, 2019

Abstract
Given a graph G = (V,E) with two distinguished vertices s, t ∈ V and an integer L, an

L-bounded flow is a flow between s and t that can be decomposed into paths of length at
most L. In the maximum L-bounded flow problem the task is to find a maximum L-bounded
flow between a given pair of vertices in the input graph.

The problem can be solved in polynomial time using linear programming. However,
as far as we know, no polynomial-time combinatorial algorithm for the L-bounded flow is
known. The only attempt, that we are aware of, to describe a combinatorial algorithm for the
maximum L-bounded flow problem was done by Koubek and Říha in 1981. Unfortunately,
their paper contains substantional flaws and the algorithm does not work; in the first part
of this paper, we describe these problems.

In the second part of this paper we describe a combinatorial algorithm based on the
exponential length method that finds a (1 + ε)-approximation of the maximum L-bounded
flow in time O(ε−2m2L logL) where m is the number of edges in the graph. Moreover,
we show that this approach works even for the NP-hard generalization of the maximum
L-bounded flow problem in which each edge has a length.

1 Introduction

Given a graph G = (V,E) with two distinguished vertices s, t ∈ V and an integer L, an L-
bounded flow is a flow between s and t that can be decomposed into paths of length at most L.
In the maximum L-bounded flow problem the task is to find a maximum L-bounded flow between
a given pair of vertices in the input graph. The L-bounded flow was first studied, as far as we
know, in 1971 by Adámek and Koubek [1]. In connection with telecommunication networks,
L-bounded flows in networks with unit edge lengths have been widely studied and are known as
hop-constrained flows [7].

For networks with unit edge lengths (or, more generally, with polynomially bounded edge
lengths, with respect to the number of vertices), the problem can be solved in polynomial time
using linear programming. Linear programming is a very general tool that does not make use
of special properties of the problem at hand. This often leaves space for superior combinatorial
algorithms that do exploit the structure of the problem. For example, maximum flow, matching,
minimum spanning tree or shortest path problems can all be described as linear programs but
there are many algorithms that outperform general linear programming approaches. However, as
far as we know, no polynomial-time combinatorial algorithm1 for the L-bounded flow is known.

1Combinatorial in the sense that it does not explicitly use linear programming methods or methods from
linear algebra or convex geometry.

1

ar
X

iv
:1

90
2.

07
56

8v
1

 [
cs

.D
S]

 2
0

Fe
b

20
19

1.1 Related results

For clarity we review the definitions of a few more terms that are used in this paper. A network
is a quintuple G = (X,R, c, s, t), where G = (X,R) is a directed graph, X denotes the set
of vertices, R the set of edges, c is the edge capacity function c : R → R+, s and t are two
distinguished vertices called the source and the sink. We use m and n to denote the number of
edges and the number of vertices, respectively, in the network G, that is, m = |R| and n = |X|.
Given an L-bounded flow f , we denote by |f | the size of the flow, and for an edge e ∈ R, we
denote by f(e) the total amount of flow f through the edge e.

An L-bounded flow problem with edge lengths is a generalization of the L-bounded flow
problem: each edge has also an integer length and the length of a path is computed not with
respect to the number of edges on it but with respect the sum of lengths of edges on it.

Given a network G and an integer parameter L, an L-bounded cut is a subset C of edges R in
G such that there is no path from s to t of length at most L in the network G = (X,R \ C, c, s, t).
The objective is to find an L-bounded cut of minimum size. We sometimes abbreviate the phrase
L-bounded cut to L-cut and, similarly, we abbreviate the phrase L-bounded flow to L-flow.

Although the problems of finding an L-flow and an L-cut are easy to define and they have
been studied since the 1970’s, still some fundamental open problems remain unsolved. Here we
briefly survey the main known results.

L-bounded flows As far as we know, the L-bounded flow was first considered in 1971 by
Adámek and Koubek [1]. They published a paper introducing the L-bounded flows and cuts
and describing some interesting properties of them. Among other results, they show that, in
contrast to the ordinary flows and cuts, the duality between the maximum L-flow and the
minimum L-cut does not hold.

The maximum L-flow can be computed in polynomial time using linear programming [4,
17, 4, 21]. The only attempt, that we are aware of, to describe a combinatorial algorithm
for the maximum L-bounded flow problem was done by Koubek and Říha in 1981 [18]. The
authors say the algorithm finds a maximum L-flow in time O(m · |I|2 ·S/ψ(G)), where I denotes
the set of paths in the constructed L-flow, S is the size of the maximum L-flow, and ψ(G) =
min(|c(e) − c(g)| : c(e) 6= c(g), e, g ∈ R ∪ {e′}), where c(e′) = 0. Unfortunately, their paper
contains substantional flaws and the algorithm does not work as we show in the first part of this
paper. Thus, it is a challenging problem to find a polynomial time combinatorial algorithm for
the maximum L-bounded flow.

Surprisingly, the maximum L-bounded flow problem with edge lengths is NP-hard [4] even
in outer-planar graphs. Baier [3] describes a FPTAS for the maximum L-bounded flow with
edge lengths that is based on the ellipsoid algorithm. He also shows that the problem of finding
a decomposition of a given L-bounded flow into paths of length at most L is NP-hard, again
even if the graph is outer-planar.

A related problem is that of L-bounded disjoint paths: the task is to find the maximum
number of vertex or edge disjoint paths, between a given pair of vertices, each of length at most
L. The vertex version of the problem is known to be solvable in polynomial time for L ≤ 4
and NP-hard for L ≥ 5 [15], and the edge version is solvable in polynomial time for L ≤ 5 and
NP-hard for L ≥ 6 [6].

L-bounded cuts The L-bounded cut problem is NP-hard [22]. Baier et al. [4] show that it
is NP-hard to approximate it by a factor of 1.377 for L ≥ 5 in the case of the vertex L-cut,
and for L ≥ 4 in the case of the edge L-cut. Assuming the Unique Games Conjecture, Lee at
al. [19] proved that the minimum L-bounded cut problem is NP-hard to approximate within any

2

constant factor. For planar graphs, the problem is known to be NP-hard [10, 24], too.
The best approximations that we are aware of are by Baier et al. [4]: they describe an

algorithm with an O(min{L, n/L}) ⊆ O(
√
n)-approximation for the L-bounded vertex cut,

and O(min{L, n2/L2,
√
m}) ⊆ O(n2/3)-approximation for the L-bounded edge cut. The ap-

proximation factors are closely related with the cut-flow gaps: there are instances where the
minimum edge L-cut (vertex L-cut) is Θ(n2/3)-times (Θ(

√
n)-times) bigger than the maximum

L-flow [4]. For the vertex version of the problem, there is a τ -approximation algorithm for graphs
of treewidth τ [16].

The L-bounded cut was also studied from the perspective of parameterized complexity. It is
fixed parameter tractable (FPT) with respect to the treewidth of the underlying graph [8, 16].
Golovach and Thilikos [12] consider several parameterizations and show FPT-algorithms for
many variants of the problem (directed/undirected graphs, edge/vertex cuts). On planar graphs,
it is FPT with respect to the length bound L [16].

The L-bounded cut appears in the literature also as the short paths interdiction problem [5],
[16], [19] or as the most vital edges for shortest paths [5].

1.2 Our contributions

In the first part of the paper, we show that the combinatorial algorithm by Koubek and Říha [18]
for the maximum L-bounded flow is not correct.

In the second part of the paper we describe an iterative combinatorial algorithm, based on
the exponential length method, that finds a (1 + ε)-approximation of the maximum L-bounded
flow in time O(ε−2m2L logL) ; that is, we describe a fully polynomial approximation scheme
(FPTAS) for the problem.

Moreover, we show that this approach works even for the NP-hard generalization of the
maximum L-bounded flow problem in which each edge has a length. This approach is more
efficient than the FPTAS based on the ellipsoid method [3].

Our result is not surprising (e.g., Baier [3] mentions the possibility, without giving the
details, to use the exponential length method to obtain a FPTAS for the problem); however,
considering the absence of other polynomial time algorithms for the problem that are not based
on the general LP algorithms, despite of the effort to find some, we regard it as a meaningful
contribution. The paper is based on the results in the bachelor’s thesis of Kateřina Altmanová [2]
and in the master’s thesis of Jan Voborník [23].

2 The algorithm of Koubek and Říha

2.1 Increasing an L-bounded flow

Before describing the problem with the algorithm by Koubek and Říha [18], we informally
describe the purpose and the main attributes of an increasing L-system, a key structure used in
the algorithm.

Consider a network G = (X,R, c, s, t) and an arbitrary L-bounded flow f from s to t in G,
together with its decomposition into paths of length at most L (say paths p1, p2, . . . carrying
r1, r2, . . . units of flow, resp.) that is not a maximum L-bounded flow. Given G and f , Koubek
and Říha [18] build a labeled oriented tree T = (V,E, v0, LABV,LABE) where V is the set of
nodes, E is the set of edges, v0 is the root, LABV is a vertex labelling and LABE is an edge
labeling. The tree is called an increasing L system with respect to f .

There are four types of the nodes of the tree T ; to explain the error in the paper, it is
sufficient to deal with three of them: 1-son, 3-son, 4-son. With (almost) each node u in T , are
associated two consecutive paths in G: the first one, denoted by q(u), contains only edges that

3

are not used by the current L-flow f , and the second one, denoted by q̄(u), coincides with a
subpath of some path from the current L-flow f . (Fig. 1). The tree T encodes a combination

s t

a(v) b(v)

pi(v)

q(v) q(v)

Figure 1: The concatenation of the section q(v) to q(v).

of these paths with paths in f and this combination is supposed to yield a larger L-flow than
the L-flow f .

The label of a vertex v in the tree T , denoted by LABV in the original paper, and the label
of the edge e connecting v to its immediate ancestor, if there is one, denoted by LABE, are of
the following form:

LABV LABE
1-son (q(v), i(v), a(v), b(v)) none
3-son or 4-son (q(v), i(v), a(v), b(v)) (h(e), j(e), d(e), o(e))

where

• q(v) is a path in G that is edge disjoint with every path in the L-flow f ,

• i(v), j(v) are indices of paths in the L-flow f ,

• a(v), b(v), d(e) are positive integers (distances),

• o(e) is a positive integer, if v is a 3-son, and o(v) is a pointer to a 3-son, if v is a 4-son,

• h(e) is a subset of edges in G.

As for every node v in the tree (except for the root) there is a unique edge e connecting it to
its parent, Koubek and Říha often refer to the label of the edge e, and to its attributes, by the
name of the vertex v, e.g., they write h(v) instead of h(e); we shall use the same convention.

The tree T is supposed to describe an L-flow f ′ derived from f . In particular, each path
q(v) and q̄(v) is a subpath of a new path between s and t of length at most L. Very roughly
speaking, the attributes a(v) and d(v) store information about the distance of the path segments
q(v) and q̄(v) from s along the paths used in the new L-flow f ′, the attribute i(v) specifies the
index of a path from f s.t. q̄(v) is a subpath of pi(v), and the attributes b(v) and o(v), resp.,
specify the number of edges along which the paths pi(v) and pj(v) are being followed by some of
the new paths.

Consider a node w in the tree T such that at least one edge in q̄(w), say an edge e, is
saturated in the L-flow f (i.e., f(e) = c(e)). In this case, the properties of the tree T enforce
that the node w has at least one 3-son u whose responsibility is to desaturate the edge e by
diverting one of the paths that use e in f along a new route; the attribute j(u) specifies the
index of the path from f that is being diverted by the 3-son u of w (Fig. 2), and h(w) specifies
which saturated edges from q̄(v) are desaturated by the son u of w.

As the definition of the tree T does not pose any requirements on the disjointness of the
q̄-paths corresponding to different nodes of T , it may happen that the paths q̄(w) and q̄(w′) for
two different nodes w and w′ of the tree T overlap in a saturated edge e. In this case, Koubek
and Říha allow an exception (our terminology) to the rule described in previous paragraph: if
one of the nodes w and w′, say the node w, has a 3-son u that desaturates e, the other node,
the node w′, need not have a 3-son but it may have a 4-son instead. The purpose of this 4-son

4

s

t

f(e) = c(e)

q(w)

q(w)

pi(w)

pj(u)

d(u)

q(u) q(u)

e

Figure 2: Desaturation of a saturated edge e in a q̄(w) by a 3-son u.

is just to provide a pointer to the 3-son u of w that takes care about the desaturation of the
edge e.

2.2 Small mistakes and typos

The paper is full of small mistakes and typos which change the meaning. Here we mention the
most striking typo. On the page 393 in the paper [18], there is the rule 3b:

If v is a 1-son of a 3-son then v has a 1-son if and only if
(END(q(v)) + b(v)) mod pi(v) 6= t.

where v is note in the tree T , t is a vertex in the graph G, END(q(v)) denotes the last vertex
of the path q(v), and for a path p, a vertex w on p and an integer k, w + k mod p denotes
the vertex on the path p that is k edges after w. The correct reading of the above rule, with a
significantly different meaning, is:

If v is a 1-son or a 3-son, then v has a 1-son if and only if
(END(q(v)) + b(v)) mod pi(v) 6= t.

The difficulty with the original version is that it does not guarantee that the paths in new
L-flow f ′ terminate in the vertex t.

2.3 The main error

We start by recalling a few definitions and lemmas from the original paper [18]; for the definition
of the increasing system (more than one page long) we refer to [18].

Definition 1 (Definition 4.2 in [18]). Let T be an increasing L-system with respect to an L-flow
f = {(pi, ri) : i ∈ I} in a network G = (X,R, c, s, t). Given an edge u ∈ R, we define:

• T1(u) is the number of vertices x in the tree T such that u ∈ q(x) and if there is a saturated
edge v ∈ q(x) then there is a 3-son y of x with v ∈ h(y), u /∈ pj(y).

• T2(u) is the number of vertices x in the tree T such that u ∈ q(x).

• T3(u) is the number of vertices x which are 3-sons or 4-sons with u ∈ h(x).

For i ∈ I we denote mi = sup{T3(u) : u ∈ pi}, |T | = min{ c(u)T2(u)
: u ∈ R, f(u) = 0} ∪ { c(u)−f(u)T1(u)

:

u ∈ R} ∪ { rimi : i ∈ I}, where the expressions that are not defined are omitted.

Lemma 1 (Lemma 4.2 in [18]). If there is an increasing L-system with respect to an L-flow f ,
then there is an L-flow g with |g| = |f |+ |T |.

5

flow/capacity

1/1

1/1

1/∞

1/∞

s t

a

b

Figure 3: A network G with a 2-bounded flow f .

1/1 1/∞

s t

ap1
r1 = 1

1/1 1/∞

s t

b

p2
r2 = 1

Figure 4: A decomposition of the 2-bounded flow f into paths p1, p2.

Definition 2 (Definition 4.3 in [18]). Let R = R ∪ {u′}, where u′ /∈ R and c(u′) = 0. We put
ψ(G) = min(|c(u)− c(v)| : c(u) 6= c(v), u, v ∈ R).

Lemma 2 (Lemma 4.4 in [18]). For each increasing L-system T (with respect to an L-flow
f = {(pi, ri) : i ∈ I}) constructed by the above procedure it holds |T | ≥ ψ(G)/|I|.

The above procedure in Lemma 2 refers to a construction of an increasing L-system that is
outlined in the original paper. As Definition 2 implies ψ(G) > 0, we also know by Lemma 2
that for every increasing L-system T , |T | > 0.

Now we are ready to describe the counter example. Take k = 2 and consider the following
network G with a 2-bounded flow f of size 2 (Fig. 3 and 4); apparently, this is a maximum
2-bounded flow.

We are going to show that there exists an increasing system T for f . According to Lemmas 1
and 2 this implies the existence of a 2-bounded flow g of size |f |+ |T | > |f |. As the flow f is a
maximum 2-bounded flow in G, this is a contradiction.

u0 : 1− son
q(u0) = ∅

q(u0) = {s, a, t}
saturated edge = {sa}

u1 : 3− son
q(u1) = ∅
q(u1) = {s, b, t}

saturated edge = {sb}

u2 : 3− son
q(u2) = ∅
q(u0) = {s, a, t}

saturated edge = {sa}

u3 : 4− son

h(u1) = {sa}

h(u2) = {sb}

h(u3) = {sa}
o(u3) = u1

j(u1) = 1

j(u2) = 2

Figure 5: Increasing 2-system T .

The increasing system T is depicted in Figure 5; for the sake of simplicity, we list only
the most relevant attributes. It is just a matter of a mechanical effort to check that it meets
Definition 4.1 of the increasing system from the original paper.

In words, the essence of the counter example is the following. The purpose of the root of
the tree, the node u0, is to increase the flow from s to t along the path q(u0)q̄(u0) which is

6

(accidently) the path p1. As there is a saturated edge on this path, namely the edge sa, there
is a 3-son of the node u0, the node u1, whose purpose is to desaturate the edge sa by diverting
one of the paths that use the edge sa along an alternative route; in particular, the node u1
is diverting the path p1 and it is diverting it from the very beginning, from s, along the path
q(u1)q̄(u1) which is (accidently) the path p2.

As there is a saturated edge on this path, namely the edge sb, there is a 3-son of the node u1,
the node u2, whose purpose is to desaturate the edge sb by diverting one of the paths that use
the edge sb along an alternative route; in particular, the node u2 is diverting the path p2 and it
is diverting it from the very beginning, from s, along the path q(u2)q̄(u2) which is (accidently)
again the path p1.

As there is a saturated edge on this path, namely the edge sa, and as there is already another
node in the tree that is desaturating sa, namely the node u1, the node u2 does not have a 3-son
but it has a 4-son u3 instead, which is a pointer to the 3-son u1. This way, there is a kind of a
deadlock cycle in the increasing system: u1 is desaturating the edge sa for the node u0 but it
itself needs u2 to desaturate the edge sb in it and u2 in turn needs u3 to desaturate the edge sa,
but u3 delegates this task back to u1.

At this point, we know that Lemma 1 or Lemma 2 is not correct. By Definition 1, one can
check that |T | = 1/2 which implies, as we started with a maximum flow, that it is Lemma 1
that does not hold.

3 FPTAS for maximum L-bounded flow

We first describe a fully polynomial approximation scheme for maximum L-bounded flow on
networks with unit edge length. The algorithm is based on the algorithm for the maximum
multicommodity flow by Garg and Könemann [11].

Then we describe a FPTAS for the L-bounded flow problem with general edge lengths.
Our approximation schemas for the maximum L-bounded flow on unit edge lengths and the
maximum L-bounded flow with edge lengths are almost identical, the only difference is in using
an approximate subroutine for resource constrained shortest path in the general case which
slightly complicates the analysis.

3.1 FPTAS for Unit Edge Lengths

Let us consider the path based linear programming (LP) formulation of the maximum L-bounded
flow, Ppath, and its dual, Dpath. We assume that G = (V,E, c, s, t) is a given network and L is
a given length bound. Let PL denote the set of all s-t paths of length at most L in G. There is
a primal variable x(p) for each path p ∈ PL, and a dual variable y(e) for each edge e ∈ E. Note
that the dual LP is a relaxation of an integer LP formulation of the minimum L-bounded cut
problem.

max
∑
P∈PL

x(P)

s.t.
∑
P∈PL:
e∈P

x(P) ≤ c(e) ∀e ∈ E

x ≥ 0

min
∑
e∈E

c(e)y(e)

s.t.
∑
e∈P

y(e) ≥ 1 ∀P ∈ PL

y ≥ 0

The algorithm simultaneously constructs solutions for the maximum L-bounded flow and the
minimum fractional L-bounded cut. It iteratively routes flow over shortest paths with respect
to properly chosen dual edge lengths and at the same time increases these dual lengths; dual

7

edge length of the edge e after i iterations will be denoted by yi(e). During the runtime of the
algorithm, the constructed flow need not respect the edge capacities; however, with the right
choice of parameters ε, δ the resulting flow can be scaled down to a feasible (i.e., respecting the
edge capacities) flow (Lemma 3) that is a (1 + ε)-approximation of the maximum L-bounded
flow (Theorem 1).

For a vector y of dual variables, let dLy (s, t) denote the length of the y-shortest s − t path
from the set of paths PL and let αL(i) = dLyi(s, t). Note that a shortest s− t path with respect
to edge lengths y that uses at most a given number of edges can be computed in polynomial
time by a modification of the Dijkstra’s shortest path algorithm.

Algorithm 1 Approx(ε, δ)
1: i← 0, y0(e)← δ ∀e ∈ E, x0(P)← 0 ∀P ∈ PL
2: while αL(i) < 1 do
3: i← i+ 1
4: xi ← xi−1, yi ← yi−1
5: P ← yi-shortest s-t path with at most L edges
6: c← min

e∈P
c(e)

7: xi(P)← xi(P) + c
8: yi(e)← yi(e)(1 + εc/c(e)) ∀e ∈ P
9: end while

10: return xi

Let fi denote the size of the flow after i iterations, fi =
∑

P∈PL xi(P), and let τ denote the
total number of iterations performed by Approx; then xτ is the output of the algorithm and
fτ its size.

Lemma 3. The flow xτ scaled down by a factor of log1+ε
1+ε
δ is a feasible L-bounded flow.

Proof. By construction, for every i, xi is an L-bounded flow. Thus, we only have to care about
the feasibility of the flow

xτ

log1+ε
1+ε
δ

. (1)

For every iteration i and every edge e ∈ E, as αL(i − 1) < 1, we also have yi−1(e) < 1 and
so yi(e) < 1 + ε. It follows that

yτ (e) < 1 + ε . (2)

Consider an arbitrary edge e ∈ E and suppose that the flow fτ (e) along e has been routed in
iterations i1, i2, . . . , ir and the amount of flow routed in iteration ij is cj . Then fτ (e) =

∑r
j=1 cj

and yτ (e) = δ
∏r
j=1(1 + εcj/c(e)). Because each cj was chosen such that cj ≤ c(e), we have by

Bernoulli’s inequality that 1 + εcj/c(e) ≥ (1 + ε)cj/c(e) and

yτ (e) ≥ δ
r∏
j=1

(1 + ε)cj/c(e) = δ(1 + ε)fτ (e)/c(e). (3)

Combining inequalities (2) and (3) gives

fτ (e)

c(e)
≤ log1+ε

1 + ε

δ

which completes the proof.

8

Claim 4. For i = 1, . . . , τ ,

αL(i) ≤ δLeεfi/β . (4)

Proof. For a vector y of dual variables, let D(y) =
∑

e c(e)y(e) and let β = minyD(y)/dLy (s, t).
Note that β is equal to the optimal value of the dual linear program. For notational simplicity
we abbreviate D(yi) as D(i).

Let Pi be the path chosen in iteration i and ci be the value of c in iteration i. For every
i ≥ 1 we have

D(i) =
∑
e∈E

yi(e)c(e)

=
∑
e∈E

yi−1(e)c(e) + ε
∑
e∈Pi

yi−1(e)ci

= D(i− 1) + ε(fi − fi−1)αL(i− 1)

which implies that

D(i) = D(0) + ε

i∑
j=1

(fj − fj−1)αL(j − 1). (5)

Now consider the length function yi − y0. Note that D(yi − y0) = D(i) − D(0) and
dLyi−y0(s, t) ≥ αL(i)− δL. Hence,

β ≤ D(yi − y0)
dLyi−y0(s, t)

≤ D(i)−D(0)

αL(i)− δL
. (6)

By combining relations (5) and (6) we get

αL(i) ≤ δL+
ε

β

i∑
j=1

(fj − fj−1)αL(j − 1) .

Now we define z(0) = αL(0) and for i = 1, . . . , τ , z(i) = δL + ε
β

∑i
j=1(fj − fj−1)z(j − 1).

Note that for each i, αL(i) ≤ z(i). Furthermore,

z(i) = δL+
ε

β

i∑
j=1

(fj − fj−1)z(j − 1)

=

δL+
ε

β

i−1∑
j=1

(fj − fj−1)z(j − 1)

+
ε

β
(fi − fi−1)z(i− 1)

= z(i− 1)(1 + ε(fi − fi−1)/β)

≤ z(i− 1)eε(fi−fi−1)/β.

Since z(0) ≤ δL, we have z(i) ≤ δLeεfi/β , and thus also, for i = 1, . . . , τ , αL(i) ≤ δLeεfi/β .

Theorem 1. For every 0 < ε < 1 there is an algorithm that computes an (1 + ε)-approximation
to the maximum L-bounded flow in a network with unit edge lengths in time O(ε−2m2L logL).

9

Proof. We start by showing that for every ε < 1
3 there is a constant δ = δ(ε) such that xτ , the

output of Approx(ε, δ), scaled down by log1+ε
1+ε
δ as in Lemma 3, is a (1 + 3ε)-approximation.

Let γ denote the approximation ratio of such an algorithm, that is, let γ denote the ratio of
the optimal dual solution (β) to the appropriately scaled output of Approx(ε, δ),

γ =
β log1+ε

1+ε
δ

fτ
, (7)

where the constant δ will be specified later.
By Claim 4 and the stopping condition of the while cycle we have

1 ≤ αL(τ) ≤ δLeεfτ/β

and hence
β

fτ
≤ ε

log 1
δL

.

Plugging this bound in the equality for the approximation ratio γ, we obtain

γ ≤
ε log1+ε

1+ε
δ

log 1
δL

=
ε

log(1 + ε)

log 1+ε
δ

log 1
δL

.

Setting δ = 1+ε
((1+ε)L)1/ε

yields

log 1+ε
δ

log 1
δL

=
1
ε log((1 + ε)L)(

1
ε − 1

)
log((1 + ε)L)

=
1

1− ε
.

Taylor expansion of log(1 + ε) gives a bound log(1 + ε) ≥ ε − ε2

2 for ε < 1 and it follows for
ε < 1

3 that

γ ≤ ε

(1− ε) log(1 + ε)
≤ ε

(1− ε)(ε− ε2/2)
≤ 1

1− 3
2ε
≤ 1 + 3ε.

To complete the proof, we just put ε′ = ε/3 and run Approx(ε′, δ(ε′)). It remains to prove
the time complexity of the algorithm. In every iteration i of Approx, the length yi(e) of an
edge e with the smallest capacity on the chosen path P is increased by a factor of 1+ε′. Because
P was chosen such that yi(P) < 1 also yi(e) < 1 for every edge e ∈ P . Lengths of other edges
get increased by a factor of at most 1 + ε′, therefore yτ (e) < 1 + ε′ for every edge e ∈ E. Every
edge has the minimum capacity on the chosen path in at most

⌈
log1+ε′

1+ε′

δ

⌉
= O(1ε log1+ε L)

iterations, so Approx makes at most O(mε log1+ε L) = O(m
ε2

logL) iterations.
Each iteration takes time O(Lm) so the total time taken by Approx is O(ε−2m2L logL).

3.2 FPTAS for General Edge Lengths

Now we extend the approximation algorithm to networks with general edge lengths that are
given by a length function ` : E → N. The dynamic programming algorithm for computing
shortest paths that have a restricted length with respect to another length function, does not
work in this case. In fact, the problem of finding shortest path with respect to a given edge
length function while restricting to paths of bounded length with respect to another length
function is NP-hard in general [13]. On the other hand, there exists a FPTAS for it [14, 20].

We assume that we are given as a black-box an algorithm that for a given graph G, two
edge length functions y and `, two distinguished vertices s and t from G, a length bound L
and an error parameter w > 0, computes a (1 + w)-approximation of the y-shortest path of

10

`-length at most L; we denote by dLy,`(s, t;w) the length of such a path and we also introduce
an abbreviation ᾱL(i) = dLyi,`(s, t;w). Note that for every i, ᾱL(i) ≤ (1 + w)αL(i). We can use
the FPTAS of Lorenz and Raz [20] for this task.

The algorithm of Garg and Könemann [11] for approximating maximal multicommodity flow
has been improved by Fleischer [9]. The original algorithm computes the shortest path between
every terminal pairs in every iteration. Fleischer divided the algorithm to phases where she
worked with commodities one by one. This way her algorithm effectively works with approxi-
mations of shortest paths while eliminates the dependency on the number of commodities and
still gets a good approximation ratio. Using a similar analysis we show that we can work with
an approximation shortest path algorithm to get an FPTAS to otherwise intractable maximum
L-bounded flow problem with general edge lengths.

The structure of the L-bounded flow algorithm with general edge lengths stays the same as
in the unit edge lengths case. The only difference is that instead of y-shortest L-bounded paths,
approximations of y-shortest L-bounded paths are used (steps 2 and 5).

Algorithm 2 ApproxGeneral(ε, δ, w)
1: i← 0, y0(e)← δ ∀e ∈ E, x0(P)← 0 ∀P ∈ PL
2: while ᾱL(i) < 1 + w do
3: i← i+ 1
4: xi ← xi−1, yi ← yi−1
5: P ← (1 + w)-approximation of the yi-shortest L-bounded path
6: c← min

e∈P
c(e)

7: xi(P)← xi(P) + c
8: yi(e)← yi(e)(1 + εc/c(e)) ∀e ∈ P
9: end while

10: return xi

The analysis of the algorithm follows the same steps as the analysis of Algorithm 1 but one
has to be more careful when dealing with the lengths.

As in the previous subsection, let fi denote the size of the flow after i iterations and let
τ denote the total number of iterations. Due to the lack of space, the proofs are given in the
Appendix.

Lemma 5. The flow xτ scaled down by a factor of log1+ε
(1+ε)(1+w)

δ is a feasible L-bounded flow.

Proof. For every edge e ∈ E and iteration i, as ᾱL(i− 1) < 1 +w, we also have yi−1(e) < 1 +w.
By description of the algorithms, this implies yi(e) < (1 + ε)(1 + w), and in particular,

yτ (e) < (1 + ε)(1 + w) . (8)

Combining this with yτ (e) ≥ δ(1 + ε)fτ (e)/c(e) from inequality (3) in previous subsection, we
derive

fτ (e)

c(e)
≤ log1+ε

(1 + ε)(1 + w)

δ

which completes the proof.

Claim 6. For i = 1, . . . , τ ,

αL(i) ≤ δLeε(1+w)fi/β . (9)

11

Proof. By the same reasoning as in the proof of Claim 4, we obtain

D(i) ≤ D(0) + ε
i∑

j=1

(fj − fj−1)(1 + w)αL(i− 1) , (10)

where the extra 1 + w factors stems from the fact that we work, in iteration i, not with a path
of length α(i) but with a path of length ᾱ(i) ≤ (1 +w)α(i). Combining this with β ≤ D(i)−D(0)

αL(i)−δL
from inequality (6), we obtain

αL(i) ≤ δL+
ε(1 + w)

β

i∑
j=1

(fj − fj−1)αL(j − 1) .

From this point, we proceed again along the same lines as in the proof of Claim 4 (the only
difference is that instead of ε/β, we work now with (1 +w)ε/β) and get the desired bound.

Theorem 2. There is an algorithm that computes an (1 + ε)-approximation to the maximum
L-bounded flow in a graph with general edge lengths in time O(m

2n
ε2

logL(log log n+ 1
ε)).

Proof. We show that for every ε ≤ 1
3 there are constants δ and w such that xτ , the output

of ApproxGeneral(ε, δ, w), scaled down by log1+ε
(1+ε)(1+w)

δ as in Lemma 5, is a (1 + 5ε)-
approximation to the maximum L-bounded flow with general capacities; the theorem easily
follows.

Let γ denote the approximation ratio of such an algorithm, that is, let γ denote the ratio of
the optimal dual solution (β) to the appropriately scaled output of ApproxGeneral(ε, δ, w),

γ =
β log1+ε

(1+ε)(1+w)
δ

fτ
, (11)

where the constants δ and w will be specified later.
By the stopping condition of the while cycle we have 1 + w ≤ ᾱL(τ) ≤ (1 + w)αL(τ), that

is, 1 ≤ αL(τ); combining it with Claim 6, we get

β

fτ
≤ ε(1 + w)

log 1
δL

.

Plugging this bound in the equality for the approximation ratio γ, we obtain

γ ≤
ε(1 + w) log1+ε

(1+ε)(1+w)
δ

log 1
δL

=
ε(1 + w)

log(1 + ε)

log (1+ε)(1+w)
δ

log 1
δL

. (12)

Setting δ = (1+ε)(1+w)

((1+ε)(1+w)L)1/ε
yields

log (1+ε)(1+w)
δ

log 1
δL

=
1
ε log((1 + ε)(1 + w)L)(

1
ε − 1

)
log((1 + ε)(1 + w)L)

=
1

1− ε
. (13)

Thus, the bound on the approximation ratio γ (12) simplifies to

γ ≤ ε(1 + w)

(1− ε) log(1 + ε)
≤ ε(1 + w)

(1− ε)(ε− ε2

2)
≤ 1 + w

1− 3
2ε

,

12

where the second inequality follows from the Taylor expansion of log(1 + ε) and the bound
log(1 + ε) ≥ ε− ε2

2 , for ε < 1. By setting w = ε, for ε ≤ 1
3 we get the promised bound

γ ≤ 1 + w

1− 3
2ε
≤ (1 + ε)(1 + 3ε) ≤ 1 + 5ε .

Concerning the running time, we observe that in every iteration the length of at least one
edge gets increased by the ratio 1 + ε. For every edge e ∈ E we have yτ (e) ≤ (1 + ε)(1 +w). By
the same arguments as in the previous subsection, our choice of the parameters ensures that the
total number of iterations is at most O(mε log1+ε L) = O(m

ε2
logL). The FPTAS approximating

the resource bounded shortest path takes time O(mn(log log n + 1
ε)). Combining these two

bounds completes the proof.

We note that the exponential length method can be used for many fractional packing prob-
lems and using the same technique we could get an approximation algorithm for maximum
multicommodity L-bounded flow.

References

[1] J. Adámek and V. Koubek. Remarks on flows in network with short paths. Comment.
Math. Univ. Carolin., 12(4):661–667, 1971.

[2] K. Altmanová. Toky cestami omezené délky. Bachelor’s thesis, Charles University, Faculty
of Mathematics and Physics, Department of Applied Mathematics, 2018. In Czech.

[3] G. Baier. Flows with path restrictions. PhD thesis, TU Berlin, 2003.

[4] G. Baier, T. Erlebach, A. Hall, E. Köhler, P. Kolman, O. Pangrác, H. Schilling, and
M. Skutella. Length-bounded cuts and flows. ACM Trans. Algorithms, 7(1):4:1–4:27, 2010.

[5] C. Bazgan, T. Fluschnik, A. Nichterlein, R. Niedermeier, and M. Stahlberg. A More Fine-
Grained Complexity Analysis of Finding the Most Vital Edges for Undirected Shortest
Paths. CoRR, abs/1804.09155, 2018.

[6] A. Bley. On the complexity of vertex-disjoint length-restricted path problems. Computa-
tional Complexity, 12(3-4):131–149, 2003.

[7] A. Bley and J. Neto. Approximability of 3- and 4-hop bounded disjoint paths problems.
In F. Eisenbrand and F. B. Shepherd, editors, Integer Programming and Combinatorial
Optimization, pages 205–218, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[8] P. Dvořák and D. Knop. Parametrized complexity of length-bounded cuts and multi-cuts.
In Theory and Applications of Models of Computation, pages 441–452. Springer, 2015.

[9] L. K. Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM J. Discret. Math., 13(4):505–520, 2000.

[10] T. Fluschnik, D. Hermelin, A. Nichterlein, and R. Niedermeier. Fractals for kernelization
lower bounds, with an application to length-bounded cut problems. CoRR, abs/1512.00333,
2015.

[11] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM J. Comput., 37(2):630–652, 2007.

13

[12] P. A. Golovach and D. M. Thilikos. Paths of bounded length and their cuts: Parameter-
ized complexity and algorithms. In International Symposium on Parameterized and Exact
Computation, 2009.

[13] G. Y. Handler and I. Zang. A dual algorithm for the constrained shortest path problem.
Networks, 10:293–310, 1980.

[14] R. Hassin. Approximation schemes for the restricted shortest path problem. Math. Oper.
Res., 17(1):36–42, 1992.

[15] A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum disjoint paths with
length constraints. Networks, 12(3):277–286, 1982.

[16] P. Kolman. On algorithms employing treewidth for L-bounded cut problems. J. Graph
Algorithms Appl., 22:177–191, 2018.

[17] P. Kolman and C. Scheideler. Improved bounds for the unsplittable flow problem. J.
Algorithms, 61(1):20–44, 2006.

[18] V. Koubek and A. Říha. The maximum k-flow in a network. In Mathematical Foundations
of Computer Science 1981, pages 389–397. Springer, 1981.

[19] E. Lee. Improved hardness for cut, interdiction, and firefighter problems. In International
Colloquium on Automata, Languages, and Programming, 2017.

[20] D. H. Lorenz and D. Raz. A simple efficient approximation scheme for the restricted shortest
path problem. Oper. Res. Lett., 28(5):213–219, 2001.

[21] R. A. Mahjoub and T. S. McCormick. Max flow and min cut with bounded-length paths:
complexity, algorithms, and approximation. Math. Program., 124(1-2):271–284, 2010.

[22] B. Schieber, A. Bar-Noy, and S. Khuller. The Complexity of Finding Most Vital Arcs and
Nodes. Technical report, College Park, MD, USA, 1995.

[23] J. Voborník. Algorithms for L-bounded flows. Master’s thesis, Charles University, Faculty
of Mathematics and Physics, Department of Applied Mathematics, 2016.

[24] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. The Computational Complexity
of Finding Separators in Temporal Graphs. ArXiv e-prints, Nov. 2017.

14

	1 Introduction
	1.1 Related results
	1.2 Our contributions

	2 The algorithm of Koubek and Ríha
	2.1 Increasing an L-bounded flow
	2.2 Small mistakes and typos
	2.3 The main error

	3 FPTAS for maximum L-bounded flow
	3.1 FPTAS for Unit Edge Lengths
	3.2 FPTAS for General Edge Lengths

