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Abstract. In 2006, Alberto Bressan [3] suggested the following problem.
Suppose a circular fire spreads in the Euclidean plane at unit speed. The
task is to build, in real time, barrier curves to contain the fire. At each
time t the total length of all barriers built so far must not exceed t · v,
where v is a speed constant. How large a speed v is needed? He proved
that speed v > 2 is sufficient, and that v > 1 is necessary. This gap of
(1, 2] is still open. The crucial question seems to be the following. When
trying to contain a fire, should one build, at maximum speed, the enclosing
barrier, or does it make sense to spend some time on placing extra delaying
barriers in the fire’s way? We study the situation where the fire must
be contained in the upper L1 half-plane by an infinite horizontal barrier
to which vertical line segments may be attached as delaying barriers.
Surprisingly, such delaying barriers are helpful when properly placed. We
prove that speed v = 1.8772 is sufficient, while v > 1.66 is necessary.
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1 Introduction and problem statement

Fighting wildfires is a difficult problem, involving many parameters one can
neither foresee nor control. But there seem to be two main techniques firefighters
employ, namely to extinguish the fire by dropping water or chemicals from aircraft,
and to prevent the fire from spreading further by firebreaks. In 2006, Alberto
Bressan [3] developed a rather general model for containing a fire by means of
barrier curves that must be built in real time, subject to velocity constraints.
Barriers are impenetrable by fire, they do not burn and cannot be moved once
built.

In addition to general optimality results [5–7], in [3] Bressan proposed the
following problem. Suppose a circular fire spreads in the plane at unit speed.
In real time, barrier curves must be built to contain it. At each time t, the
total length of barriers built so far must not exceed t times v, for some velocity
constant v. The question is how large a velocity is needed to contain the fire.
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Bressan showed that v > 1 is necessary and that v > 2 is sufficient; see also [14]
for short proofs. He conjectured that speed v = 2 is necessary. But the gap (1, 2]
is still open, even though a 500 USD reward has been offered [4] in 2011.

It seems that the difficulty lies with the following question. To contain a fire,
should one build an enclosing barrier at maximum speed, or is it better to invest
some time in building extra delaying barriers that will not be part of the final
enclosure but can slow the fire down during construction? If delaying barriers
could be shown to be useless, Bressan’s proof of the lower bound 1 could be easily
extended to prove his conjecture, the lower bound of 2. In fact they consider a
special variant in [6], where the fire spreads in a half plane. In that case they can
construct an optimal strategy without delaying barriers, that encloses the fire
between the boundary of the half plane and the barrier curve.

To study the effectiveness of delaying barriers we study a different setting
where an infinite horizontal barrier has to be built to contain the fire in the upper
half-plane, instead of the interior of a closed barrier curve. To this horizontal
barrier, vertical line segments may be attached as delaying barriers. Without
vertical barriers speed v = 2 is necessary and sufficient to build the horizontal
barrier. While it takes extra time to build vertical barriers, they offer some respite
because the expanding fire has to overcome them before it reaches the horizontal
barrier again. To simplify matters further we are working in the L1 norm, so that
distances are free of square roots. Also, all intersections of the fire’s boundary
with the barriers advance at unit speed.

Our main result is the following. In our setting, speed v > 1.66 is necessary,
and, with a careful placement of delaying barriers, speed v = 1.8772 is sufficient.
While this result does not disprove Bressan’s conjecture it casts a new light on
the problem by showing that building delaying barriers can be helpful. Also, the
gap we leave open is smaller than the one for the original containment problem.

Previous, but weaker results have been presented at EuroCG’18 [13].

1.1 Related work

Among theoretical work on extinguishing a fire, the “lion and man” problem
stands out [1, 2, 8, 12]. Here, r fighters are tasked with quenching a fire in an
n× n grid. In every step, fighters and fire move simultaneously to adjacent cells,
subject to certain rules. While r = n fighters can easily extinguish the fire, bn/2c
fighters are not enough. The gap in between is still open, despite serious efforts.

How to contain a fire has received a lot of attention in graph theory, see,
e. g., [9–11]. In quite a few examples, in each round, a stationary guard can be
placed in a vertex not on fire, then the fire spreads to all unguarded adjacent
vertices. This continues until the fire cannot spread any further. The problem to
determine the maximum number of vertices that can be protected is NP-hard,
even in trees of degree 3.

Similar in spirit is a geometric firefighting problem in simple polygons [17],
where barriers must be chosen from a set of pairwise disjoint diagonals, to save
an area of maximum size. Even for convex polygons, the problem is NP-hard,
but a 0.086 approximation algorithm exists.
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It is interesting to see what happens when building a barrier along the
boundary of an expanding circular fire [5, 6, 15, 16]. A spiraling curve results that
closes on itself, and thus contains the fire, if the speed of building is larger than
2.6144. Then the number of rounds to completion can be determined by residue
calculus. Below this threshold, the curve keeps winding forever.

The rest of this paper is organized as follows. Section 2 formally introduces
the problem as well as terms and definitions required for the analysis. In Section 4
we develop a lower bound of v > 1.66. In Section 5 we show that v = 17/9 = 1.8
is sufficient and discuss how this value can even be reduced to v = 1.8772.

2 Model

In our model, the fire spreads from the origin and continuously expands over time
with speed 1 according to the L1 metric. To prevent the fire from immediately
spreading into the lower half-plane, we allow an arbitrarily small head-start of
barrier of length s into both directions along the x-axis.

bi

bi−1

ai ai+1Ai−1

bi

bi−1

ai ai+1Ai−1

bi

bi−1

ai ai+1Ai−1

a) b) c)

Fig. 1. Fire spreading along delaying barriers. The dashed line shows the fire front
at different times t, solid points represent consumption points, while empty points
represent places, where the fire burns along the back of already consumed parts of the
barrier bi. In a) there is one consumption point, so there is a 1-interval in the right
direction. In b) there are three consumption points and in c) there is a 0-interval in the
right direction as there are no consumption points.

Assume that a system of barriers has been built. The barrier system consists
of a horizontal barrier containing the fire in the upper half-plane and several
vertical delaying barriers attached to it.

To describe a barrier system, we denote the i-th delaying barrier to the right
by bi. The part of the horizontal barrier between bi−1 and bi is denoted by ai.
For simplicity, we also refer to their length by ai and bi. For the other direction,
we use ci and di respectively. For convenience, Ai :=

∑i
j=1 aj will denote the

total length of horizontal barriers in the right direction up till and including ai
and Bi :=

∑i
j=1 bj will denote the total length of vertical barriers in the right

direction up till and including bi. Equivalently for the left direction we define Ci
and Di.
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As the fire spreads over the barrier system, it represents a geodesic L1 circle,
which consumes the barriers when burning along them. The fire-front is the set of
all points in the plane, which shortest non-barrier-crossing path to the fire origin
has length t. We consider a point x on a barrier as consumed at time t if the fire
has reached this point at time t. That means there exists a non-barrier-crossing
path of length at most t from the fire origin to the point x. Hence, any piece
of the barrier is not consumed all at once, but as the fire burns along it. We
call a point on a barrier, which shortest non-barrier-crossing path to the fire has
exactly length t a consumption point at time t, so the consumption points are a
subset of the fire front. We call the number of consumption points at time t the
current consumption and a time interval with constant k consumption points at
all times a k-interval.

The fire front, consumption points and the effect of vertical delaying barriers
are illustrated in Figure 1. As one can see, after the fire reaches a delaying barrier
for the first time, it may burn along multiple barriers at multiple points. However,
after reaching both ends and passing the top of a barrier there might be no
consumption for a while as the delaying barrier has already been burned along
from the other side.

We define the total consumption C and consumption-ratio Q for a time interval
[t1, t2] in a barrier system:

C(t1, t2) := length of barrier pieces consumed by the fire between t1 and t2
Q(t1, t2) := C(t1,t2)

t2−t1 .

For the consumption in a time interval [0, t], we will also write C(t) and Q(t)
for short. In our setting, if [t0, t1] is a k-interval, then C(t1) = C(t0) + (t1 − t0) · k.

Note that all these definitions can easily be applied to either side of the
barrier system, denoted by Ql(t), Qr(t) and Cl(t), Cr(t) equivalently. Obviously,
Q(t) = Ql(t) +Qr(t) and C(t) = Cl(t) + Cr(t).

It is clear that when building a barrier system simultaneously to the fire
spreading, then every piece of barrier should be build before the fire reaches it.
For a limited build speed v, it is necessary and sufficient to have C(t) ≤ v · t for
all times t, which means v ≥ suptQ(t). The question then obviously is: What is
the minimum speed v for which such a barrier system exists?

3 Prerequisites

Observe that a vertical barrier which is shorter than the predecessor in the same
direction does not delay the fire. Hence, we can assume that vertical barriers in
one direction increase strictly in length, so bi > bi−1 and di > di−1 for all i > 1.
But we can show an even stronger bound on the growth of successive vertical
barriers.

Lemma 1. If there exists a barrier system with C(t) ≤ v · t at all times t, then
there also exists such a barrier system in which any vertical barrier bi (or di)
is more than twice as long as the previous barrier bi−1 (or di−1) in the same
direction.
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Proof. Assume we are given any barrier system S with CS(t) ≤ v · t, not fulfilling
both properties bi > 2bi−1 and di > 2di−1. Then we can transform it to a new
barrier system S ′ that fulfils both properties bi > 2bi−1 and di > 2di−1 while
CS′(t) < CS(t) ≤ v · t for all t.

The construction is identical for both directions, so we just consider the right
direction. Let bk (k > 1) be the first vertical barrier in the right direction with
bk < 2bk−1. Then we can remove bk and move all following vertical barriers away
from the fire by 2∆ = 2(bk−bk−1). So, more precisely the right side of our barrier
system S ′ consists of b′i and a′i as follows:

for i < k b′i = bi a′i = ai (1)

for i = k b′i = bi+1 a′i = ai + ai+1 + 2∆ (2)

for i ≥ k b′i = bi+1 a′i = ai+1 (3)

If bk is the last vertical delaying barrier in the right direction, it can just be
removed instead. To sketch the proof, let us assume that ak ≥ bk−1, ak+1 ≥ bk

bk−1 bk

bk+1

ak+1ak

b′k−1

b′k = bk+1

a′k = ak + ak+1 + 2∆

3 2 0 31

1

1

∆ bk − 2∆ 2∆ ak+1 − bk bk

bk−1

3 1

S

S’

CrS − CrS′ 2∆ bk bk − 2∆ bk bk bk ≥ bk − 2∆bk − 2∆

≥ 0

bk+1 − 2bk

ak+1 + 2∆ bk+1 − 2bk−1
= bk+1 − 2bk + 2∆

= bk−1

Fig. 2. The situation in S and S ′ for ak ≥ bk−1, ak+1 ≥ bk and bk+1 ≥ 2bk as well
as the resulting intervals and their lengths. The red dashed and dotted lines indicate
changes in consumption in either barrier system.

and bk+1 ≥ 2bk hold. The consumption-ratio in the right direction is identical for
S and S ′ until time Ak + bk−1 when the fire reaches bk in S. Figure 2 shows the
next sequences of consumption intervals in S and S ′ until the fire reaches the
top of b′k in S ′. Due to the linearity of consumption within each k-interval, only
the points where intervals change can attain maximal values. Direct comparison
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shows that, S ′ has a smaller consumption at all such points in time. Once the
fire has overcome the gap between b′k−1 and b′k in S ′, each configuration K ′ at
time t′ in S ′ corresponds to a configuration K at time t = t− 2∆ in S. But, due
to the presence of vertical barrier bk and the missing horizontal extension by
2∆, in K the consumption differs by bk − 2∆ = 2bk−1 − bk, which is positive by
assumption. Thus, K ′ has a lower consumption ratio than K.

All other cases work similarly: The additional consumption contributed by
the added 2∆ of horizontal barrier between b′k−1 and b′k is always covered by the
removal of the vertical barrier of length bk > 2∆.

Note, that these arguments require that no part of ak is covered by the
head-start s. We can assume so by a similar argument. Let bs (s > 1) be the
last vertical barrier in the right direction with As ≤ s, which means that all
horizontal barriers a1, a2, . . . , as are covered by the head-start. Then combining
all barriers b1 to bs into one barrier bs at the end of s does not increase Cr(t) for
any t.

This concludes the proof. ut

This means that when given an arbitrary barrier system, we can assume
bi > 2bi−1 and di > 2di−1 for all i > 1. From this we can derive a helpful
observation about the order of consumption of vertical and horizontal barriers in
a barrier system: when the fire reaches the top of a vertical barrier bi at some
time t (compare Figure 3), every barrier ak and bk with k ≤ i has been completely
consumed, as for every point on ak or bk the shortest non-barrier-crossing path
has length smaller than Ai + bi = t. Hence, a 0-interval in the right direction
will begin at such times t and Cr(t) = Ai +Bi − s, where s denotes the length
of the head-start not contributing to the consumption. This observation holds
equivalently for both directions.

4 A lower bound of v > 1.66

Assume there exists a barrier system S consisting of horizontal barriers along the
x-axis and vertical barriers attached to it. Further assume for S that C(t) ≤ v · t
at all times t for some v = (1 + V ) with V ≤ 2

3 . For this we will construct a
contradiction by identifying a specific time tS , for which C(tS) > (1 + V ) · tS .

By Lemma 1, we can assume bi > 2bi−1 and di > 2di−1 for all i > 1 in S. As
without vertical delaying barriers, the consumption-ratio just goes towards 2, S
has an unbounded number of vertical barriers in at least one direction. W. l. o. g.
assume this is the right direction. Consider a moment when the fire reaches the
end of some barrier bi as illustrated in Figure 3. As explained in Section 3, this
happens at time t = bi +Ai and Lemma 1 implies we have Cr(t) = Ai +Bi − s.

Cr(t) = Ai +Bi − s = Ai + bi +Bi−1 − s | Bi−1 > 2s for i large enough

> Ai + bi + s > t+ s > t (4)

Hence for t large enough, Qr(t) > 1 at times t, when the fire reaches the top of a
vertical barrier. Therefore, S has repeated 0-intervals in the left direction as well,
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bi

Ai

t

0

bi−1

Fig. 3. At some time t = Ai + bi the fire will reach the top of a vertical barrier bi.

or else Ql(t) would go towards 1 and Q(t) > 2 at such times t. We now consider

dj

Cj

dj

dj + (δ − cj+1)

1) 2) 3)

dj

Cj

δ

t

cj+1 cj+1 cj+1 Cj

t
t

δ

cj+2

dj+1dj+1

Fig. 4. All three possible situations for the left side to be in at time t. Note that in case
1) and 2) the fire might have reached dj+1, which does not affect our considerations.

the situation in the left direction at time t = bi + Ai. Let dj denote the last
vertical barrier, whose upper end was reached by the fire, so t = dj +Cj + δ with
0 ≤ δ < cj+1 + dj+1 − dj . W. l. o. g. we assume that bi+1 +Ai+1 ≥ dj+1 + Cj+1.
Otherwise, there must be multiple vertical barriers in the right direction whose
upper ends are reached by the fire after it reaches the upper end of dj and before
it reaches the upper end of dj+1. In that case, we can assume that bi is the last
among those, such that bi+1 +Ai+1 ≥ dj+1 + Cj+1 holds.

We split our consideration in three cases, which are all illustrated in Figure 4:

1. 0 ≤ δ < dj
2. dj ≤ δ < dj + cj+1

3. dj + cj+1 ≤ δ < cj+1 + dj+1 − dj

In the first case, the fire has not reached the horizontal barrier cj+1 yet after
passing over dj ; in the second case, it has reached cj+1, but not its end; in the
third case the fire has completely consumed cj+1.

In Case 3, δ = dj + cj+1 + ε and then Cl(t) ≥ Cj+1 + Dj + 2dj + ε − s >
(dj + Cj) + (dj + cj+1) + ε = t, which together with Inequality (4) already gives
C(t) > 2t > (1 + V ) · t which is a contradiction.



8 S. Kim, R. Klein, D. Kübel, E. Langetepe, and B. Schwarzwald

For both remaining cases, we will derive a lower bound for dj . We will
then consider the moment t1 = 2dj + Cj+1, when the fire reaches the end
of the horizontal barrier cj+1. Using the lower bound on dj , we will prove
C(t1) > (1 + V ) · t1.

4.1 Case 1: 0 ≤ δ < dj

In Case 1, Cl(t) > Cj +Dj − s = Cj + dj +Dj−1 − s > Cj + dj , since Dj−1 > s
for j large enough. Now at time t, it must hold:

C(t) = Cr(t) + Cl(t) < (1 + V ) · t | Inequality (4)

⇒ Cj + dj < V (dj + Cj + δ)

⇒ (V − 1)Cj > (1− V )dj − V δ | (V < 1)

⇔ Cj < V/(1−V ) · δ − dj (5)

V ≤ 2
3 implies V/(1−V ) ≤ 2 by direct calculation, which gives bounds for Cj , dj :

Cj < 2δ − dj < dj | δ < dj in Case 1

⇒ 2dj > Cj + δ

⇔ dj > 1/2(Cj + δ) (6)

4.2 Case 2: dj ≤ δ < dj + cj+1

In Case 2 a part of cj+1 of length (δ − dj) has already been consumed, so
Cl(t) ≥ Dj + Cj + (δ − dj)− s > dj + Cj + (δ − dj) = Cj + δ, as Dj−1 > s for j
large enough. Now at time t it must hold

C(t) = Cr(t) + Cl(t) < (1 + V ) · t | Inequality (4)

⇒ Cj + δ < V (dj + Cj + δ)

⇒ (1− V )(Cj + δ) < V dj

⇒ dj > (1−V )/V (Cj + δ) (7)

V ≤ 2
3 implies (1−V )/V ≥ 1

2 by direct calculation, which gives the bound:

dj > 1/2(Cj + δ) (8)

This is the same bound as found for Case 1 in Inequality (6).

4.3 Deriving the contradiction C(t1) > (1 + V ) · t1
Now we consider time t1 = Cj+1 + 2dj > t, when the fire reaches the end of the
horizontal barrier cj+1. As for any time, at time t1, it must hold

C(t1) = Cr(t1) + Cl(t1) ≤ (1 + V ) · t1
⇔ Cl(t1) ≤ (1 + V ) · t1 − Cr(t1)

= (1 + V ) · t+ (1 + V )(t1 − t)− (Cr(t) + Cr(t, t1))

≤ V t+ (1 + V )(t1 − t) + t− Cr(t) | Ineq. (4) (9)

⇒ Cl(t1) + s < V t+ (1 + V )(t1 − t) (10)
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dj

Cj

δ

t

dj

dj cj+1 − δ

cj+1

t1

Fig. 5. After dj + cj+1 − δ additional time after t, the fire has reached the end of cj+1

and has also consumed a piece of length 2dj of the next vertical barrier.

By construction, t1 = Cj+1 + 2dj . As t = dj + Cj + δ, this means t1 = t+ (dj +
cj+1− δ). Due to Lemma 1, we know that the fire has not reached the end of dj+1

yet, hence Cl(t1) ≥ 3dj +Cj+1 − s. Hence, we arrive at the following inequalities:

3dj + Cj+1 < V (dj + Cj + δ) + (1 + V )(dj + cj+1 − δ)
⇔ −V (cj+1 − δ) < (V − 1)δ + (V − 1)Cj + (2V − 2)dj | (1 > V )

⇔ cj+1 − δ >
1− V
V

δ +
1− V
V

Cj + 2
1− V
V

dj . (11)

V ≤ 2
3 implies (1−V )/V ≥ 1

2 by direct calculation, which gives the bound:

cj+1 − δ >
1

2
δ +

1

2
Cj + dj

⇔ dj + cj+1 − δ >
1

2
δ +

1

2
Cj + 2dj (12)

Now in both cases we got dj > 1/2(Cj + δ) (Inequalities (6) and (8)), so we can
apply that and conclude:

t1 − t = dj + cj+1 − δ > Cj + dj + δ = t = Ai + bi (13)

So we know, that in both cases t1− t > bi +Ai. Now consider the situation in
the right direction again (compare Figure 3). At t+bi the fire reaches the horizontal
barrier ai+1 behind bi. Additionally, by assumption bi+1 +Ai+1 ≥ dj+1 + Cj+1,
the fire has not reached the top of the next barrier bi+1 at t1. This means,
that between t+ bi and t1, there is always at least consumption 1 in the right
direction, which means the fire has consumed barriers of length at least Ai, hence
Cr(t, t1) ≥ Ai.

As our whole consideration is based on inequalities, we will consider an edge
case with a contradiction that can be extended to our given barrier system S.
More precisely, assume, that Inequality (9) is tight for some t∗1, so:

Cl(t∗1) = V t+ (1 + V )(t∗1 − t) + t− Cr(t)
⇔ Cr(t) + Cl(t∗1) = (1 + V )t∗1
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By our arguments above, Cr(t, t∗1) ≥ Ai and hence C(t∗1) = Cr(t, t∗1) + Cr(t) +
Cl(t∗1) ≥ (1 + V )t∗1 +Ai > (1 + V )t∗1, which is a contradiction for this edge case.

Now in our given barrier system S it holds t1 = t∗1 + x for some x > 0. As
everything except cj+1 is fixed at t, this additional time results in additional
consumption of at least horizontal barriers of length x in both directions in
comparison to the edge case. Hence we can extend the contradiction:

C(t1) = Cl(t1) + Cr(t) + Cr(t, t1)

= Cl(t∗1) + Cr(t) + Cr(t, t∗1) + 2x

= (1 + V )t∗1 + 2x+Ai > (1 + V )(t∗1 + x) = (1 + V )t1.

Theorem 1. The fire can not be contained in the upper half-plane with speed
v ≤ 1.66 by a barrier system consisting of a horizontal barrier along the x-axis
and vertical barriers attached to it.

5 Upper bounds

We prove the upper bound by defining a barrier system with bounded consumption-
ratio. Before we present the construction, we give some intuition. We choose the
following conditions:

ai+1 ≥ bi and bi+1 ≥ 2bi ∀i ≥ 1,
similarly ci+1 ≥ di and di+1 ≥ 2di ∀i ≥ 1.

(14)

This forces the 0-intervals generated by bi to be of length of bi. For a single
direction this results in a repeating sequence of k-intervals of specific lengths and
k as shown in Figure 6. The idea is to construct the barrier system in such a way

0 1 3 1

bi ai+1 − bi bi bi+1 − 2bi bi+1

bi

bi+1

ai+1

0
1

3

1

0

Fig. 6. A sequence of k-intervals to the right of (0, 0). The length is given above each
interval and the current consumption below.

that the 0-intervals always appear in an alternating fashion, so the local maxima
in the consumption-ratio of one direction can be countered by the 0-intervals of
the other direction.

To show that this idea can be realized, we consider the periodic interlacing of
time intervals as illustrated in Figure 7. There, the ends of the 0-intervals in one
direction coincide with the ends of the 3-intervals in the other direction, that is,
at t3 and t6.
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013 1

biai+1 − bi bi+1bi+1 − 2bi bi+1

0 1 13

3

dici+1 − didi

ai+2 − bi+1

di+1
left

right

di+1 − 2di

1

0

t1 t4 t5 t6t2 t3 t7

Fig. 7. The periodic interlacing of time intervals.

The current consumption is always greater than 1, since the 0-intervals do not
overlap. Also, the combined consumption-ratio Q(t) must be smaller than 2 at all
times. This also implies that t3 is no local maximum and the consumption-ratio
grows towards 2 between t3 and t4. Hence, by setting di > 2bi we make t1, t4, t7
the local maxima and t2, t5 the local minima of Q(t).

Let us now consider the consumption-ratio Q(t1, t4) of the cycle from t1 to
t4. There are two 1-intervals involved in this cycle in the right direction. The
first one, where the fire burns along ai+1, is of length ai+1 − bi and lies partially
in this cycle. The second one, where the fire crawls up along bi+1, is of length
bi+1− 2bi and lies completely in this cycle. As the beginning of this cycle is given
by the start of the 0-interval on one side and the end is given by the end of
the second 1-interval on the other side, we know that the length of this cycle is
di+(bi+1−2bi). The total consumption in this cycle is 1 ·di+2 · bi+2(bi+1−2bi).
Now we define di = β · bi, bi+1 = β · di, and di = α + 2bi for some α, β ∈ R>0.
Note that this choice satisfies all our conditions, including di > 2bi, and that
α = (β − 2)bi and bi+1 = β2bi. Then the consumption-ratio Q(t1, t4) of the cycle
is given by

C(t1, t4)

t4 − t1
=

(α+ 2bi) + 2bi + 2(bi+1 − 2bi)

(α+ 2bi) + bi+1 − 2bi
=
α+ 2bi+1

α+ bi+1
=

(β − 2) + 2β2

(β − 2) + β2

and attains a minimal value of 17/9 for β = 4. Note that by design, Q(t1, t2)
and Q(t1, t3) stay below 17/9, as well. Moreover, if the consumption-ratio has a
maximum of 17/9 at the beginning of the cycle at t1, this will also be the case at
the end at t4 as

Q(t4) =
C(t1) + C(t1, t4)

t4
=
t1
t4
· C(t1)

t1
+
t4 − t1
t4

· C(t1, t4)

t4 − t1
≤ 17

9
.

Since the cycles change their roles at t4 such that the 0-interval occurs on the right
side of (0, 0), the same argument can be used to bound the local consumption-
ratio in the following interval and for all subsequent cycles, recursively. Note that
by looking at the time interval from t3 to t6, we can derive a closed form for ci+1.
Similarly we proceed for ai+1.

To prove the final theorem, it remains to find initial values to get the interlacing
started, while maintaining Q(t) ≤ 17/9. Suitable values are

a1 := s b1 := 17s a2 := 34s ai+1 := 7.5bi bi+1 := 4di
c1 := s d1 := 34s c2 := 238s ci+1 := 7.5di di+1 := 4bi+1,
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which results in the starting intervals given in Figure 8. The local maxima at
t1 and t4 then have consumption-ratio exactly 17/9. The interval between t2 and
t3 is set up equivalent to the one between t3 and t6 in Figure 7, which means
the interlacing construction can be applied to all intervals beyond. Note that
all barriers scale with s. An example of this construction for s = 1 is given in
Figure 9.

right

left

a2 − b1b1 b1

d1 d1 c2 − d1

b1 b2 − 2b1a1 = s

c1 = s

0

0

1 1 1

11 0

3

t = 0
t1

0

t2 t3

d1

3

b2
0

t4

Fig. 8. Illustration of time intervals at the start. Due to their growth, the sizes of the
intervals are not true to scale.

1

17

34

34 · 4

255 · 4

34 · 43

34 · 42j−1

1

34

238 255 · 42j−1

34 · 42

255 · 43255 · 42

34 · 42j

255 · 42j

Fig. 9. Example for the final barrier system for s = 1, also not true to scale.

Theorem 2. The fire can be contained in the upper half-plane with speed v =
17
9 = 1.8

5.1 Improving the upper bound

It is possible to reduce the upper bound of v = 1.8 slightly. As shown in Figure 7,
the end of the 3-interval in one direction coincides with the end of the 0-interval
in the other direction, which makes t4 the only local maximum of the interval
[t1, t4]. We introduce a regular shift by a factor of δ, see Figure 10. This allows
the 3-interval in one direction to lie completely inside the 0-interval of the other
direction, as shown in Figure 10. Then, there are two local maxima in the
equivalent interval [t1, t5], namely at t3 and t5. We force both maxima to attain
the same value to minimize both at the same time.
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013 1

bi bi+1bi+1 − 2bi bi+1

0 1 13

3

dici+1 − didi

ai+2 − bi+1

di+1
left

right

di+1 − 2di

1

0

t1 t4 t5 t6t2 t3 t7

δ · bi δ · di δ · bi+1

t8 t9 t10

cycle

Fig. 10. A general periodic interlacing of time intervals.

Again, we set di = β · bi and bi+1 = β · di, for some β ≥ 1 determined below.
Then the value of the first local maximum can be expressed as

Q(t1, t3) =
C(t1, t3)

t3 − t1
=

1 · (δ · bi) + 3 · bi
δ · bi + bi

=
δ + 3

δ + 1
= 1 +

2

δ + 1
.

Considering the cycle from t1 to t5 in Figure 10, we can conclude that ci+1 =
bi+1 − bi + δbi + δdi. Similarly, we can proceed on the interval from t5 to t9 to
express ai+1 in terms of β, δ and bi.

Using these identities, we obtain for the second local maximum

Q(t1, t5) = C(t1,t5)
t5−t1 = 1·(δ·bi)+3bi+1·(bi+1−2bi)+1·(ci+1−di−δ·di)

di+(ci+1−di)−δ·di

= ci+1−δ·di
ci+1−δ·di + bi+1+δ·bi+bi−di

ci+1−δ·di = 1 + bi+1−bi+δ·bi+2bi−di
bi+1−bi+δbi

= 2 + 2bi−di
bi+1−bi+δbi = 2 + 2−β

β2−1+δ .

As mentioned above, we set both local maxima to be equal, solve for δ and obtain

δ =
1

2

(
β − β2 +

√
−12 + 4β + 5β2 − 2β3 + β4

)
.

Plugging this into either one of the two local maxima and minimizing the resulting
function for β ≥ 1, we obtain

β =
3

2
+

1

6

(
513− 114

√
6
)1/3

+

(
19(9 + 2

√
6)
)1/3

2 · 32/3
≈ 4.06887

for the optimal value of β, δ ≈ 1.2802 and

v =
1

6

10− 192/3

3

√
2(4 + 3

√
6)

+

3

√
19(4 + 3

√
6))

22/3

 ≈ 1.8771

as the minimum speed.
Note that the optimal value for β satisfies our conditions given in Equation 14,

so that the barrier system can in fact be realized. Finally, we give suitable values
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to get the interlacing started:

b1 := 1 d1 := 2b1
s := (4β+2δ+1)−v(2β+δ+1)

v · b1 a1 := c1 := s

a2 := (δ + 1) · b1 c2 := (2β + 3δ − 1) · b1
ai+1 := (δ − 1)di + (β + δ)bi+1 bi+1 := β · di
ci+1 := (δ − 1)bi + (β + δ)di di+1 := β · bi+1.

To keep the expression simple, we fixed the value of b1 and scaled the value of s
as listed above. These values can be rescaled to work for any given s.

Theorem 3. The fire can be contained in the upper half-plane with speed v =
1.8772.

6 Conclusion

We have shown non-trivial bounds for the problem of protecting the lower half-
plane from fire with an infinite horizontal barrier. Our results show that delaying
barriers – in this case vertical segments attached to the horizontal barrier– can
help to break the obvious upper bound of 2 for the building speed. More complex
delaying barriers, e. g., free-floating ones, were not analysed specifically, however it
is hard to imagine a way for those to have improving effects. It will be interesting
to see if such an effect can also be achieved for the problem of containing the fire
by a closed barrier curve, i. e., for Bressan’s original problem. As a intermediate
result in that direction, one ought to extend these results to the Euclidean metric
first, where the effect of delaying barriers is less pronounced and harder to analyse.

Acknowledgements We thank the anonymous referees for their valuable input.
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