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Abstract

Research on the similarity of a graph to being a tree — called the treewidth of the graph —
has seen an enormous rise within the last decade, but a practically fast algorithm for this
task has been discovered only recently by Tamaki (ESA 2017). It is based on dynamic
programming and makes use of the fact that the number of positive subinstances is typically
substantially smaller than the number of all subinstances. Algorithms producing only such
subinstances are called positive-instance driven (PID). We give an alternative and intuitive
view on this algorithm from the perspective of the corresponding configuration graphs in
certain two-player games. This allows us to develop PID-algorithms for a wide range of
important graph parameters such as treewidth, pathwidth, and treedepth. We analyse the
worst case behaviour of the approach on some well-known graph classes and perform an
experimental evaluation on real world and random graphs.

1 Introduction

Treewidth, a concept to measure the similarity of a graph to being a tree, is arguably one of
the most used tools in modern combinatorial optimization. It is a cornerstone of parameterized
algorithms [14] and its success has led to its integration into many different fields: For instance,
treewidth and its close relatives treedepth and pathwidth have been theoretically studied in
the context of machine learning [5 [15 20], model-checking [3 B2], SAT-solving [7, 21l 27],
QBF-solving [12] 18], CSP-solving [31 33], or ILPs [19, 25| 24] 34, 41]. Some of these results
(e.g. [3, 7, 12, 2], 27, BTl [32], B3]) show quite promising experimental results giving hope that
the theoretical results lead to actual practical improvements.

To utilize the treewidth for this task, we have to be able to compute it quickly. More crucially,
most algorithms also need a witness for this fact in form of a tree-decomposition. In theory we
have a beautiful algorithm for this task [8], which is unfortunately known to not work in practice
due to huge constants [39]. We may argue that, instead, a heuristic is sufficient, as the attached
solver will work correctly independently of the actual treewidth — and the heuristic may produce
a decomposition of “small enough” width. However, even a small error, something as “off by
5,” may put the parameter to a computationally intractable range, as the dependency on the
treewidth is usually at least exponential. It is therefore a very natural and important task to
build practical fast algorithms to determine parameters as the treewidth or treedepth exactly.

To tackle this problem, the fpt-community came up with an implementation challenge: the
PACE [16}17]. Besides many, one very important result of the challenge was a new combinatorial



algorithm due to Hisao Tamaki, which computes the treewidth of an input graph exactly and
astonishingly fast on a wide range of instances. An implementation of this algorithm by Tamaki
himself [42] won the corresponding track in the PACE challenge in 2016 [16] and an alternative
implementation due to Larisch and Salfelder [36] won in 2017 [I7]. The algorithm is based on a
dynamic program by Arnborg et al. [I] for computing tree decompositions. This algorithm has
a game theoretic characterisation that we will utilities in order to apply Tamaki’s approach to a
broader range of problems. It should be noted, however, that Tamaki has improved his algorithm
for the second iteration of the PACE by applying his framework to the algorithm by Bouchitté
and Todinca [I1, 43]. This algorithm has a game theoretic characterisation as well [23], but
it is unclear how this algorithm can be generalized to other parameters. Therefore, we focus
on Tamaki’s first algorithm and analyze it both, from a theoretical and a practical perspective.
Furthermore, we will extend the algorithm to further graph parameters, which is surprisingly
easy due to the new game-theoretic representation. In detail, our contributions are the following:

Contribution I: A simple description of Tamaki’s first algorithm.
We describe Tamaki’s algorithm based on a well-known graph searching game for treewidth.
This provides a nice link to known theory and allows us to analyze the algorithm in depth.

Contribution II. Extending Tamaki’s algorithm to other parameters.
The game theoretic point-of-view allows us to extend the algorithm to various other pa-
rameters that can be defined in terms of similar games — including pathwidth, treedepth.

Contribution I1I: Experimental and theoretical analysis.
We provide, for the first time, theoretical bounds on the runtime of the algorithm on
certain graph classes. Furthermore, we count the number of subinstances generated by the
algorithm on various random and named graphs.

2 Graph Searching

A tree decomposition of a graph G = (V, E) is a tuple (7T',¢) consisting of a rooted tree 7" and a
mapping ¢ from nodes of T' to sets of vertices of G (called bags) such that (1) for all v € V' the
set {z | v € «(z) } is nonempty and connected in T, and (2) for every edge {v,w} € E there is a
node m in T' with {v,w} C ¢(m). The width of a tree decomposition is the maximum size of one
of its bags minus one, its depth is the maximum of the width and the depth of T'. The trecwidth
of G, denoted by tw(G), is the minimum width any tree decomposition of G must have. If T is
a path we call (T,¢) a path decomposition; if for all nodes z,y of T we have ((z) C ¢(y) whenever
y is a descendent of x we call (T,1) a treedepth decomposition; and if on any path from the root
to a leaf there are at most ¢ nodes with more then one children we call (T',¢) a g-branched tree
decomposition. Analogous to the treewidth, we define the pathwidth and g-branched-treewidth
of G, denoted by pw(G) and twy(G), respectively. The treedepth td(G) is the minimum depth
any treedepth decomposition must have. The various parameters are illustrated in Figure

Another important variant of this parameter is dependency-treewidth, which is used primarily
in the context of quantified Boolean formulas [I8]. For a graph G = (V, E) and a partial order
< of V the dependency-treewidth dtw(G) is the minimum width any tree-decomposition (7', ¢)
with the following property must have: Consider the natural partial order <7 that 7" induces
on its nodes, where the root is the smallest elements and the leaves form the maximal elements;
define for any v € V' the node F,(T") that is the <p-minimal node ¢ with v € ¢(¢) (which is well
defined); then define a partial order <7 on V such that u <7 v <= F,(T') <r F,(T); finally
for all u,v € V' it must hold that F,,(T) <7 F,(T) implies that that u < v does not hold.
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Figure 1: Various tree decompositions of an undirected graph G = (V, E) shown at (a). The
decompositions justify (b) tw(G) < 1, (c) pw(G) < 2, and (d) td(G) < 3. With respect to
g-branched treewidth the decompositions also justify (b) twa(G) < 1 and (c) two(G) < 2.

We study classical graph searching in a general setting proposed by Fomin, Fraigniaud, and
Nisse [22]. The input is an undirected graph G = (V| E) and a number k € N, and the question
is whether a team of k searchers can catch an invisible fugitive on G by the following set of rules:
At the beginning, the fugitive is placed at a vertex of her choice and at any time, she knows the
position of the searchers. In every turn she may move with unlimited speed along edges of the
graph, but may never cross a vertex occupied by a searcher. This implies that the fugitive does
not occupy a single vertex but rather a subgraph, which is separated from the rest of the graph
by the searchers. The vertices of this subgraph are called contaminated and at the start of the
game all vertices are contaminated. The searchers, trying to catch the fugitive, can perform one
of the following operations during their turn:

1. place a searcher on a contaminated vertex;
2. remowve a searcher from a vertex;
3. reveal the current position of the fugitive.

When a searcher is placed on a contaminated vertex it becomes clean. When a searcher is
removed from a vertex v, the vertex may become recontaminated if there is a contaminated
vertex adjacent to v. The searchers win the game if they manage to clean all vertices, i.e., if
they catch the fugitive; the fugitive wins if, at any point, a recontamination occurs, or if she
can escape infinitely long. Note that this implies that the searchers have to catch the fugitive
in a monotone way. A priori one could assume that the later condition gives the fugitive an
advantage (recontamination could be necessary for the cleaning strategy), however, a crucial
result in graph searching is that “recontamination does not help” in all variants of the game
that we consider [6}, 26, 35] 140}, 37).



2.1 Entering the Arena and the Colosseum

Our primary goal is to determine whether the searchers have a winning strategy. A folklore
algorithm for this task is to construct an alternating graph arena(G, k) = ((Vs U Vy), Ear) that
contains for each position of the searchers (S C V with |S| < k) and each position of the fugitive
(f € V) two copies of the vertex (5, f), one in Vi and one in V; (see e.g. Section 7.4 in [14]).
Vertices in Vs correspond to a configuration in which the searchers do the next move (they are
existential) and vertices in Vy correspond to fugitive moves (they are universal). The edges
E,, are constructed according to the possible moves. Clearly, our task is now reduced to the
question whether there is an alternating path from a start configuration to some configuration
in which the fugitive is caught. Since alternating paths can be computed in linear time (see
e.g., Section 3.4 in [28]), we immediately obtain an O(n**1) algorithm.

Modeling a configuration of the game as tuple (S, f) comes, however, with a major drawback:
The size of the arena does directly depend on n and k and does not depend on some further
structure of the input. For instance, the arena of a path of length n and any other graph on
n vertices will have the same size for any fixed value k. As the major goal of parameterized
complexity is the understanding of structural parameters beyond the input size n, such a fixed-
size approach is usually not practically feasible. In contrast, we will define the configuration
graph colosseum(G, k), which might be larger then arena(G, k) in general, but is also “prettier”
in the sense that it adapts to the input structure of the graph. Moreover, the resulting algorithms
are self-adapting in the sense that it needs no knowledge about this special structure to make
use of it (in constrast to other parameterized algorithms, where the parameter describing this
structure needs to be given explicitly).

2.2 Simplifying the Game

Our definition is based upon a similar formulation by Fomin et al. [22], but we simplify the
game to make it more accessible to our techniques. First of all, we restrict the fugitive in the
following sense. Since she is invisible to the searchers and travels with unlimited speed, there is
no need for her to take regular actions. Instead, the only moment when she is actually active is
when the searchers perform a reveal. If C' is the set of contaminated vertices, consisting of the
induced components C1, ..., Cy, a reveal will uncover the component in which the fugitive hides
and, as a result, reduce C' to C; for some 1 < ¢ < £. The only task of the fugitive is, thus, to
answer a reveal with such a number ¢. We call the whole process of the searcher performing a
reveal, the fugitive answering it, and finally of reducing C' to C; a reveal-move.

We will also restrict the searchers by the concept of implicit searcher removal. Let S C V(G) be
the vertices currently occupied by the searchers, and let C' C V(G) be the set of contaminated
vertices. We call a vertex v € S covered if every path between v and C contains a vertex w € S
with w # v.

Lemma 2.1. A covered searcher can be removed safely.

Proof. As we have N(v) N C' = (), the removal of v will not increase the contaminated area.
Furthermore, at no later point of the game v can be recontaminated, unless a neighbor of v gets
recontaminated as well (in which case the game would already be lost for the searchers). O

Lemma 2.2. Only covered searchers can be removed safely.

Proof. Since for any other vertex w € S we have N(w) N C # (), the removal of w would
recontaminate w and, hence, would result in a defeat of the searchers. ]



Both lemmas together imply that the searchers never have to decide to remove a searcher, but
rather do it implicitly. We thus restrict the possible moves of the searchers to a combined move
of placing a searcher and immediately removing the searchers from all covered vertices. We call
this a fly-move. Observe that the sequence of original moves mimicked by a fly-move does not
contain a reveal and, thus, may be performed independently of any action of the fugitive.

We are now ready to define the colosseum. We could, as for the arena, define it as an alternating
graph. However, as the searcher is the only player that performs actions in our simplified game,
we find it more natural to express this game as edge-alternating graph — a generalization of
alternating graphs. An edge-alternating graph is a triple H = (V, E, A) consisting of a vertex
set V, an existential edge relation £ C V x V', and an universal edge relation A CV x V. We
define the neighborhood of a vertex v as N3(v) = {w | (v,w) € E}, Ny(v) ={w | (v,w) € A},
and Ny (v) = N3(v) U Ny(v). An edge-alternating s-t-path is a set P C V such that (1) s,t € P
and (2) for all v € P with v # ¢t we have either N3(v) N P # () or ) # Ny(v) C P or both. We
write s < ¢ if such a path exists and define B(Q) ={v|veQV (Fw e Q: v <w)} for Q CV
as the set of vertices on edge-alternating paths leading to ). We say that an edge-alternating
s-t-path P is g-branched, if (i) H is acyclic and (ii) every (classical) directed path 7 from s to ¢
in H with m C P uses at most ¢ universal edges.

For an undirected graph G = (V, E) and a number k € N we now define the colosseum(G, k) to
be the edge-alternating graph H with vertex set V(H) = {C | 0 #C CV and |Ng(C)| <k}
and the following edge sets: for all pairs C,C” € V(H) there is an edge e = (C,C’) € E(H) if,
and only if, C'\ {v} = C’ for some v € C and |Ng(C)| < k; furthermore, for all C € V(H) with
at least two components C1,...,Cy we have edges (C,C;) € A(H). The start configuration of
the game is the vertex C' = V, that is, all vertices are contaminated. We define @ = { {v} C
V:|Ng({v})| < k} to be the set of winning configurations, as at least one searcher is available
to catch the fugitive. Therefore, the searchers have a winning strategy if, and only if, V € B(Q)
and we will therefore refer to B(Q) as the winning region. Observe that the colosseum is acyclic
(that is, the digraph (V, EU A) is acyclic) as we have for every edge (C,C") that |C| > |C’|, and
observe further that @ is a subset of the sinks of H. Hence, we can test if V € B(Q) in time
O(|colosseum(G, k))|). Finally, note that the size of colosseum(G, k) may be of order 2" rather
than nF*!, giving us a slightly worse overall runtime.

The reader that is familiar with graph searching or with exact algorithms for treewidth will
probably notice the similarity of the colosseum and an exact “Robertson—-Seymour fashioned”
algorithm as sketched in Listing
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Listing 1: To get some intuition behind the colosseum, consider the following procedure. It
is assumed that an input graph G = (V, F) and a target number k& € N is globally available
in memory. The procedure, when called with parameters S = () and C = V, will determine
whether k searcher can catch the fugitive in the search game. Hereby, the set S is always the
current position of the searchers and C is the contaminated area. We maintain the invariant
N(C) C S, as the searchers would lose otherwise due to recontamination. Observe that from
any configuration (S, C) the procedure will, without branching, move to (N(C),C). These are
exactly the configurations that are present in the colosseum. In fact, the colosseum is essentially
the configuration graph of this procedure if it is used with memoization.

procedure generalGraphSearching (.S, C)

// end of recursion

if |S| > k then // we need too many searchers
return false

end

if C =0 then // the searchers cleaned the graph
return true

end

// implicit searcher removal
for v € S do
if N(v)NC =0 then
S+ S\ {v}
return generalGraphSearching(S, C)
end
end

// reveal—move
Ci,...,Cy < connectedComponents(G[C])
if ¢ > 1 then

return /\5:1 generalGraphSearching(.S, C;)
end

// fly—move
return \/ . generalGraphSearching(S U {v},C \ {v})

end



2.3 Fighting in the Pit

Both algorithms introduced in the previous section run asymptotically in the size of the generated
configuration graph |arena(G, k)| or |colosseum (G, k)|. Both of these graphs might be very large,
as the arena has fixed size of order O(n*+1), while the colosseum may even have size O(2").
Additionally, both graphs contain many unnecessary configurations, that is, configurations that
are not contained in the winning region of the searchers. In the light of dynamic programming
this is the same as listing all possible configurations; and in the light of positive-instance driven
dynamic programming we would like to list only the positive instances — which is exactly the
winning region in this context.

To realize this idea, we consider the pit inside the colosseum, which is the area where only
true champions can survive — formally we define pit(G, k) as the subgraph of colosseum(G, k)
induced by B(Q), that is, as the induced subgraph on the winning region. The key-insight is
that |pit(G, k)| may be smaller than |colosseum(G, k)| or even |arena(G, k)| on various graph
classes. Our primary goal for the next section will therefore be the development of an algorithm
that computes the pit in time O(|pit(G, k)|?).

3 Computing the Pit

Our aim for this section is to develop an algorithm that computes pit(G, k). Of course, a simple
way to do this is to compute the whole colosseum and to extract the pit afterwards. However, this
will cost time O(2") and is surely not what we aim for. Our algorithm traverses the colosseum
“backwards” by starting at the set @ of winning configurations and by uncovering B(Q) layer by
layer. In order to achieve this, we need to compute the predecessors of a configuration C. This
is easy if C was reached by a fly-move as we can simply enumerate the n possible predecessors.
Reversing a reveal-move, that is, finding the universal predecessors, is significantly more involved.
A simple approach is to test for every subset of already explored configurations if we can “glue”
them together — but this would result in an even worse runtime of 2/P(G#)| Fortunately, we
can avoid this exponential blow-up as the colosseum has the following useful property:

Definition 3.1 (Universal Consistent). We say that an edge-alternating graph H = (V, E, A)
is universal consistent with respect to a set Q@ C V if for allv € V \ Q with v € B(Q) and
Ny(v) = {wi,...,w,} we have (1) Ny(v) C B(Q) and (2) for every I C {wi,...,w,} with

|I| > 2 there is a vertex v' € V with Ny(v') =1 and v' € B(Q).

Intuitively, this definition implies that for every vertex with high universal-degree there is a
set of vertices that we can arrange in a tree-like fashion to realize the same adjacency relation.
This allows us to glue only two configurations at a time and, thus, removes the exponential
dependency. An example of the definition can be found in Example

Example 3.2. Consider the following three edge-alternating graphs, where a black edge is ex-
istential and the red edges are universal. The set (Q contains a single vertex that is highlighted.
From left to right: the first graph is universal consistent; the second and third one are not. The
second graph conflicts the condition that v € B(Q) implies Ny(v) C B(Q), as the vertex on the
very left is contained in B(Q) by the top path, while its universal neighbor on the bottom path
is not contained in B(Q). The third graph conflicts the condition that Ny(v) = {wi,...,w,}
implies that for every I C {wy,...,w,} with |I| > 2 there is a vertex v' € V with Ny(v') = 1
and v' € B(Q) as witnessed by the vertex with three outgoing universal edges.
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Lemma 3.3. For every graph G = (V,E) and number k € N, the edge-alternating graph
colosseum(G, k) is universal consistent.

Proof. For the first property just observe that “reveals do not harm” in the sense that if the
searchers can catch the fugitive without knowing where she hides, they certainly can do if they
do know.

For the second property consider any configuration C' € V(H) that has universal edges to
Cy,...,Cy. By definition we have |[N(C)| < k and N(C;) C N(C) for all 1 < i < ¢. Therefore
we have for every I C {1,...,¢} and C' = U;¢;C; that N(C') C N(C) and |N(C")| < k and,
thus, C" € V(H). O

We are now ready to formulate the algorithm for computing the pit shown in Listing In
essence, the algorithm runs in three phases: first it computes the set ) of winning configurations;
then the winning region B(Q) (that is, the vertices of pit(G,k)); and finally, it computes the
edges of pit(G, k).

Theorem 3.4. The algorithm Discover(G, k) finishes in at most O(|B(Q)|* - |V|?) steps and
correctly outputs pit(G, k).

Proof. The algorithm is supposed to compute @ in phase I, B(Q) in phase II, and the edges of
colosseum(G, k)[B(Q)] in phase III. First observe that @ is correctly computed in phase I by the
definition of Q.

To show the correctness of the second phase we argue that the computed set V (pit(G, k)) equals
B(Q). Let us refer to the set V(pit(G, k)) during the computation as K and observe that this is
exactly the set of vertices inserted into the queue. We first show K C B(Q) by induction over
the ith inserted vertex. The first vertex C is in B(Q) as Cy € Q. Now consider C;. As C; € K,
it was either added in Line |16 or Line [2 . In the first case there was a vertex C; € K such that
C; = C; U {v} for some v € N(C;). By the induction hypothesis we have C; € B(Q) and by the
definition of the colosseum we have (Cj, C;) € E(H) and, thus, C; € B(Q). In the second case
there where vertices C; and C; with C;, C,e K and C; = C;UC,. By the induction hypothesis
we have again C;, C; e B(Q). Let t,...,t; be the connected components of C; and C;. Since the
colosseum H is universal consistent Wlth respect to Q by Lemma we have t1,...,t; € B(Q).
By the definition of the colosseum we have Ny(C;) = t1,...,t; and, thus, C; € B(Q).

To see B(Q)) C K consider for a contradiction the vertices of B(Q) in reversed topological order
(recall that H is acyclic) and let C' be the first vertex in this order with C' € B(Q) and C ¢ K.
If C € @Q we have C € K by phase I and are done, so assume otherwise. Since C' € B(Q) we
have either N3(C)NB(Q) # 0 or § # Ny(C) C B(Q). In the first case there is a C € B(Q) with
(C,C) € E(H). Therefore, C precedes C in the reversed topological order and, by the choice of
C, we have C € K. Therefore, at some point of the algorithm C' gets extracted from the queue
and, in Line [I6] would add C to K, a contradiction.

In the second case there are vertices t1,...,t, with Ny(C) = {t1,...,t} and t1,...,t, € B(Q).
By the choice of C, we have again t1,...,ty € K. Since H is universal consistent with respect to
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Q, we have for every I C {1,...,/} that (J;c; t; is contained in B(Q). In particular, the vertices
t1Utg, tgUty, ..., ty—1 Uty are contained in B(Q), and these elements are added to K whenever
the t; are processed (for simplicity assume here that ¢ is a power of 2). Once these elements
are processed, Line 20| will also add their union, that is, vertices of the form (¢t; Uta) U (t3 U t4).
In this way, the process will add vertices that correspond to increasing subgraphs of G to K,
resulting ultimately in adding Ule t; = C into K, which is the contradiction we have been
looking for.

Finally, once the set B(Q) is known, it is easy to compute the subgraph colosseum(G, k)[B(Q)],
that is, to compute the edges of the subgraph induced by B(Q). Phase III essentially iterates
over all vertices and adds edges according to the definition of the colosseum.

For the runtime, observe that the queue will contain exactly the set B(Q) and, for every element
extracted, we search through the current K’ C B(Q), which leads to the quadratic timebound
of |B(Q)|?. Furthermore, we have to compute the neighborhood of every extracted element, and
we have to test whether two such configurations intersect — both can easily be achieved in time
O(|V]?). Finally, in phase III we have to compute connected components of the elements in
B(Q), but since this is possible in time O(|V| + |E|) per element, it is clearly possible in time

IB(Q)| - |V|? for the whole graph. O
Listing 2: Discover(G, k) Listing 3: insert(C, t)
V(pit(G,k)) =0 if C ¢ V(pit(G,k)) and |Ng(C)| <t then
E(pit(G,k)) :=10 add C to V(pit(G, k))

A(pit(G,k)) :== 10 insert C' into queue
initialize empty queue end

// Phase I: compute Q
for v € V(G) do

insert({v}, k — 1) Listing 4: discoverEdges()
end for C € V(pit(G,k)) do
// Phase II: compute B(Q) = V (pit(G, k)) // add fly—move edges
while queue not empty do for v € C do
extract C' from queue if C'\ {v} € V(pit(G, k)) then
// reverse fly—moves add (C,C\ {v}) to E(pit(G,k))
for v € N(C) do end
insert(C U {v},k—1) end
end
// reverse reveal—moves // add reveal—move edges
for C' € V(pit(G, k)) with CNC’ = do let Cy,...,Cp be
insert(C' U C', k) the connected components of G[C]|
end if Cy,...,Cp € K then
end fori=1to ¢ do
add (C, C;) to A(pit(G, k))
// Phase III: compute E and A end
discoverEdges() end

return (V(pit(G, k)), E(pit(G, k)), A(pit(G, k))) end
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4 Distance Queries in Edge-Alternating Graphs

In the previous section we have discussed how to compute the pit for a given graph and a given
value k. The computation of treewidth now boils down to a reachability problem within this
pit. But, intuitively, the pit should be able to give us much more information. In the present
section we formalize this claim: We will show that we can compute shortest edge-alternating
paths. To get an intuition of “distance” in edge-alternating graphs think about such a graph as
in our game and consider some vertex v. There is always one active player that may decide to
take one existential edge (a fly-move in our game), or the player may decide to ask the opponent
to make a move and, thus, has to handle all universal edges (a reveal-move in our game). From
the point of view of the active player, the distance is thus the minimum over the minimum of
the distances of the existential edges and the maximum of the universal edges.

Definition 4.1 (Edge-Alternating Distance). Let H = (V, E, A) be an edge-alternating graph
with v € V and Q C V, let further ¢ € N be a constant and wg: E — N and wa: A — N be
weight functions. The distance d(v, Q) from v to Q is inductively defined as d(v,Q) = co for
v € QQ and otherwise:

d(v,Q) = min ( min (d(w, Q) +wg(v,w)), max (d(w,Q)+ wa(v,w)) )
weN3(v) wENy (v)
Lemma 4.2. Given an acyclic edge-alternating graph H = (V, E, A), weight functions wg: E —
N and wa: A = N, a source vertexr s € V', a subset of the sinks @@, and a constant co € N. The
value d(s, Q) can be computed in time O(|V| + |E| + |A|) and a corresponding edge-alternating
path can be computed in the same time.

Proof. Since H is acyclic we can compute a topological order of V using the algorithm from [30].
We iterate over the vertices v in reversed order and compute the distance as follows: if v is a
sink we either set d(v,Q) = ¢y or d(v, Q) = oo, depending on whether we have v € Q. If v is not
a sink we have already computed d(w, Q) for all w € N(v) and, hence, can compute d(v, Q) by
the formula of the definition. Since this algorithm has to consider every edge once, the whole
algorithm runs in time O(|V| + |E| + |A|). A path from s to @ of length d(s, Q) can be found
by backtracking the labels starting at s. O

Theorem 4.3. Given a graph G = (V,E) and a number k € N, we can decide in time
O(|pit(G, k + 1)|> - [V|?) whether G has { treewidth, pathwidth, treedepth, q-branched-treewidth,
dependency-treewidth } at most k.

Before we got into the details, let us briefly sketch the general idea of proving the theorem: All
five problems have game theoretic characterizations in terms of the same search game with the
same configuration set [0, 22] [26]. More precisely, they condense to various distance questions
within the colosseum by assigning appropriate weights to the edges.

treewidth: To solve treewidth, it is sufficient to find any edge-alternating path from the vertex
Cs = V(G) to a vertex in ). We can find a path by choosing wg and wa as (z,y) — 0,
and by setting ¢y = 0.

pathwidth: In the pathwidth game, the searchers are not allowed to perform any reveal [6].
Hence, universal edges cannot be used and we set wa to (x,y) — oo. By setting wg to
(z,y) — 0 and ¢o = 0, we again only need to find some path from V(G) to @ with weight
less than oo.

treedepth: In the game for treedepth, the searchers are not allowed to remove a placed searcher
again [26]. Hence, the searchers can only use k existential edges. Choosing wg as (x,y)
1, wq as (z,y) — 0, and ¢y = 1 is sufficient. We have to search a path of weight at most k.
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g-branched-treewidth: For g-branched-treewidth we wish to use at most ¢ reveals [22]. By
choosing wg as (z,y) — 0, wa as (z,y) — 1, and ¢y = 0, we have to search for a path of
weight at most q.

dependency-treewidth This parameter is in essence defined via graph searching game that is
equal to the game we study with some fly- and reveal-moves forbidden. Forbidding a move
can be archived by setting the weight of the corresponding edge to co and by searching
for an edge-alternating path of weight less then oo.

Proof. Let us first observe that, by the definition of the colosseum, k searchers in the search
game have a winning strategy if, and only if, the start configuration V' (G) is contained in B(Q).
With other words, if there is an edge-alternating path from V(G) to some winning configuration
in . Note that such a path directly corresponds to the strategy by the searchers in the sense
that the used edges directly correspond to possible actions of the searchers.

Since for any graph G = (V, E') and any number k € N the edge-alternating graph colosseum(G, k)
is universal consistent by Lemma all vertices of an edge alternating path corresponding to
a winning strategy are contained in B(Q) as well. In fact, every edge-alternating path from
V(G) to @ (and, thus, any winning strategy) is completely contained in B(Q). Therefore, it
will always be sufficient to search such paths within pit(G, k). By Lemma we can find such
a path in time O(|pit(G,k)|?). In fact, we can even define two weight functions wg: E — N
and wa: A — N and search a shortest path from V(G) to Q. To compute the invariants of G as
stated in the theorem, we make the following claim:

Claim 4.4. Let G = (V, E) be a graph and k € N. Define wg as (z,y) — 0 andwy as (x,y) — 1,
and set ¢co = 0. Then we have d(V(G),Q) < q in pit(G, k) if, and only if, twy(G) < k — 1.

Proof. We follow the proof of Theorem 1 in [22] closely. We will use the following well-known
fact that easily follows from the observation that in a tree decomposition (7',¢), for each three
different nodes i1,142,i3 € T, we have ¢(i1) N ¢(i3) C t(i) if 2 is on the unique path from iy to
ig inT.

Fact 4.5. Let (T, 1) be a tree decomposition of G = (V, E) rooted arbitrarily at some noder € T
Let i € T be a node and j € T be a child of i in T. Then, the set t(i) N u(j) is a separator
between C = [UdeDesc(j) )]\ (e(i) Ne(f)) and (V\ C)\ (u(i) Ne(j)), where Desc(xz) denotes
the set of descendants of x including x. Hence, every path from some node u € C to some node
v eV \C contains a vertex of v(i) Ne(j).

From a Tree Decomposition to an Edge-alternating Path: Let (7,¢) be a ¢g-branched
tree decomposition of G = (V, E) of width k. Without loss of generality, we can assume that G is
connected. We will show how to construct an edge-alternating path from the start configuration
V of cost at most ¢ in colosseum(G, k + 1). As described above, this is also an edge-alternating
path with the same costs in pit(G, k+1). The first existential edge from V' leads to the configu-
ration V'\ ¢(r), where r is the root of T'. Clearly, N(V \ ¢(r)) C ¢(r). Now suppose that we have
reached a configuration C' with N(C') C (i) € V (colosseum(G, k + 1)) for some node i € T and
we have

ccl U )\
j€Desc(7)

where Desc(7) are the descendants of i in T'. Clearly, for ¢ = r, this assumption holds trivially.
If 7 is a leaf in T, there are no more descendants and thus C = (. Hence, have reached a
winning configuration in colosseum(G, k + 1). Therefore, suppose that i is a non-leaf node. We
distinguish two cases:
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e If 7 has exactly one child j, we can find a path P of existential edges leading from C
to a configuration C with N(Cy) C «(4) N¢(j). Moreover, we can also find a path P of
existential edges from C to a configuration Cy with N(C2) C ¢(j).

The path P; will be constructed by iteratively removing all vertices v € C' with N(v) N
[t(i) \ ¢(4)] # 0. For the remaining vertices Cy, we have N(C7) C ¢(i) Ne(j). Clearly, if
all configurations that we aim to visit on P; exists, the corresponding edges also exists by
definition. Hence, assume that we are currently in some configuration ¢’ with N(C’) N
[t(i) \ t(j)] # 0 and want to remove some vertex v € C’ with N(v) N [u(i) \ ¢(5)] # 0, but
C'\ {v} & V(colosseum(G, k + 1)). By definition of colosseum(G, k + 1), this means that
IN(C"\ {v})|] > k + 2. As we wanted to remove v, we have N(v) N (i) # . On the other
hand, as N(C'"\ {v}) € N(C") U {v} and |[N(C"\ {v})| > k + 2, we know that there is
some u € C' with v € N(u). Hence, Fact implies that v € ¢(¢) N ¢(j), a contradiction.
Hence, all configurations in P; exist.

Similarly, we construct P, by iteratively removing all vertices in ¢(j) from Cj. It is easy
to see that the neighborhood of the visited configurations will always be a subset of +(j)
and hence, all configurations on this path exist.

We have thus arrived at a configuration Cy with N(C2) C «(j) and

;<[ J )]\l

j'€Desc(j)
due to Fact [4.5

e If node ¢ has a set of children J with |J| > 2, we will use universal edges. Let C be the
connected components of G[U;epesc(i) ¢(J) \¢(2)]. We claim, that for each component I' € C,
there is a unique index j(I") € J such that I'N¢(j(T)) # 0. If no such index exists, we have
t(j) = ¢(7). We can iteratively remove such bags ¢(j) until this can not happen anymore.
If two indices j1, jo € J exist with ¢(j1)NT # () and ¢(j2) NT # (), the connectivity property
implies that ¢(i) NT # (), a contradiction to our assumption. Hence, for each component
I', we follow the universal edge to I' and then proceed as above: first, we find a path P; of
existential edges from I' to a configuration I'; with N(I'1) C () N¢(j(T")) and then a path
P, of existential edges from I'; to a configuration I'y with N(I'2) C ¢(j(I")). The same
arguments as above imply that all configurations on these paths exist and that we arrive
at a configuration I's with N(I'y) C ¢(j(I")) and

ol J )]\ eGm).

j'€Desc(j(I"))

This shows that we will eventually reach the leaves of the tree decomposition and thus some
wining configuration. Clearly, this is an edge-alternating path in colosseum (G, k+1) and thus in
pit(G, k+1). Furthermore, as each path from the root of T' to some leaf of T' contains at most ¢
nodes with more than one children, this path is g-branched, as we use at most ¢ universal edges
from the initial configuration V' to any used winning configuration for every induced directed
path. Hence, we have found an edge-alternating path in pit(G, k + 1) of cost at most q.

From an Edge-alternating Path to a Tree Decompostion: Let P C V(pit(G,k + 1))
be an edge-alternating g-branched path from the initial configuration V' to a final configuration
{v*} in pit(G, k + 1) with |[N({v*})| < k. We argue inductively on q.

o If ¢ = 0, the path P does not use any universal edges. Let m = m,...,7s be any clas-
sical directed path from the initial configuration V' to some wining configuration {v*}
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in pit(G, k + 1) that only uses vertices from P. As the initial configuration is m = V,
the winning configuration is 75 = {v*}, and there are only existential edges (C,C") with
|C’| = |C| — 1 in pit(G, k + 1), we know that |m;| = |[V| — i+ 1 and thus s = |V|. We say

that vertex v € V' is removed at time 1, if v € ﬂé-:l mjand v & Ulj‘;liﬂ ;. We also say that
v* was removed at time |V|. For i =1,...,|V], let v; be the vertex removed at time 3.

We will now construct a 0-branched tree decomposition (7, ¢), i.e. a path decomposition.
As T'is a path, let 1,.. .,y be the vertices on the path in their respective ordering with
root t1. We set «(t;) = N(m;) U{v;}. For i = 1,...,|V] — 1, there is an existential edge
leading from m; to m;41 and thus [N (m;)| < k. As 7y = {v)y|} is a winning configuration,
we also have |N(my|)| < k. Hence, the resulting decomposition 7" has width at most k.
As T is a path, it is also 0-branched.

We now need to verify that (7',¢) is indeed a valid tree decomposition. As every vertex
v is removed at some time i, we have v = v; and thus v € «(¢;). Hence, every vertex is
in some bag. Let {v;,vy} be any edge with i < ¢’. As vy € 7y and v; & 7, we have
v; € N(my) and thus {v;, vy} C N(my) U {vy} = o(ty). Hence, every edge is in some bag.
Finally, let v; € V. Clearly, as v; € 71, v; € mo,..., v; € m;_1, the first bag where v; might
appear is ¢(t;). Let vy € N(v;) be the neighbour of v; that is removed at the latest time.

If ¢/ < i, we have N(v;) N Ulj‘;'iﬂ mj = ) and v; thus only appears in ¢(t;). If i < 4/, then
v; € (j=iy1 V() and hence v; € (Vj_; 4 t(t))-

Now, assume that ¢ > 1 and that we can construct for every ¢’ < ¢ a ¢'-branched
tree decomposition of width at most k& from any ¢-branched edge-alternating path P
in pit(G, k + 1). Consider the directed acyclic subgraph H in pit(G, k + 1) induced by
P. A configuration C' € V(H) is called a universal configuration, if N4(C) C V(H) and
a top-level universal configuration with respect to some directed path 7 if C' is the first
universal configuration on 7. Note that we can reduce P in such a way that all directed
paths 7 from the initial configuration V' to some winning configuration {v*} in H have
the same top-level universal configuration, call it C*. Let V = mq,...,m; = C* be the
shared existential path from V to C* in H and let N4(C*) = {C1,...,C¢} be the univer-
sal children of C*. Note that {C4,...,Cy} C P due to the definition of an edge-alternating
path. For each child Cj}, the edge-alternating path P contains a directed path 7 from
C; to some final configuration in pit(G,k + 1). Furthermore, each 709 contains at most
¢ < ¢ — 1 universal edges (otherwise, P would not be g-branched). Hence, by induction
hypothesis, we can construct a ¢’-branched tree decomposition (T(j )’Lm) for the subgraph
induced by the vertices contained in the path 7\ with root ().

Now, we use the same construction as above to construct a path (77 = (¢}, ...,t,),./) from
71, ..., and for each path 7, we add the root () of the ¢’-branched tree decomposition
(TY)1(4)) as a child of bag t; to obtain our final tree decomposition (7),¢). As there is a
universal edge from C* to C;, we know that C; is a component of C*. As all (T, 4(5))
are valid ¢ — 1-branched tree decompositions of width at most k, we can thus conclude
that (7', ¢) is a valid g-branched tree decomposition of width k. O

Combining the above claim with Theorem [3.4] for computing the pit, we conclude that we can
check whether a graph G has g-branched-treewidth & in time O(|pit(G, &+ 1)|2-|V|?). We note
that the algorithm is fully constructive, as the obtained path (and, hence, the winning strategy of
the searchers) directly corresponds to the desired decomposition. Since we have tw(G) = twso (G)
and pw(G) = two(G), the above results immediately implies the same statement for treewidth
and pathwidth by checking d(V(G), k) < oo or d(V(G), k) = 0, respectively.

In order to show the statement for treedepth, we will require another claim for different weight
functions. The proof idea is, however, very similar.
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Claim 4.6. Let G = (V,E) be a graph and k € N. Define wg as (z,y) — 1 and wy as
(z,y) — 0, and co = 1. Then we have d(V(G),Q) < k in pit(G, k) if, and only if, td(G) < k.

Proof. To prove the claim, we use an alternative representation of treedepth [38]. Let G = (V, E)

be a graph with connected components C1,...,Cy, then:
1 if |[V] =1,
td(G) = < max{_, td(G[Ci]) if ¢ >2;

min,ey td(G[V \ {v}]) +1 otherwise.

Let us reformulate this definition a bit. Let C' C V be a subset of the vertices and let Cy,...,C)
be the connected components of G[C]. Define:

1 if |C| = 1;
td*(C) = ¢ max{_, td*(C;) if > 2;
min,eo td*(C'\ {v}) + 1 otherwise.

Obviously, td(G) = td*(V'). We proof that for any C' C V' we have d(C, Q) = td*(C) in pit(G, k)
for every k > td(G) and d(C, Q) > td*(C) for all k < td(G).

For the first part we consider the vertices of pit(G, k) in inverse topological order and prove the
claim by induction. The first vertex Cj is in @ and thus d(Cp, Q) = ¢ = 1. Since the vertices in
@ represent sets of cardinality 1, we have d(Cp, Q) = td*(Cp). For the inductive step consider
C; and first assume it is not connected in G. Then
d(C;, Q)= max (d(C;,Q)+ wa(C;,C;
(@)= | max (d(C;,Q) + wa(Ci )

= d(C;,
o e (C5,Q)

= max td*(Cj)
Cj is a component in G[C}]

= td*(C)).

Note that there could, of course, also be existential edges leaving C;. However, since the universal
edges are “for free,” for every shortest path that uses an existential edge at Cj, there is also one
that first uses the universal edges.

For the second case, that is C; is connected, observe that C; is not incident to any universal
edge. Therefore we obtain:

4(C1,Q) = min (d(Ci\ {0}, Q) + wi(Cs, Ci \ {v})
= min (d(C; \ {v}.Q) +1)
= min (td*(Ci \ {v}) + 1)
= td*(C;).

This completes the part of the proof that shows d(C, Q) = td*(C) for k > td(G). We are left
with the task to argue that d(C, Q) > td*(C) for all k¥ < td(G). This follows by the fact that for
every k' < k we have that pit(G, k') is an induced subgraph of pit(G, k). Therefore, the distance
can only increase in the pit for a smaller £ — in fact, the distance can even become infinity if

k < td(G). O
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Again, combining the claim with Theorem [3.4] yields the statement of the theorem for treedepth.
Finally, we will prove the statement for dependency-treewidth. This parameter can be charac-
terized by a small adaption of the graph searching game [I8]: In addition to the graph G and
the parameter k, one is also given a partial ordering < on the vertices of G. For a vertex set
V'ilet ue (V') ={v eV | Vw € V'\ {v} : (w,v) € <} be the minimal elements of V' with
regard to <. If C' C V(@) is the contaminated area, we are only allowed to put a searcher on
p<(C), rather than on all of C. The dependency-treewidth dtw<(G) is the minimal number of
searchers required to catch the fugitive in this version of the game. Therefore, we just need
a way to permit only existential edges (C,C’) with C'\ C" C u<(C). We show the following
stronger claim:

Claim 4.7. Consider a variant of the search game in which at some configurations C; some fly-
moves are forbidden, and in which furthermore at some configurations C; no reveals are allowed.
Whether k searcher have a winning strategy in this game can be decided in time O(|pit(G,k)|? -
V).

Proof. First observe that, if the k searcher have a winning strategy S, this strategy corresponds
to a path in pit(G, k). The reason is that searchers that are allowed to use all fly- and reveal-
moves (and for which all winning strategies correspond to paths in pit(G, k)) can, of course, use
S as well. We compute the pit with Theorem

Now to find the restricted winning strategy we initially set wg and w4 to (z,y) — 0. Then
for any existential edge (Cj, C;) that we wish to forbid we set wg(C;, Cj) = oco. Furthermore,
for any node C' at witch we would like to forbid universal edges we set wg(C;, Cj) = oo for
all C; € Ny(C;). Finally, we search a path from V(G) to @ of weight less then oo using
Lemma [4.21 O

This completes the proof of Theorem [£.3] O

15



5 Theoretical Bounds for Certain Graph Classes

In general, it is hard to compare the size of the arena, the colosseum, and the pit. For instance,
already simple graph classes as paths (P,) and stars (S,) reveal that the colosseum may be
smaller or larger than the arena (the arena has size O(n®) on both, but the colosseum has
size O(n) on P, and O(2") on S,, both with regard to their optimal treewidth 1). However,
experimental data of the PACE challenge [16] [17] shows that the pit is very small in practice. In
the following, we are thus interested in graph classes where we can give theoretical guarantees
on the size of the pit. We will first show that the colosseum is indeed often smaller than the
arena (Lemma and furthermore, that the pit might be much smaller than the colosseum

(Lemma [5.3).

Lemma 5.1. For every connected claw-free graph G = (V| E) and integer k € N, it holds that
|colosseum (G, k)| < Ele ()22 € O((}) - 4%).

Proof. Observe that in a claw-free graph every X C V separates G in at most 2| X | components,
as every component is connected to a vertex in X (since G is connected), but every vertex in
X may be connected to at most two components (otherwise it forms a claw). In the colosseum,
every configuration C' corresponds to a separator N(C) of size at most k, and there are at most
Zle (TZ) such separators. For each separator we may combine its associated components in
an arbitrary fashion to build configurations of the colosseum, but since there are at most 2 - ¢
components, we can build at most 22% configurations. O

We remark that the result of Lemma can easily be extended to K -free graphs for every
fixed ¢, and that this result is rather tight:

Lemma 5.2. Let G = (V, E) be a graph and k € N. It holds that |colosseum(G, k)| > Zle (“?‘),
where V; ={v e V : |[N(v)| > i}.

Proof. Let X be any subset of at most i vertices from V; with i < k. As |X| < i, every
vertex in X has a neighbour in V' \ X. Hence, N(V \ X) = X and thus |[N(V \ X)| < k and
V\ X € V(colosseum(G, k)). O

We now show that the pit, on the other hand, can be substantially smaller than the colos-
seum even for graphs with many high-degree vertices. For n,k € N with n > 2k, we define
the graph P, on vertices V(P, ) = {vo,v1,...,Unk,Unkt1}. For i = 1,....n, let X; =
{06 1)kt 1 V(1) k25 - - s V(i—1) ks k) X0 = {vo}, and Xpy1 = {vnk41}. The edges E(P, k) are
defined as

E(Pog) = J{{uw v} [u,0 € X U J{{u,v} | v € Xi,0 € Xipa}.
i=1 =0

Informally, P, is constructed by taking a path of length n 4 2 and replacing the inner vertices
by cliques of size k that are completely connected to each other.

Lemma 5.3. It holds:

(i) tw(Pux) = pw(Pny) = 2k — 1; (ii) larena(Py 1, 2k)| = 2+ (5 D)
(iii) |colosseum (P, i, 2k)| > S22F ("F); (iv) |pit( Pk, 2k)| € O(n? 4 n - 20F).
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Proof. Property (i) holds as P, contains a clique of size 2k and the path decomposition
[(XoU X1, X1 UXo, ..., X, UXpq1] is valid. Property (i7) holds by definition of arena(P, x, 2k).
To see (i), observe that for v € (J;_, X;, we have |[N(v)| > 2k. Lemma thus implies
|colosseum (P, j, 2k)| > Zfﬁl (”Zk)

In order to prove Property (iv) we count the number of configurations inserted into the queue
by algorithm Discover. Theorem shows that this number equals the size of the pit. All
configurations either include vy (a left configuration), vk.,4+1 (a right configuration) or both
(a mized configuration), as {vo}, {vg.nt+1} are the only winning configurations. Left and right
configurations can be extended by reverse fly-moves (Line as follows: Starting from C = X,
we can add a vertex u € X to C' to generate C’. The neighborhood of C” will be (X1 \ {u}) UXs.
Adding a vertex w of X5 to C’ would result in a configuration with neighborhood (Xi \ {u}) U
(Xg \ {w}) U X3 greater than 2k. Hence, further reverse fly-moves have to add X; completely
to C' before elements of X5 can be added. An inductive arguments yields that configurations
constructed in this way have the form XoU X; U ---UX;_1 U X with X C X;. As the same is
true when starting with X,,;1, we can generate 2 - n - 2¥ such configurations.

Now consider reverse reveal-moves (Line . We can only unite a left configuration € =
XoUX;U---UX; 1 UX; with a right one Cy = X, UX, U---UX; 1 UX;. If X; = X; =0,
C1 U (s is a legal configuration and there are (g) such configurations. If |X UX; il >0, we
have |[N(C1)| + |N(C2)| > 2k, and can not add such configurations. For the combinations with
i+1<j—2, we have Cj_o N (N(C1) UN(Cy)) = 0 and thus N(C1) N N(C2) = 0, which implies
that C; U Cy is not legal due to |[N(Cp) U N(C2)| = |N(C1)| + |N(C2)| > 2k. The remaining
combinations have ¢ + 1 > j — 2. For each fixed i, there are at most four such values of j
(j € {i,i+1,i+2,i+3}). Both X; and X; might be arbitrary and we can thus create at most
4.n-2F. 25 = 4.n.2% configurations.

Finally, we can perform reverse fly-moves for mixed configurations of the form €' = Xo U X7 U

UXZ 1UX UX UX; U UX,UX g withi+1 > j—2 (othervvlse the neighborhood is too
large) Let U = V\C be the uncontaminated vertices. As U C X;\ X;UX;41UX;2UX;\ Xj,
we have |U| < 4k. Hence, for each of the 4 -n - 22% configurations with i +1 > j — 2 there are at
most 2% configurations reachable by reverse fly-moves — yielding at most 4-n-2%% configurations.
Overall, we thus have n - 2F + (g) +4 - n -2 configurations. O

6 Experimental Estimation of the Pit Size

A heavily optimized version of the treewidth algorithm described above has been implemented in
the Java library Jdrasil [4, 2]. To show the usefulness of our general approach, we experimentally
compared the size of the pit, the arena, and the colosseum for various named graphs known from
the DIMACS Coloring Challenge [29] or the PACE [I6, [I7]. For each graph the values are taken
for the minimal k£ such that k searchers can win. Note that |arena(G, k)| < |pit(G, k)| holds only
in 6 of 24 cases, emphasized by underlining.

Graph VI |El k& Pit Arena Col. Graph vVl |E| k Pit Arena Col.
Grotzsch 11 20 6 1,235 660 1,853  Hoffman 6 32 7 5,851 25,740 30,270
Heawood 14 21 6 5,601 6,864 9,984 Friendship 10 21 30 3 57,554 11,970 58,695
Chvatal 12 24 7 3,170 990 3,895 Poussin 15 39 7 3,745 12,870 17,358
Goldner Harary 11 27 4 103 924 639 Markstroem 24 36 5 13,846 269,192 71,604
Sierpinski Gasket 15 27 4 488 6,006 2,494 McGee 24 36 8 487,883 2,615,008 1,905,241
Blanusa 2. Snark 18 27 5 861 37,128 15,413  Naru 2436 T 41,623 1,470,942 708,044
Tcosahedral 12 30 7 2380 990 3,575  Clebsch 16 40 9 20,035 16,016 55,040
Pappus 18 97 7 51004 87516 97970  Folkman 20 40 7 21,661 251,040 151,791
Desargues 20 30 7 85,146 251,940 202,661  brrera 17 45 7 3,527 48,620 42,418
Dodecahedral 20 30 7 112,924 251,940 207,165  >nrikhande 1648 10 50,627 8,736 61,456
Flower Snark 20 30 7 79,842 251,040 203473  Laley ) 1768 12 114479 4,760 129,474
Gen. Petersen 20 30 7 78384 251,040 202,685  CGoethalsSeidel 16 72 12 54,833 1,120 65296
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We have performed the same experiment on various random graph models. For each model
we picked 25 graphs at random and build the mean over all instances, where each instance
contributed values for its minimal k. We used all 3 models with N = 25 and, for the first two
with p = 0.33; and for the later two with K = 5. For a detailed description of the models see
for instance [10].

Model |pit(G, OPT)| |arena(G, OPT)| |colosseum(G, OPT)]
Erdés—Rényi 66,320 342,918 503,767
Watts Strogats 15,323 192,185 108,074
Barabasi Albert 61,147 352,716 551,661
Finally, we observe the growth of the pit, the , and the colosseum for a fixed graph if we

raise k from 2 to the optimal value. While the arena shows its binomial behavior, the colosseum
is in many early stages actually smaller then the arena. This effect is even more extreme for
the pit, which is very small for k that are smaller then the optimum. This makes the technique
especially well suited to establish lower bounds, an observation also made by Tamaki [43].

106 -10*
T 6 F T T =
1.5 B

Naru Graph Clebsch Graph /
n | ; ]
05 1 °

g /
) /

I
T

(¥
T
L
I

Size of structures.
Size of structures

0 — — 0 —— 1
Il Il Il Il Il Il Il Il Il Il
2 3 4 5 6 7 2 4 6 8
Target value k. Target value k.
100 10°
T T
N o
McGee Graph Papus Graph
0.8 | / B
ol R f

o
=Y
T
|

Size of structures.
Size of structures.

=3 =]
) IS
T T
I
|
|
|
I I

o
T
|
|
|
L
o
T
|
L
L

2 3 4 5 6 7 8 2 3 4 5 6 7
Target value k. Target value k.

7 Conclusion and Outlook

Treewidth is one of the most useful graph parameters that is successfully used in many different
areas. The Positive-Instance Driven algorithm of Tamaki has led to the first practically relevant
algorithm for this parameter. We have formalized Tamaki’s algorithm in the more general setting
of graph searching, which has allowed us to (i) provide a clean and simple formulation; and (ii)
extend the algorithm to many natural graph parameters. With a few further modification of the
colosseum, our approach can also be used for the notion of special-treewidth [13]. We assume that
a similar modification may also be possible for other parameters such as spaghetti-treewidth [9).

Acknowledgements: The authors would like to thank Jan Arne Telle and Fedor Fomin for
helpful discussions about the topic and its presentation.
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