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Abstract

We study two fundamental problems dealing with curves in the plane, namely, the
nearest-neighbor problem and the center problem. Let C be a set of n polygonal curves,
each of size m. In the nearest-neighbor problem, the goal is to construct a compact data
structure over C, such that, given a query curve Q, one can efficiently find the curve in C
closest to Q. In the center problem, the goal is to find a curve Q, such that the maximum
distance between Q and the curves in C is minimized. We use the well-known discrete
Fréchet distance function, both under L∞ and under L2, to measure the distance between
two curves.

For the nearest-neighbor problem, despite discouraging previous results, we identify
two important cases for which it is possible to obtain practical bounds, even when m and
n are large. In these cases, either Q is a line segment or C consists of line segments, and
the bounds on the size of the data structure and query time are nearly linear in the size of
the input and query curve, respectively. The returned answer is either exact under L∞, or
approximated to within a factor of 1 + ε under L2. We also consider the variants in which
the location of the input curves is only fixed up to translation, and obtain similar bounds,
under L∞.

As for the center problem, we study the case where the center is a line segment, i.e.,
we seek the line segment that represents the given set as well as possible. We present
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near-linear time exact algorithms under L∞, even when the location of the input curves
is only fixed up to translation. Under L2, we present a roughly O(n2m3)-time exact
algorithm.

1 Introduction

We consider efficient algorithms for two fundamental data-mining problems for sets of polygonal
curves in the plane: nearest-neighbor query and clustering. Both of these problems have
been studied extensively and bounds on the running time and storage consumption have been
obtained. In general, these bounds suggest that the existence of algorithms that can efficiently
process large datasets of curves of high complexity is unlikely. Therefore we study special
cases of the problems where some curves are assumed to be directed line segments (henceforth
referred to as segments), and the distance metric is the discrete Fréchet distance.

Such analysis of curves has many practical applications, where the position of an object as
it changes over time is recorded as a sequence of readings from a sensor to generate a trajectory.
For example, the location readings from GPS devices attached to migrating animals [ABB+14],
the traces of players during a football match captured by a computer vision system [GH17], or
stock market prices [NW13]. In each case, the output is an ordered sequence C of m vertices
(i.e., the sensor readings), and by interpolating the location between each pair of vertices as a
segment, a polygonal chain is obtained.

Given a collection C of n curves, a natural question to ask is whether it is possible to
preprocess C into a data structure so that the nearest curve in the collection to a query curve Q
can be determined efficiently. This is the nearest-neighbor problem for curves (NNC).

Indyk [Ind02] gave a near-neighbor data structure for polygonal curves under the discrete
Fréchet distance. The data structure achieves an approximation factor of O(logm+ log log n),
where n is the number of curves and m is the maximum size of a curve. Its space consumption
is very high, O(|X|

√
m(m

√
mn)2), where |X| is the size of the domain on which the curves are

defined, and the query time is O(mO(1) log n).
Later, Driemel and Silvestri [DS17] presented a locality-sensitive-hashing scheme for curves

under the discrete Fréchet distance, improving the result of Indyk for short curves. They
also provide a trade-off between approximation quality and computational performance: for a
parameter k ∈ [m], a data structure using O(22kmk−1n log n+mn) space is constructed that
answers queries in O(22kmk log n) time with an approximation factor of O(m/k).

Recently, Emiris and Psarros [EP18] presented near-neighbor data structures for curves
under both discrete Fréchet and dynamic time warping distance. Their algorithm achieves
approximation factor of 1 + ε, at the expense of increasing space usage and preprocessing time.
For curves in the plane, the space used by their data structure is Õ(n) · (2 + 1

logm)O(m1/ε·log(1/ε))

for discrete Fréchet distance and Õ(n) ·O(1ε )m for dynamic time warping distance, while the
query time in both cases is O(22m log n).

De Berg et al. [dBGM17] described a dynamic data structure for approximate nearest
neighbor for curves (which can also be used for other types of queries such as approximate range

searching), under the (continuous) Fréchet distance. Their data structure uses n · O
(
1
ε

)2m
space and has O(1) query time (for a segment query), but with an additive error of ε ·reach(Q),
where reach(Q) is the maximum distance between the start vertex of the query curve Q and
any other vertex of Q. Furthermore, when the distance from Q to its nearest neighbor is
relatively large, the query procedure might fail.

2



Afshani and Driemel [AD18] studied range searching under both the discrete and continuous
Fréchet distance. In this problem, the goal is to preprocess C such that, given a query curve
Q of length mq and a radius r, all curves in C that are within distance r of Q can be found
efficiently. For the discrete Fréchet distance in the plane, their data structure uses space in

O(n(log logn)m−1) and has query time in O(
√
n · logO(m) n ·mO(1)

q ), assuming mq = logO(1) n.
They also show that any data structure in the pointer model that achieves Q(n) +O(k) query
time, where k is the output size, has to use roughly Ω(n/Q(n))2) space in the worst case, even
if queries are just points, for discrete Fréchet distance!

De Berg, Cook, and Gudmundsson [dBCG13] considered range counting queries for curves
under the continuous Fréchet distance. Given a single polygonal curve C with m vertices, they
show how to preprocess it into a data structure in O(k polylogm) time and space, so that,
given a query segment s, one can return a constant approximation of the number of subcurves
of C that lie within distance r of s in O( n√

k
polylogm) time, where k is a parameter between

m and m2.
Driemel and Har-Peled [DHP12] preprocess a curve C into a data structure of linear size,

which, given a query segment s and a subcurve of C, returns a (1 + ε)-approximation of the
distance between s and the subcurve in logarithmic time.

Clustering is another fundamental problem in data analysis that aims to partition an input
collection of curves into clusters where the curves within each cluster are similar in some sense,
and a variety of formulations have been proposed [ACMLM03,CL07,DKS16]. The k-Center
problem [Gon85, AP02, HN79] is a classical problem in which a point set in a metric space
is clustered. The problem is defined as follows: given a set P of n points, find a set G of k
center points, such that the maximum distance from a point in P to a nearest point in G is
minimized.

Given an appropriate metric for curves, such as the discrete Fréchet distance, one can define
a metric space on the space of curves and then use a known algorithm for point clustering.
The clustering obtained by the k-Center problem is useful in that it groups similar curves
together, thus uncovering a structure in the collection, and furthermore the center curves are
of value as each can be viewed as a representative or exemplar of its cluster, and so the center
curves are a compact summary of the collection. However, an issue with this formulation,
when applied to curves, is that the optimal center curves may be noisy, i.e., the size of such a
curve may be linear in the total number of vertices in its cluster, see [DKS16] for a detailed
description. This can significantly reduce the utility of the centers as a method of summarizing
the collection, as the centers should ideally be of low complexity. To address this issue, Driemel
et al. [DKS16] introduced the (k, `)-Center problem, where the k desired center curves are
limited to at most ` vertices each.

Inherent in both problems is a notion of similarity between pairs of curves, which is
expressed as a distance function. Several such functions have been proposed to compare curves,
including the continuous [Fré06,AG95] and discrete [EM94] Fréchet distance, the Hausdorff
distance [Hau27], and dynamic time warping [BC94]. We consider the problems under the
discrete Fréchet distance, which is often informally described by two frogs, each hopping from
vertex to vertex along a polygonal curve. At each step, one or both of the frogs may advance
to the next vertex on its curve, and then the distance between them is measured using some
point metric. The discrete Fréchet distance is defined as the smallest maximum distance
between the frogs that can be achieved in such a joint sequence of hops of the frogs. The point
metrics that we consider are the L∞ and L2 metrics. The problem of computing the Fréchet
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distance has been widely investigated [Bri14,BM16,AAKS14], and in particular Bringmann
and Mulzer [Bri14] showed that strongly subquadratic algorithms for the discrete Fréchet
distance are unlikely to exist.

Several hardness of approximation results for both the NNC and (k, `)-Center problems
are known. For the NNC problem under the discrete Fréchet distance, no data structure exists
requiring O(n2−ε polylogm) preprocessing and O(n1−ε polylogm) query time for ε > 0, and
achieving an approximation factor of c < 3, unless the strong exponential time hypothesis
fails [IM04, DKS16]. In the case of the (k, `)-Center problem under the discrete Fréchet
distance, Driemel et al. showed that the problem is NP-hard to approximate within a factor
of 2 − ε when k is part of the input, even if ` = 2 and d = 1. Furthermore, the problem is
NP-hard to approximate within a factor 2− ε when ` is part of the input, even if k = 2 and
d = 1, and when d = 2 the inapproximability bound is 3 sinπ/3 ≈ 2.598 [BDG+19].

However, we are interested in algorithms that can process large inputs, i.e., where n and/or
m are large, which suggests that the processing time ought to be near-linear in nm and the
query time for NNC queries should be near-linear in m only. The above results imply that
algorithms for the NNC and (k, `)-Center problems that achieve such running times are not
realistic. Moreover, given that strongly subquadratic algorithms for computing the discrete
Fréchet distance are unlikely to exist, an algorithm that must compute pairwise distances
explicitly will incur a roughly O(m2) running time. To circumvent these constraints, we focus
on specific important settings: for the NNC problem, either the query curve is assumed to be
a segment or the input curves are segments; and for the (k, `)-Center problem the center is a
segment and k = 1, i.e., we focus on the (1, 2)-Center problem.

While these restricted settings are of theoretical interest, they also have a practical
motivation when the inputs are trajectories of objects moving through space, such as migrating
birds. A segment ab can be considered a trip from a starting point a to a destination b. Given
a set of trajectories that travel from point to point in a noisy manner, we may wish to find the
trajectory that most closely follows a direct path from a to b, which is the NNC problem with
a segment query. Conversely, given an input of (directed) segments and a query trajectory, the
NNC problem would identify the segment (the simplest possible trajectory, in a sense) that
the query trajectory most closely resembles. In the case of the (1, 2)-Center problem, the
obtained segment center for an input of trajectories would similarly represent the summary
direction of the input, and the radius r∗ of the solution would be a measure of the maximum
deviation from that direction for the collection.

Our results. We present algorithms for a variety of settings (summarized in the table below)
that achieve the desired running time and storage bounds. Under the L∞ metric, we give
exact algorithms for the NNC and (1, 2)-Center problems, including under translation,
that achieve the roughly linear bounds. For the L2 metric, (1 + ε)-approximation algorithms
with near-linear running times are given for the NNC problem, and for the (1, 2)-Center
problem, an exact algorithm is given whose running time is roughly O(n2m3) and whose space
requirement is quadratic. (Parentheses point to results under translation.)

2 Preliminaries

The discrete Fréchet distance is a measure of similarity between two curves, defined as follows.
Consider the curves C = (p1, . . . , pm) and C ′ = (q1, . . . , qm′), viewed as sequences of vertices.
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Input/query: Input/query: Input:
m-curves/segment segments/m-curve (1,2)-center

L∞ Section 3.1 (Section 4.1) Section 3.2 (Section 4.2) Section 6.1 (Section 6.2)

L2 Section 5.1 Section 5.2 Section 6.3

A (monotone) alignment of the two curves is a sequence τ := 〈(pi1 , qj1), . . . , (piv , qjv)〉 of pairs
of vertices, one from each curve, with (i1, j1) = (1, 1) and (iv, jv) = (m,m′). Moreover, for
each pair (iu, ju), 1 < u ≤ v, one of the following holds: (i) iu = iu−1 and ju = ju−1 + 1,
(ii) iu = iu−1 + 1 and ju = ju−1, or (iii) iu = iu−1 + 1 and ju = ju−1 + 1. The discrete Fréchet
distance is defined as

dddF (C,C ′) = min
τ∈T

max
(i,j)∈τ

d(pi, qj),

with the minimum taken over the set T of all such alignments τ , and where d denotes the
metric used for measuring interpoint distances.

We now give two alternative, equivalent definitions of the discrete Fréchet distance between
a segment s = ab and a polygonal curve C = (p1, . . . , pm) (we will drop the point metric d
from the notation, where it is clear from the context). Let C[i, j] := {pi, . . . , pj}. Denote by
B(p, r) the ball of radius r centered at p, in metric d. The discrete Fréchet distance between s
and C is at most r, if and only if there exists a partition of C into a prefix C[1, i] and a suffix
C[i+ 1,m], such that B(a, r) contains C[1, i] and B(b, r) contains C[i+ 1,m].

A second equivalent definition is as follows. Consider the intersections of balls around the
points of C. Set Ii(r) = B(p1, r) ∩ · · · ∩ B(pi, r) and Ii(r) = B(pi+1, r) ∩ · · · ∩ B(pm, r), for
i = 1, . . . ,m − 1. Then, the discrete Fréchet distance between s and C is at most r, if and
only if there exists an index 1 ≤ i ≤ m− 1 such that a ∈ Ii(r) and b ∈ Ii(r).

Given a set C = {C1, . . . , Cn} of n polygonal curves in the plane, the nearest-neighbor
problem for curves is formulated as follows:

Problem 1 (NNC). Preprocess C into a data structure, which, given a query curve Q, returns
a curve C ∈ C with ddF (Q,C) = minCi∈C ddF (Q,Ci).

We consider two variants of Problem 1: (i) when the query curve Q is a segment, and
(ii) when the input C is a set of segments.

Secondly, we consider a particular case of the (k, `)-Center problem for curves [DKS16].

Problem 2 ((1, 2)-Center). Find a segment s∗ that minimizes maxCi∈C ddF (s, Ci), over all
segments s.

3 NNC and L∞ metric

When d is the L∞ metric, each ball B(pi, r) is a square. Denote by S(p, d) the axis-parallel
square of radius d centered at p.

Given a curve C = (p1, . . . , pm), let di, for i = 1, . . . ,m − 1, be the smallest radius such
that S(p1, di) ∩ · · · ∩ S(pi, di) 6= ∅. In other words, di is the radius of the smallest enclosing
square of C[1, i]. Similarly, let di, for i = 1, . . . ,m − 1, be the smallest radius such that
S(pi+1, di) ∩ · · · ∩ S(pm, di) 6= ∅.
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For any d > di, S(p1, d) ∩ · · · ∩ S(pi, d) is a rectangle, Ri = Ri(d), defined by four sides
of the squares S(p1, d), . . . , S(pi, d), see Figure 1. These sides are fixed and do not depend
on the specific value of d. Furthermore, the left, right, bottom and top sides of Ri(d) are
provided by the sides corresponding to the right-, left-, top- and bottom-most vertices in C[1, i],
respectively, i.e., the sides corresponding to the vertices defining the bounding box of C[1, i].

pib

pit
pi`

pir

Ri

a

Figure 1: The rectangle Ri = Ri(d) and the vertices of the ith prefix of C that define it.

Denote by pi` the vertex in the ith prefix of C that contributes the left side to Ri(d), i.e.,
the left side of S(pi`, d) defines the left side of Ri(d). Furthermore, denote by pir, p

i
b, and pit

the vertices of the ith prefix of C that contribute the right, bottom, and top sides to Ri(d),
respectively. Similarly, for any d > di, we denote the four vertices of the ith suffix of C that
contribute the four sides of the rectangle Ri(d) = S(pi+1, d) ∩ · · · ∩ S(pm, d) by pi`, p

i
r, p

i
b, and

pit, respectively.

Finally, we use the notation Rji = Rji (d) (R
j
i = R

j
i (d)) to refer to the rectangle Ri = Ri(d)

(Ri = Ri(d)) of curve Cj .

Observation 3. Let s = ab be a segment, C be a curve, and let d > 0. Then, ddF (s, C) ≤ d
if and only if there exists i, 1 ≤ i ≤ m− 1, such that a ∈ Ri(d) and b ∈ Ri(d).

3.1 Query is a segment

Let C = {C1, . . . , Cn} be the input curves, each of size m. Given a query segment s = ab, the
task is to find a curve C ∈ C such that ddF (s, C) = minC′∈C ddF (s, C ′).

The data structure. The data structure is an eight-level search tree. The first level of the
data structure is a search tree for the x-coordinates of the vertices pi`, over all curves C ∈ C,
corresponding to the nm left sides of the nm rectangles Ri(d). The second level corresponds
to the nm right sides of the rectangles Ri(d), over all curves C ∈ C. That is, for each node u
in the first level, we construct a search tree for the subset of x-coordinates of vertices pir which
corresponds to the canonical set of u. Levels three and four of the data structure correspond to
the bottom and top sides, respectively, of the rectangles Ri(d), over all curves C ∈ C, and they
are constructed using the y-coordinates of the vertices pib and the y-coordinates of the vertices
pit, respectively. The fifth level is constructed as follows. For each node u in the fourth level,
we construct a search tree for the subset of x-coordinates of vertices pi` which corresponds to

the canonical set of u; that is, if the y-coordinate of pjt is in u’s canonical subset, then the
x-coordinate of pj` is in the subset corresponding to u’s canonical set. The bottom four levels
correspond to the four sides of the rectangles Ri(d) and are built using the x-coordinates of
the vertices pi`, the x-coordinates of the vertices pir, the y-coordinates of the vertices pib, and
the y-coordinates of the vertices pit, respectively.
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The query algorithm. Given a segment s = ab and a distance d > 0, we can use our data
structure to determine whether there exists a curve C ∈ C, such that ddF (s, C) ≤ d. The
search in the first and second levels of the data structure is done with a.x, the x-coordinate
of a, in the third and fourth levels with a.y, in the fifth and sixth levels with b.x and in the
last two levels with b.y. When searching in the first level, instead of performing a comparison
between a.x and the value v that is stored in the current node (which is an x-coordinate of
some vertex pi`), we determine whether a.x ≥ v − d. Similarly, when searching in the second
level, at each node that we visit we determine whether a.x ≤ v + d, where v is the value that
is stored in the node, etc.

Notice that if we store the list of curves that are represented in the canonical subset of
each node in the bottom (i.e., eighth) level of the structure, then curves whose distance from s
is at most d may also be reported in additional time roughly linear in their number.

Finding the closest curve. Let s = ab be a segment, let C be the curve in C that is
closest to s and set d∗ = ddF (s, C). Then, there exists 1 ≤ i ≤ m − 1, such that a ∈ Ri(d∗)
and b ∈ Ri(d∗). Moreover, one of the endpoints a or b lies on the boundary of its rectangle,
since, otherwise, we could shrink the rectangles without ‘losing’ the endpoints. Assume without
loss of generality that a lies on the left side of Ri(d

∗). Then, the difference between the
x-coordinate of the vertex pi` and a.x is exactly d∗. This implies that we can find d∗ by
performing a binary search in the set of all x-coordinates of vertices of curves in C. In each
step of the binary search, we need to determine whether d ≥ d∗, where d = v−a.x and v is the
current x-coordinate, and our goal is to find the smallest such d for which the answer is still
yes. We resolve a comparison by calling our data structure with the appropriate distance d.
Since we do not know which of the two endpoints, a or b, lies on the boundary of its rectangle
and on which of its sides, we perform 8 binary searches, where each search returns a candidate
distance. Finally, the smallest among these 8 candidate distances is the desired d∗.

In other words, we perform 4 binary searches in the set of all x-coordinates of vertices of
curves in C. In the first we search for the smallest distance among the distances d` = v − a.x
for which there exists a curve at distance at most d` from s; in the second we search for the
smallest distance dr = a.x− v for which there exists a curve at distance at most dr from s;
in the third we search for the smallest distance d` = v − b.x for which there exists a curve at
distance at most d` from s; and in the fourth we search for the smallest distance dr = b.x− v
for which there exists a curve at distance at most dr from s. We also perform 4 binary searches
in the set of all y-coordinates of vertices of curves in C, obtaining the candidates db, dt, db,
and dt. We then return the distance d∗ = min{d`, dr, d`, dr, db, du, db, du}.

Theorem 4. Given a set C of n curves, each of size m, one can construct a search structure
of size O(nm log7(nm)) for segment nearest-curve queries. Given a query segment s, one
can find in O(log8(nm)) time the curve C ∈ C and distance d∗ such that ddF (s, C) = d∗

and d∗ ≤ ddF (s, C ′) for all C ′ ∈ C, under the L∞ metric.

3.2 Input is a set of segments

Let S = {s1, . . . , sn} be the input set of segments. Given a query curve Q = (p1, . . . , pm), the
task is to find a segment s = ab ∈ S such that ddF (Q, s) = mins′∈S ddF (Q, s′), after suitably
preprocessing S. We use an overall approach similar to that used in Section 3.1, however the
details of the implementation of the data structure and algorithm differ.
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The data structure. Preprocess the input S into a four-level search structure T consisting
of a two-dimensional range tree containing the endpoints a, and where the associated structure
for each node in the second level of the tree is another two-dimensional range tree containing
the endpoints b corresponding to the points in the canonical subset of the node.

This structure answers queries consisting of a pair of two-dimensional ranges (i.e., rectangles)
(R,R) and returns all segments s = ab such that a ∈ R and b ∈ R. The preprocessing time for
the structure is O(n log4 n), and the storage is O(n log3 n). Querying the structure with two
rectangles requires O(log3 n) time, by applying fractional cascading [WL85].

The query algorithm. Consider the decision version of the problem where, given a query
curve Q and a distance d, the objective is to determine if there exists a segment s ∈ S
with ddF (s,Q) ≤ d. Observation 3 implies that it is sufficient to query the search structure T
with the pair of rectangles (Ri(d), Ri(d)) of the curve Q, for all 1 ≤ i ≤ m− 1. If T returns at
least one segment for any of the partitions, then this segment is within distance d of Q.

As we traverse the curve Q left-to-right, the bounding box of Q[1, i] can be computed at
constant incremental cost. For a fixed d > 0, each rectangle Ri(d) can be constructed from the
corresponding bounding box in constant time. Rectangle Ri(d) can be handled similarly by a
reverse traversal. Hence all the rectangles can be computed in time O(m), for a fixed d. Each
pair of rectangles requires a query in T , and thus the time required to answer the decision
problem is O(m log3 n).

Finding the closest segment. In order to determine the nearest segment s to Q, we
claim, using an argument similar to that in Section 3.1, for a segment s = ab of distance d∗

from Q that either a lies on the boundary of Ri(d
∗) or b lies on the boundary of Ri(d

∗) for
some 1 ≤ i < m. Thus, in order to determine the value of d∗ it suffices to search over all
8m pairs of rectangles where either a or b lies on one of the eight sides of the obtained query
rectangles. The sorted list of candidate values of d for each side can be computed in O(n)
time from a sorted list of the corresponding x- or y-coordinates of a or b. The smallest value
of d for each side is then obtained by a binary search of the sorted list of candidate values.
For each of the O(log n) evaluated values d, a call to T decides on the existence of a segment
within d of Q.

Theorem 5. Given an input S of n segments, a search structure can be preprocessed
in O(n log4 n) time and requiring O(n log3 n) storage that can answer the following. For a query
curve Q of m vertices, find the segment s∗ ∈ S and distance d∗ such that ddF (Q, s∗) = d∗ and
ddF (Q, s) ≥ d∗ for all s ∈ S under the L∞ metric. The time to answer the query is O(m log4 n).

4 NNC under translation and L∞ metric

An analogous approach yields algorithms with similar running times for the problems under
translation.

For a curve C and a translation t, let Ct be the curve obtained by translating C by t, i.e.,
by translating each of the vertices of C by t. In this section we study the two problems studied
in Section 3, assuming the input curves are given up to translation. That is, the distance
between the query curve Q and an input curve C is now mint ddF (Q,Ct), where the discrete
Fréchet distance is computed using the L∞ metric.

8



4.1 Query is a segment

Let C = {C1, . . . , Cn} be the set of input curves, each of size m. We need to preprocess C for
segment nearest-neighbor queries under translation, that is, given a query segment s = ab,
find the curve C ∈ C that minimizes mint ddF (s, C ′t) = mint ddF (st, C

′), where st and Ct are
the images of s and C, respectively, under the translation t. Let t∗ be the translation that
minimizes ddF (st, C), and set d∗ = ddF (st∗ , C). Consider the partition of C = (p1, . . . , pm)
into prefix C[1, i] and suffix C[i+ 1,m], such that at∗ ∈ Ri(d∗) and bt∗ ∈ Ri(d∗). The following
trivial observation allows us to construct a set of values to which d∗ must belong.

Observation 6. One of the following statements holds:

1. at∗ lies on the left side of Ri(d
∗) and bt∗ lies on the right side of Ri(d

∗), or vice versa,
i.e., at∗ lies on the right side of Ri(d

∗) and bt∗ lies on the left side of Ri(d
∗).

2. at∗ lies on the bottom side of Ri(d
∗) and bt∗ lies on the top side of Ri(d

∗), or vice versa.

Assume without loss of generality that a.x < b.x and a.y < b.y and that the first statement
holds. Let δx = b.x − a.x denote the x-span of s, and let δy denote the y-span of s. Then,
either (i) (pir.x+ d∗)− (pil.x− d∗) = δx, or (ii) (pil.x− d∗)− (pir.x+ d∗) = δx, where as before
pil (pir) is the vertex of C which determines the left (right) side of Ri and pil (pir) is the vertex

of C which determines the left (right) side of Ri. That is, either (i) d∗ =
δx−(pir.x−pil .x)

2 , or

(ii) d∗ =
(pil .x−p

i
r.x)−δx
2 .

The data structure. Consider the decision version of the problem: Given d, is there a
curve in C whose distance from s under translation is at most d? We now present a five-level
data structure to answer such decision queries. We continue to assume that a.x < b.x and

a.y < b.y. For a curve Cj , let dji (d
j
i ) be the smallest radius such that Rji (R

j
i ) is non-empty,

and set rji = max{dji , d
j
i}. The top level of the structure is simply a binary search tree on the

n(m− 1) values rji ; it serves to locate the pairs (Rji (d), R
j
i (d)) in which both rectangles are

non-empty. The role of the remaining four levels is to filter the set of relevant pairs, so that at
the bottom level we remain with those pairs for which s can be translated so that a is in the
first rectangle and b is in the second.

For each node v in the top level tree, we construct a search tree over the values pir.x− pil.x
corresponding to the pairs in the canonical subset of v. These trees constitute the second
level of the structure. The third-level trees are search trees over the values pil.x − pir.x, the
fourth-level ones — over the values pit.y − pib.y, and finally the fifth-level ones — over the
values pib.y − pit.y.

The query algorithm. Given a query segment s = ab (with a.x < b.x and a.y < b.y)
and d > 0, we employ our data structure to answer the decision problem. In the top

level, we select all pairs (Rji , R
j
i ) satisfying rji ≤ d. Of these pairs, in the second level,

we select all pairs satisfying pir.x − pil.x ≥ δx − 2d. In the third level, we select all pairs
satisfying pil.x − pir.x ≤ δx + 2d. Similarly, in the fourth level, we select all pairs satisfying
pit.y − pib.y ≥ δy − 2d, and in the fifth level, we select all pairs satisfying pib.y − pit.y ≤ δy + 2d.
At this point, if our current set of pairs is non-empty, we return yes, otherwise, we return no.

To find the nearest curve C and the corresponding distance d∗, we proceed as follows,
utilizing the observation above. We perform a binary search over the O(nm) values of the
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form pir.x − pil.x to find the largest value for which the decision algorithm returns yes on

d =
δx−(pir.x−pil .x)

2 . (We only consider the values pir.x−pil.x that are smaller than δx.) Similarly,
we perform a binary search over the values pit.y − pib.y to find the largest value for which the

decision algorithm returns yes on d =
δy−(pit.y−pib.y)

2 . We perform two more binary searches;
one over the values pil.x − pir.x to find the smallest value for which the decision algorithms

returns yes on d =
(pil .x−p

i
r.x)−δx
2 , and one over the values pib.y − pit.y. Finally, we return the

smallest d for which the decision algorithm has returned yes.
Our data structure was designed for the case where b lies to the right and above a.

Symmetric data structures for the other three cases are also needed. The following theorem
summarizes the main result of this section.

Theorem 7. Given a set C of n curves, each of size m, one can construct a search structure
of size O(nm log4(nm)), such that, given a query segment s, one can find in O(log6(nm)) time
the curve C ∈ C nearest to s under translation, that is the curve minimizing mint ddF (st, C

′),
where the discrete Fréchet distance is computed using the L∞ metric.

4.2 Input is a set of segments

Let S = {s1, . . . , sn} be the input set of segments, with si = aibi. We need to preprocess S
for nearest-neighbor queries under translation, that is, given a query curve Q = (p1, . . . , pm),
find the segment s = ab ∈ S that minimizes mint ddF (Q, s′t) = mint ddF (Qt, s

′). Since
translations are allowed, without loss of generality we can assume that the first point of all the
segments is the origin. In other words, the input is converted to a two-dimensional point set
C = {ci = bi − ai | aibi ∈ S}.

The idea is to find the nearest segment corresponding to each of the m− 1 partitions of
the query. Let s = ab be any segment and d some radius. The following observation holds for
any partition of Q into Q[1, i] and Q[i+ 1,m], where R⊕i (d) = (−Ri(d))⊕Ri(d) and ⊕ is the
Minkowski sum operator, see Figure 2.

R⊕
i (d)Ri(d)Ri(d)

Figure 2: The rectangle R⊕i (d), as d increases.

Observation 8. There exists a translation t such that at ∈ Ri(d) and bt ∈ Ri(d) if and only
if c = b− a ∈ R⊕i (d).

Based on this observation segment ab is within distance d of Q under translation, if for
some i, R⊕i (d) contains the point c = b−a, which means translations can be handled implicitly.

The data structure. According to Observation 8, a data structure is required to answer
the following question: Given a partition of Q into prefix Q[1, i] and suffix Q[i+ 1,m], what
is the smallest radius d∗ so that R⊕i (d∗) contains some cj ∈ C? The smallest radius d′ where
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both Ri(d
′) and Ri(d

′)—and hence R⊕i (d′)—are nonempty can be determined in linear time.
This value which depends on i is a lower bound on d∗.

Since −Ri(d′) and Ri(d
′) are both axis-aligned rectangles (segments or points in special

cases), their Minkowski sum, R⊕i (d′), is also a possibly degenerate axis-aligned rectangle. If
this rectangle contains some point cj ∈ C, then sj is the nearest segment with respect to this
partition and the optimal distance is d′. If it contains more than one point from C, then all
the corresponding segments are equidistant from the query and each of them can be reported
as the nearest neighbor corresponding to this partition. The data structure needed here is a
two-dimensional range tree on C.

If R⊕i (d′)∩ C is empty, then we need to find the smallest radius d∗ so that R⊕i (d∗) contains
some cj . For any distance d > d′, R⊕i (d) is a rectangle concentric with R⊕i (d′) but whose edges
are longer by an additive amount of 4(d− d′).

As d increases, the four edges of the rectangle sweep through 4 non-overlapping regions
in the plane, so any point in the plane that gets covered by R⊕i (d), first appears on some
edge. We divide this problem into 4 sub-problems based on the edge that the optimal cj
might appear on. Below, we solve the sub-problem for the right edge of the rectangle: Given a
partition of Q into prefix Q[1, i] and suffix Q[i+ 1,m], what is the smallest radius d∗r so that
the right edge of R⊕i (d∗r) contains some cj? All other sub-problems are solved symmetrically.

Any point cj that appears on the right edge belongs to the intersection of three half-planes:

1. On or below the line of slope +1 passing through the top-right corner of the rectangle
R⊕i (d′).

2. On or above the line of slope −1 passing through the bottom-right corner of R⊕i (d′).

3. To the right of the line through the right edge of R⊕i (d′).

The first point in this region swept by the right edge of the growing rectangle R⊕i (d) is the
one with the smallest x-coordinate. This point can be located using a three-dimensional range
tree on C.

The query algorithm. Given a query curve Q = (p1, . . . , pm), the nearest segment under
translation can be determined by using the data structure to find the nearest segment—and
its distance from Q—for each of the m− 1 partitions and selecting the segment whose distance
is smallest.

As stated in Section 3.2, all O(m) bounding boxes can be computed in O(m) total time.
For a particular partition, knowing the two bounding boxes, one can determine the smallest
radius d′ where R⊕i (d′) is nonempty in constant time. Now the two-dimensional range tree on
C is used to search for points inside R⊕i (d′). If the data structure returns some point c ∈ C,
then the segment corresponding to c is the nearest segment under translation. Otherwise, one
has to do four three-level range searches in the second data structure and compare the results
to find the nearest segment. This is the most expensive step which takes O(log2 n) time using
fractional cascading [WL85]. The following theorem summarizes the main result of this section.

Theorem 9. Given a set S of n segments, one can construct a search structure of size O(n log2 n),
so that, given a query curve Q of size m, one can find in O(m log2 n) time the segment s ∈ S
nearest to Q under translation, that is the segment minimizing mint ddF (Q, s′t), where the
discrete Fréchet distance is computed using the L∞ metric.
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5 NNC and L2 metric

In this section, we present algorithms for approximate nearest-neighbor search under the
discrete Fréchet distance using L2. Notice that the algorithms from Section 3 for the L∞
version of the problem, already give

√
2-approximation algorithms for the L2 version. Next,

we provide (1 + ε)-approximation algorithms.

5.1 Query is a segment

Let C = {C1, . . . , Cn} be a set of n polygonal curves in the plane. The (1 + ε)-approximate
nearest-neighbor problem is defined as follows: Given 0 < ε ≤ 1, preprocess C into a data
structure supporting queries of the following type: given a query segment s, return a curve C ′ ∈
C, such that ddF (s, C ′) ≤ (1 + ε)ddF (s, C), where C is the curve in C closest to s.

Here we provide a data structure for the (1 + ε, r)-approximate nearest-neighbor problem,
defined as: Given a parameter r and 0 < ε ≤ 1, preprocess C into a data structure supporting
queries of the following type: given a query segment s, if there exists a curve Ci ∈ C such that
ddF (s, Ci) ≤ r, then return a curve Cj ∈ C such that ddF (s, Cj) ≤ (1 + ε)r.

There exists a reduction from the (1 + ε)-approximate nearest-neighbor problem to the
(1+ε, r)-approximate nearest-neighbor problem [Ind00], at the cost of an additional logarithmic
factor in the query time.

An exponential grid. Given a point p ∈ R2, a parameter 0 < ε ≤ 1, and an interval
[α, β] ⊆ R, we can construct the following exponential grid G(p) around p, which is a slightly
different version of the exponential grid presented in [Dri13]:

Consider the series of axis-parallel squares Si centered at p and of side lengths λi = 2iα,
for i = 1, . . . , dlog(β/α)e. Inside each region Si \ Si−1 (for i > 1), construct a grid Gi of side
length ελi

2
√
2
. The total number of grid cells is at most

1 +

dlog(β/α)e∑
i=2

(
λi/

ελi

2
√

2

)2
= O((1/ε)2dlog(β/α)e).

Given a point q ∈ R2 such that α ≤ ‖q − p‖ ≤ β, let i be the smallest index such that
q ∈ Si. If q is in S1, then ‖q− p‖ ≤

√
2α. Else, we have i > 1. Let g be the grid cell of Gi that

contains q, and denote by cg the center point of g. So we have ‖q − cg‖ ≤
√
2
2

ελi
2
√
2

= ε
22i−1α ≤

ε
22log(β/α)α = εβ

2 .

A data structure for (1+ε, r)-ANNC. For each curve Ci = (pi1, . . . , p
i
m) ∈ C, we construct

two exponential grids: G(pi1) around pi1 and G(pim) around pim, both with the range [ εr
2
√
2
, r], as

described above. Now, for each pair of grid cells (g, h) ∈ G(pi1)×G(pim), let C(g, h) = C ∈ C
be the curve such that ddF (cgch, C) = minj{ddF (cgch, Cj)}. In other words, C(g, h) is the
closest input curve to the segment cgch.

Let G1 be the union of the grids G(p11), G(p21), . . . , G(pn1 ), and Gm the union of the grids
G(p1m), G(p2m), . . . , G(pnm). The number of grid cells in each grid is O((1/ε)2dlog(r/ εr

2
√
2
)e) =

O( 1
ε2

log(1/ε)). The number of grid cells in G1 and Gm is thus O(n 1
ε2

log(1/ε)).
The data structure is a four-level segment tree, where each grid cell is represented in the

structure by its bottom- and left-edges. The first level is a segment tree for the horizontal
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edges of the cells of G1. The second level corresponds to the vertical edges of the cells of G1:
for each node u in the first level, a segment tree is constructed for the set of vertical edges that
correspond to the horizontal edges in the canonical subset of u. That is, if some horizontal
edge of a cell in G(pi1) is in u’s canonical subset, then the vertical edge of the same cell is
in the segment tree of the second level associated with u. Levels three and four of the data
structure correspond to the horizontal and vertical edges, respectively, of the cells in Gm.

The third level is constructed as follows. For each node u in the second level, we construct
a segment tree for the subset of horizontal edges of cells in Gm which corresponds to the
canonical set of u; that is, if a vertical edge of G(pi1) is in u’s canonical subset, then all the
horizontal edges of G(pim) are in the subset corresponding to u’s canonical set. Thus, the size
of the third-level subset is O( 1

ε2
log(1/ε)) times the size of the second-level subset.

Each node of the forth level corresponds to a subset of pairs of grid cells from the set
n⋃
i=1

(G(pi1)×G(pim)). In each such node u we store the curve C(g, h) such that (g, h) is the pair

in u’s corresponding set for which ddF (cgch, C(g, h)) is minimum.

Given a query segment s = ab, we can obtain all pairs of grid cells (g, h) ∈
n⋃
i=1

(G(pi1) ×

G(pim)), such that a ∈ g and b ∈ h, as a collection of O(log4(nε )) canonical sets in O(log4(nε ))
time. Then, we can find, within the same time bound, the pair of cells g, h among them for
which ddF (cgch, C(g, h)) is minimum. The space required is O(n 1

ε4
log4(nε )).

The query algorithm. Given a query segment s = ab, let p, q be the pair of cell center points
returned when querying the data structure with s, and let Cj ∈ C be the closest curve to pq.
We show that if there exists a curve Ci ∈ C with ddF (ab, Ci) ≤ r, then ddF (ab, Cj) ≤ (1 + ε)r.

Since ddF (ab, Ci) ≤ r, it holds that ddF (ab, pi1p
i
m) ≤ r, and thus there exists a pair of grid

cells g ∈ G(pi1) and h ∈ G(pim) such that a ∈ g and b ∈ h. The data structure returns p, q, so
we have ddF (pq, Cj) ≤ ddF (cgch, Ci) (1). The properties of the exponential grids G(pi1) and

G(pim) guarantee that ‖a− cg‖, ‖b− ch‖ ≤ max{
√

2α, εβ2 } = ε
2r. Therefore, ddF (cgch, ab) ≤ ε

2r
(2), and, similarly, ddF (pq, ab) ≤ ε

2r (3). By the triangle inequality and Equation (2),
ddF (cgch, Ci) ≤ ddF (cgch, ab) + ddF (ab, Ci) ≤ (1 + ε

2)r (4). Finally, by the triangle inequality
and Equations (1), (3) and (4),

ddF (ab, Cj) ≤ ddF (ab, pq) + ddF (pq, Cj) ≤ ddF (ab, pq) + ddF (cgch, Ci)

≤ ε

2
r + (1 +

ε

2
)r = (1 + ε)r .

Theorem 10. Given a set C of n curves, each of size m, and 0 < ε ≤ 1, one can construct a
search structure of size O( n

ε4
log4(nε )) for approximate segment nearest-neighbor queries. Given

a query segment s, one can find in O(log5(nε )) time a curve C ′ ∈ C such that ddF (s, C ′) ≤
(1 + ε)ddF (s, C), under the L2 metric, where C is the curve in C closest to s.

5.2 Input is a set of segments

In Section 3.2, we presented an exact algorithm for the problem under L∞, in which we
compute the intersections of the squares of radius d around the vertices of the query curve,
and use a two-level data structure for rectangle-pair queries.

To achieve an approximation factor of (1 + ε) for the problem under L2, we can use the
same approach, except that instead of squares we use regular k-gons. Given a query curve
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Q = (p1, . . . , pm), the intersections of the regular k-gons of radius d around the vertices of
Q are polygons with at most k edges, defined by at most k sides of the regular k-gons. The
orientations of the edges of the intersections are fixed, and thus we can construct a two-level
data structure for k-gon-pair queries, where each level consists of k inner levels, one for each
possible orientation. The size of such a data structure is thus O(n log2k n).

Given a parameter ε, we pick k = O( 1√
ε
), so that the approximation factor is (1 + ε), the

space complexity is O(n log
O( 1√

ε
)
n) and the query time is O(m log

O( 1√
ε
)
n).

Theorem 11. Given an input S of n segments, and 0 < ε ≤ 1, one can construct a search

structure of size O(n log
O( 1√

ε
)
n) for approximate segment nearest-neighbor queries. Given a

query curve Q of size m, one can find in O(m log
O( 1√

ε
)
n) time a segment s′ ∈ S such that

ddF (s′, Q) ≤ (1 + ε)ddF (s,Q), under the L2 metric, where s is the segment in S closest to Q.

6 (1, 2)-Center

The objective of the (1, 2)-Center problem is to find a segment s such that maxCi∈C ddF (s, Ci)
is minimized. This can be reformulated equivalenly as: Find a pair of balls (B,B), such that
(i) for each curve C ∈ C, there exists a partition at 1 ≤ i < m of C into prefix C[1, i] and
suffix C[i+ 1,m], with C[1, i] ⊆ B and C[i+ 1,m] ⊆ B, and (ii) the radius of the larger ball is
minimized.

6.1 (1, 2)-Center and L∞ metric

An optimal solution to the (1, 2)-Center problem under the L∞ metric is a pair of squares
(S, S), where S contains all the prefix vertices and S contains all the suffix vertices. Assume
that the optimal radius is r∗, and that it is determined by S, i.e., the radius of S is r∗ and the
radius of S is at most r∗. Then, there must exist two determining vertices p, p′, belonging to
the prefixes of their respective curves, such that p and p′ lie on opposite sides of the boundary of
S. Clearly, ||p− p′||∞ = 2r∗. Let the positive normal direction of the sides be the determining
direction of the solution.

Let R be the axis-aligned bounding rectangle of C1 ∪ · · · ∪ Cn, and denote by e`, er, et,
and eb the left, right, top, and bottom edges of R, respectively.

Lemma 12. At least one of p, p′ must lie on the boundary of R.

Proof. Assume that the determining direction is the positive x-direction, and that neither
p nor p′ lies on the boundary of R. Thus, there must exist a pair of vertices q, q′ ∈ S with
q.x < p.x and q′.x > p′.x, which implies that ||q − q′||∞ > ||p− p′||∞ = 2r∗, contradicting the
assumption that p, p′ are the determining vertices.

We say that a corner of S (or S) coincides with a corner of R when the corner points are
incident, and they are both of the same type, i.e., top-left, bottom-right, etc.

Lemma 13. There exists an optimal solution (S, S) where at least one corner of S or S
coincides with a corner of R.

Proof. Let p, p′ ∈ S be a pair of determining vertices, and assume, without loss of generality,
that p lies on the boundary of R. If p is a corner of R, then the claim trivially holds. Otherwise,
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p lies in the interior of an edge of R, and assume without loss of generality that it lies on e`. If
S contains a vertex on et, then we can shift S vertically down until its top edge overlaps et.
Else, if it contains a vertex on eb, then we can shift S up until its bottom edge overlaps eb. In
both cases, the lemma conclusion holds.

If S does not contain any vertex from et or eb, then clearly S must contain vertices q ∈ et
and q′ ∈ eb with ||q− q′||∞ ≤ 2r∗. Therefore, S intersects eb or et (or both), and can be shifted
vertically until its boundary overlaps eb or et, as desired.

A symmetric argument can be made when p and p′ are suffix vertices, i.e., p, p′ ∈ S.

Lemma 13 implies that for a given input C where the determining vertices are in S, there
must exist an optimal solution where S is positioned so that one of its corners coincides with a
corner of the bounding rectangle, and that one of the determining vertices is on the boundary
of R. The optimal solution can thus be found by testing all possible candidate squares that
satisfy these properties and returning the valid solution that yields the smallest radius. The
algorithm presented in the sequel will compute the radius r∗ of an optimal solution (S∗, S∗)
such that r∗ is determined by the prefix square S∗, see Figure 3. The solution where r∗ is
determined by S∗ can be computed in a symmetric manner.

R

S∗

S∗

p′

p

Figure 3: The optimal solution is characterized by a pair of points p, p′ lying on the boundary
of S∗, and a corner of S∗ coincides with a corner of R.

For each corner v of the bounding rectangle R, we sort the (m−2)n vertices in C1∪· · ·∪Cn
that are not endpoints—the initial vertex of each curve must always be contained in the prefix,
and the final vertex in the suffix—by their L∞ distance from v. Each vertex p in this ordering
is associated with a square S of radius ||v − p||∞/2, coinciding with R at corner v.

A sequential pass is made over the vertices, and their respective squares S, and for each S
we compute the radius of S and S using the following data structures. We maintain a balanced
binary tree TC for each curve C ∈ C, where the leaves of TC correspond to the vertices of C,
in order. Each node of the tree contains a single bit: The bit at a leaf node corresponding to
vertex pj indicates whether pj ∈ S, where S is the current square. The value of the bit at a
leaf of TC can be updated in O(logm) time. The bit of an internal node is 1 if and only if all
the bits in the leaves of its subtree are 1, and thus the longest prefix of C can be determined
in O(logm) time. At each step in the pass, the radius of S must also be computed, and
this is obtained by determining the bounding box of the suffix vertices. Thus, two balanced
binary trees are maintained: T x contains a leaf for each of the suffix vertices ordered by their
x-coordinate; and T y where the leaves are ordered by the y-coordinate. The extremal vertices
that determine the bounding box can be determined in O(logmn) time. Finally, the current
optimal squares S∗ and S∗, and the radius r∗ of S∗ are persisted.
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The trees TC1 , . . . , TCn are constructed with all bits initialized to 0, except for the bit
corresponding to the initial vertex in each tree which is set to 1, taking O(nm) time in total.
T x and T y are initialized to contain all non-initial vertices in O(mn logmn) time. The optimal
square S∗ containing all the initial vertices is computed, and S∗ is set to contain the remaining
vertices. The optimal radius r∗ is the larger of the radii induced by S∗ and S∗.

At the step in the pass for vertex p of curve Cj whose associated square is S, the leaf of TC
corresponding to p is updated from 0 to 1 in O(logm) time. The index i of the longest prefix
covered by S can then be determined, also in O(logm) time. The vertices from Cj that are
now in the prefix must be deleted from T x and T y, and although there may be O(m) of them
in any iteration, each will be deleted exactly once, and so the total update time over the entire
sequential pass is O(mn logmn). The radius of the square S is ‖v − p‖∞/2, and the radius
of S can be computed in O(logmn) time as half the larger of x- and y-extent of the suffix
bounding box. The optimal squares S∗, S∗, and the cost r∗ are updated if the radius of S
determines the cost, and the radius of S is less than the existing value of r∗.

Finally, we return the optimal pair of squares (S∗, S∗) with the minimal cost r∗.

Theorem 14. Given a set of curves C as input, an optimal solution to the (1, 2)-Center
problem using the discrete Fréchet distance under the L∞ metric can be computed in time
O(mn logmn) using O(mn) storage.

6.2 (1, 2)-Center under translation and L∞ metric

The (1, 2)-Center problem under translation and the L∞ metric can be solved using a similar
approach. The objective is to find a segment s∗ that minimizes the maximum discrete Fréchet
distance under L∞ between s∗ and the input curves whose locations are fixed only up to
translation. A solution will be a pair of squares (S, S) of equal size and whose radius r∗ is
minimal, such that, for each C ∈ C, there exists a translation t and a partition index i where
Ct[1, i] ⊂ S and Ct[i+ i,m] ⊂ S. Clearly, an optimal solution will not be unique as the curves
can be uniformly translated to obtain an equivalent solution, and moreover, in general there is
freedom to translate either square in the direction of at least one of the x- or y-axes.

Let δx (C) be the x-extent of the curve C and δy(C) be the y-extent. Let R be the closed
rectangle whose bottom-left corner lies at the origin and whose top-right corner is located at
(δ∗x, δ

∗
y) where δ∗x := maxC∈C δx (C) and δ∗y := maxC∈C δy(C). Furthermore, let w` and wr be

the left- and right-most vertices in a curve with x-span δ∗x, and let wt and wb be the top- and
bottom-most vertices in a curve with y-span δ∗y . Clearly, all curves in C can be translated to be
contained within R, and for all such sets of curves under translation, the extremal vertices wt,
wb, w` and wr each must lie on the corresponding side of R. We claim that if a solution exists
with radius r∗, then an equivalent solution (S, S) can be obtained using the same partition of
each curve, where S and S are placed at opposite corners of R.

Lemma 15. Given a set C of n curves, if there exists a solution of radius r∗ to the problem,
then there also exists a solution (S, S) of radius r∗ where a corner of S and a corner of S
coincide with opposite corners of the rectangle R.

Proof. Let (S′, S′) be a solution of radius r∗ where all the curves under translation are not
necessarily contained in R, and the corners of S′ and S′ do not coincide with the corners of
R. The proof is constructive: The coordinate system is defined such that prefix square S′ is
positioned so that its corner coincides with the appropriate corner of R ensuring that S′ ≡ S,
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and we define a continuous family of squares S(λ) parameterized on λ ∈ [0, 1] where S(0) = S′

and S(1) = S, such that S coincides with the opposite corner of R. This family traces a
translation of S(λ), first in the x-direction and then in the y-direction, and we show that the
prefix and suffix of each curve—possibly under translation—remain within S and S(λ), and
thus the solution remains valid.

We prove this for the case where the top-right corner v of S′ is below-left the top-right
corner v of S′, i.e., v.x ≤ v.x and v.y ≤ v.y. In the sequel we will show that an equivalent
solution (S, S) exists where the bottom-left corner of S lies at the origin and the top-right
corner of S lies at (δ∗x, δ

∗
y) as required by the claim in the lemma. A symmetric argument exists

for the other cases where v’s position relative to c is above-left, below-right and below-left.
First, observe that v.x ≥ δ∗x, as either wr is a vertex in a prefix of some curve and thus

δ∗x ≤ v.x ≤ v.x, or wr is a vertex in a suffix and thus δ∗x ≤ v.x. A similar argument proves that
v.y ≥ δ∗y , and thus S(λ) will move to the left until the x-coordinate of the right edge of S is δ∗x
and then down under the continuous translation to S, i.e., the y-coordinate of the top edge of
S is δ∗y .

Consider the validity of the solution (S, S(λ)) as the suffix square moves leftwards. If there
are no suffix vertices on the right edge of square S(λ) then it can be translated to the left
and remain a valid solution, until such time as some suffix vertex p of curve C lies on the
right edge. Subsequently, C is translated together with S(λ), and thus the suffix vertices of
C continue to be contained in S(λ). For a prefix vertex p of C to move outside S under the
translation it must cross the left-side of S, however this would imply that |p.x−p.x| > p.x ≥ δ∗x,
contradicting the fact that δ∗x is the maximum extent in the x-direction of all curves. The
same analysis can be applied to the translation of S(λ) in the downward direction. This shows
that the continuous family of squares S(λ) imply a family of optimal solutions (S, S(λ)) to the
problem, and in particular (S, S) is a solution.

Lemma 15 implies that an optimal solution of radius r∗ exists where S and S coincide with
opposite corners of R. Next, we consider the properties of such an optimal solution, and show
that r∗ is determined by two vertices from a single curve. Recall that a pair of vertices are
determining vertices if they lie on opposite sides of one of the squares. Here, we refine the
definition with the condition that the pair both belong to the prefix or suffix of the same curve.
Furthermore, denote a pair of vertices (p, p), where p is in the prefix and p is in the suffix of
the same curve, as opposing vertices if they preclude a smaller pair of squares coincident with
the same opposing corners of R. Assuming that S coincides with the top-left corner of R and
S with the bottom-right corner, then p and p are opposing vertices if, either: (i) p lies on the
right edge of S and p lies on the left edge of S; or (ii) p lies on bottom edge of S and p lies on
the top edge of S. Symmetrical conditions exist for the cases where S and S are coincident
with the other three (ordered) pairs of corners. We claim that the conditions in the following
lemma are necessary for a solution.

Lemma 16. Let (S, S) be an optimal solution of radius r∗ such that S and S are coincident
with opposite corners of R, and let C′ := {Ct | C ∈ C} be the set of curves under translation
from which (S, S) was obtained. At least one of the following conditions must hold for some
curve Ct ∈ C′:

(i) there must be a pair of determining vertices for either S or S; or

(ii) there must be a pair of opposing vertices for S and S.

17



Proof. Since (S, S) is a valid solution, then for each translated curve Ct ∈ C′, there must exist
a partition of Ct defined by an index i such that Ct[1, i] ⊂ S and Ct[i+ 1,m] ⊂ S. Assume
that neither of the conditions stated in the lemma hold. Then the radius of the squares can
be decreased to obtain a smaller pair of squares coincident with the same corners of R. If no
vertices from the curves in C′ lie on the inner sides of S and S—that is, the sides that are not
collinear with sides of R—then the radius can be reduced without translating the curves in C′.
If one or more prefix (suffix) vertices of lie on the inner sides of S (S), then Ct is translated in
a direction determined in the following way. For each such vertex p lying on a side s of its
assigned square, let ~n be the direction of the inner normal of s. The direction of translation is
the direction of the vector obtained by summing the normal vectors. Such a direction would
allow all the vertices lying on the sides of their respective squares to remain on the side, unless
two vertices lie on opposing sides of the same square, i.e., condition (i) holds, or they lie on
the opposing inner sides of different squares, i.e., condition (ii) holds.

Lemma 16 implies that the optimality of a solution will be determined by the partition
of a single curve. The minimum radius of a solution for a partition at i of a curve Cj under
translation may be computed in constant time by finding the bounding boxes around the prefix
and suffix of the curve, and the radius of the solution can then be obtained from the candidate
pairs of determining and opposing vertices implied by the bounding boxes. Specifically, the
value rji is a lower bound on the optimal radius obtained by the partition at i of curve Cj , and
can be computed in constant time, for example, when S is below-left of S:

rji :=
1

2
min

{
δx (Cj [1, i]), δx (Cj [i+ 1,m]), (δ∗x − (minv∈C[i+1,m] v.x−maxv∈C[1,i] v.x))/2,

δy(Cj [1, i]), δy(Cj [i+ 1,m]), (δ∗y − (minv∈C[i+1,m] v.y −maxv∈C[1,i] v.y))/2

}
.

An optimal solution for C under translation where the squares coincide with a particular
pair of opposing corners of R can computed as r := maxj : Cj∈C min1≤i≤m r

j
i , i.e., the minimum

radius of a pair of squares covering the partition of a curve, and then determining the largest
such value over all curves. The solutions are evaluated where S and S coincide with each of
the four ordered pairs of opposite corners of R, and the overall solution is the smallest of these
values. We thus obtain the following result.

Theorem 17. Given a set of curves C as input, an optimal solution to the (1, 2)-Center
problem under translation using the discrete Fréchet distance under the L∞ metric can be
computed in O(nm) time and O(nm) space.

6.3 (1, 2)-Center and L2 metric

For the (1, 2)-Center problem and L2 we need some more sophisticated arguments, but again
we use a similar basic approach.

We first consider the decision problem: Given a value r > 0, determine whether there
exists a segment s such that maxCi∈C ddF (s, Ci) ≤ r.

For each curve C ∈ C and for each vertex p of C, draw a disk of radius r centered at p and
denote it by D(p). Let D denote the resulting set of nm disks and let A(D) be the arrangement
of the disks in D. The combinatorial complexity of A(D) is O(n2m2). Let A be a cell of A(D).
Then, each curve C = (p1, . . . , pm) ∈ C induces a bit vector VC of length m; the ith bit of VC
is 1 if and only if D(pi) ⊇ A. Moreover, if j is the index of the first 0 in VC , then the suffix of
curve C at cell A is C[j,m].
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We maintain the vectors VC as we traverse the arrangement A(D), by constructing a binary
tree TC , for each curve C, as described in the previous section. The leaves of TC correspond
to the vertices of C, and in each node we store a single bit. Here, the bit at a leaf node
corresponding to vertex pi is 1 if and only if D(pi) ⊇ A, where A is the current cell of the
arrangement. For an internal node, the bit is 1 if and only if all the bits in the leaves of its
subtree are 1. We can determine the current suffix of C in O(logm) time, and the cost of an
update operation is O(logm). We also maintain the set P , where P is the union of the suffixes
of the curves in C, and its corresponding region X = ∩p∈PD(p). Actually, we only need to
know whether X is empty or not.

We begin by constructing the trees TC1 , . . . , TCn and initializing all bits to 0, which
takes O(mn) time. We also construct the data structures for P and X, where initially
P = C1[1,m] ∪ · · · ∪ Cn[1,m]. This takes O(nm log2(nm)) time in total. For P we use a
standard balanced search tree, and for X we use, e.g., the data structure of Sharir [Sha97],
which supports updates to X in O(log2(nm)) time. We now traverse A(D) systematically,
beginning with the unbounded cell of A(D), which is not contained in any of the disks of D.
Whenever we enter a new cell A from a neighboring cell separated from it by an arrangement
edge, then we either enter or exit the unique disk of D whose boundary contains this edge. We
thus first update the corresponding tree TC accordingly, and redetermine the suffix of C. We
now may need to perform O(m) update operations on the data structures for P and X, so
that they correspond to the current cell. At this point, if X 6= ∅, then we halt and return yes
(since we know that the minimum enclosing disk of the union of the prefixes is at most r). If,
however, X = ∅, then we continue to the next cell of A(D), unless there is no such cell in which
case we return no. We conclude that the decision problem can be solved in O(n2m3 log2(nm))
time and O(n2m2) space.

Notice that the minimum radius r∗ for which the decision version returns yes, is determined
by three of the nm curve vertices. Thus, we perform a binary search in the (implicit) set of
potential radii (whose size is O(n3m3)) in order to find r∗. Each comparison in this search is
resolved by solving the decision problem for the appropriate potential radius. Moreover, after
resolving the current comparison, the potential radius for the next comparison can be found in
O(n2m2 log2(nm)) time, as in the early near-quadratic algorithms for the well-known 2-center
problem, see, e.g., [AS94,JK94,KS97].

The following theorem summarizes the main result of this section.

Theorem 18. Given a set of curves C as input, an optimal solution to the (1, 2)-Center prob-
lem using the discrete Fréchet distance under the L2 metric can be computed in O(n2m3 log3(nm))
time and O(n2m2) space.
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