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Abstract. A rank-select index for a sequence B = (b1, . . . , bn) of n bits, where n ∈
N = {1, 2, . . .}, is a data structure that, if provided with an operation to access Θ(log n)
arbitrary consecutive bits of B in constant time (thus B is stored outside of the data
structure), can compute rankB(j) =

∑j

i=1
bi for given j ∈ {0, . . . , n} and selectB(k) =

min{j ∈ N | rankB(j) ≥ k} for given k ∈ {1, . . . ,
∑n

i=1
bi}. We describe a new rank-select

index that, like previous rank-select indices, occupies O(n log log n/log n) bits and executes
rank and select queries in constant time. Its derivation is intended to be particularly easy
to follow and largely free of tedious low-level detail, its operations are given by straight-line
code, and we show that it can be constructed in O(n/log n) time.

1 Introduction

When S is a finite multiset of integers and j ∈ Z = {. . . ,−1, 0, 1, . . .}, we write rankS(j) for
the rank of j in S, i.e., rankS(j) = |{i ∈ S : i ≤ j}|. Moreover, for each k ∈ {1, . . . , |S|},
selectS(k) = min{j ∈ Z : rankS(j) ≥ k}. If the elements of S are arranged in nondecreasing
order in positions 1, . . . , |S|, then rankS(j) is the largest position of an element ≤ j (0 if there
is no such element), for j ∈ Z, and selectS(k) is the element in position k, for k ∈ {1, . . . , |S|}.

The operations rank and select are also defined for bit sequences. If B = (b1, . . . , bn) is a

sequence of n bits, for some n ∈ N = {1, 2, . . .}, then rankB(j) =
∑j

i=1 bi for j ∈ {0, . . . , n}
and, again, selectB(k) = min{j ∈ N : rankB(j) ≥ k} for k ∈ {1, . . . ,

∑n
i=1 bi}. The connection

between the two definitions is close: If a simple set S is a subset of {a, . . . , a + n − 1} for
some known a ∈ Z and n ∈ N, S can be represented via the bit sequence (b1, . . . , bn) with
bi = 1 ⇔ a − 1 + i ∈ S, for i = 1, . . . , n. In this case we say that S is given by its bit-

vector representation over the universe {a, . . . , a + n − 1} or with offset a and span n. Clearly
rankS(j) = rankB(j − (a− 1)) for j ∈ {a− 1, . . . , a− 1+n} and selectS(k) = a− 1+ selectB(k)
for k ∈ {1, . . . , |S|}. Answering rank and select queries about a simple set of integers therefore
reduces to answering rank and select queries about its bit-vector representation with some known
offset and span.

A (static) rank-select structure for a sequence B = (b1, . . . , bn) of n bits, for some n ∈ N, is a
data structure capable of returning rankB(j) for arbitrary given j ∈ {0, . . . , n} and selectB(k) for
arbitrary given k ∈ {1, . . . ,

∑n
i=1 bi}. A data structure that can answer the same queries, but only

if provided with an operation to access Θ(log n) arbitrary consecutive bits of B in constant time
(thus B is stored outside of the data structure), is known as a rank-select index for B. We call B
the client sequence of a rank-select structure or index for B. Rank-select structures and indices
are of fundamental importance in space-efficient computing, have been studied extensively since
the 1970s, and have many and diverse applications. Elias [3] considered the representation of
multisets of integers in the context of data retrieval. For a multiset S, his direct or table-lookup
question corresponds to selectS , and his inverse question is closely related to rankS . Jacobson,
who introduced the terms rank and select [9,10], used rank-select structures to represent trees
and graphs in little space while still permitting their efficient traversal. Along the way, he solved
the problem of finding matching parentheses in a balanced sequence of parentheses, again with
rank-select structures as crucial components of the overall data structure. Rank-select structures
and indices have also found applications in areas such as string processing [6], computational
geometry [11] and graph algorithms [8].

http://arxiv.org/abs/1709.02377v1


Jacobson designed a rank-select index for bit sequences of length n ∈ N that occupies
O(n log logn/logn) bits and answers rank queries in constant time. While he was unable to
obtain a constant-time select operation, this was remedied by Clark [2], at the price of a some-
what higher space bound. From now on we will be interested only in rank-select structures and
indices that answer all queries in constant time; for ease of discussion, consider this property to
be part of their definition.

A rank-select index that uses O(n log logn/logn) bits was described by Raman, Raman and
Satti [13, Lemma 4.1]. A matching lower bound of Ω(n log logn/logn) on the number of bits
needed by a rank-select index that accesses only O(log n) bits of its client sequence during the
processing of a query was proved by Golynski [5]. Thus a rank-select structure for a sequence B
of n bits that consists of B plus a suitable index must occupy n+Ω(n log logn/logn) bits. While
this is a natural way of organizing a rank-select structure, Pǎtraşcu [12] proved the interesting
fact that there are smaller rank-select structures that do not store B in its “raw” form.

In this paper we describe another O(n log logn/logn)-bit rank-select index. While previous
descriptions of rank-select structures and indices abund with ad-hoc and rather tedious low-
level detail, we aim for a more systematic and high-level approach based largely on pictures that
leads to the optimal result with little effort on the part of the reader. Our rank-select index
offers the first select operation that can be formulated as a piece of straight-line code, i.e., its
implementation is free of tests and branching (in one place, fulfilling this promise involves a
small amount of “cheating”, as will be explained later). We also consider the problem of efficient
construction of rank-select indices, an aspect that was ignored in much previous research but is
essential to many applications. Our main result is the following:

Theorem 1.1. For every n ∈ N and for every sequence B of n bits, given in the form of a
stream of O(n/logn) chunks of O(n log logn/logn) consecutive bits each, a rank-select index for
B that executes rankB and selectB in constant time and occupies O(n log logn/logn) bits can
be constructed in O(n/logn) time using O(n log logn/logn) bits of working memory.

The theorem insists that the client sequence B be provided in several chunks because the
available working space does not allow us to store B in its entirety. Typically B would be
provided in Θ(n/logn) chunks of O(log n) bits each. If B is stored in random-access read-only
memory, of course, it is trivial to produce the necessary chunks, but the theorem implies that
the construction of the rank-select index does not require random access to B and can make do
with a single pass over B.

Our model of computation is a word RAM [1,7] with a word length of w = Ω(log n) bits, where
w is assumed large enough to allow all memory words in use to be addressed. The word RAM
has constant-time operations for addition, subtraction and multiplication modulo 2w, division
with truncation ((x, y) 7→ ⌊x/y⌋ for y > 0), left shift modulo 2w ((x, y) 7→ (x ≪ y) mod 2w,
where x ≪ y = x · 2y), right shift ((x, y) 7→ x ≫ y = ⌊x/2y⌋), and bitwise Boolean operations
(and, or and xor (exclusive or)).

2 Ingredients of the New Rank-Select Index

Our overall approach, shared with earlier solutions, is to break down a given instance of the rank-
select problem, i.e., the problem of answering rank and select queries for a given bit sequence
or multiset, into still smaller instances, eventually arriving at instances so tiny that they can be
solved by brute force, i.e., table lookup. We provide a bottom-up description, proceeding from
table lookup via basic reductions of instances of the rank-select problem to simpler instances
and ending with the complete rank-select index that reduces rank and select queries about the
client sequence all the way to table lookup. We prefer to phrase much of the discussion in terms
of (multi)sets rather than bit sequences. The tables needed by the rank-select index and their
computation are discussed in the next subsection.
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2.1 Table Lookup

This subsection describes three different variants, denoted T1–T3, of the table-lookup method,
as applied to the rank-select problem. In our applications, the parameters N and M for variants
T2 and T3 will be so small as to render negligible the space occupied by the tables and the time
needed to compute them.

T1. In order to answer rankS and selectS queries about one particular subset S of {1, . . . , N},
where N ∈ N is known, we can simply store a table of rankS(j) for j = 0, . . . , N and selectS(k)
for k = 1, . . . , |S| and answer a query by returning an appropriate table entry. The number
of bits needed is O(N logN), and the table can be computed in O(N) time from a bit-vector
representation of S.

T2. If the goal is to answer rankS and selectS queries, where S now is also specified in the query
and can be an arbitrary subset of {1, . . . , N}, we can create a subtable as for variant T1 for
each of the 2N possible subsets S and store the 2N subtables, each indexed by the bit-vector
representation over {1, . . . , N} of the corresponding set S, in a table of O(2NN logN) bits whose
computation takes O(2NN) time.

T3. If S is a variable subset of {1, . . . , N} but known to be of size at most M for some given
M ∈ N, S can be represented as an M -tuple of integers in {1, . . . , N} by first listing the elements
of S and then, if |S| < M , repeating the last element. Each of the M integers can in turn be
represented in ⌈log2N⌉ bits. Since 2⌈log2

N⌉ ≤ 2N , this gives us an alternative to variant T2 with
a table of O((2N)M+1 logN) bits that can be computed in O((2N)M+1) time.

2.2 Three Basic Reductions

Let g be a nondecreasing function from Z to Z (informally, the grouping function) with the
property that g−1(q) = {i ∈ Z | g(i) = q} is finite for all q ∈ Z and let S be a finite multiset of
integers. While g(S) as usual denotes the simple set {q ∈ Z | S ∩ g−1(q) 6= ∅}, we write g((S))
for the multiset {g(i) | i ∈ S}, in which each q ∈ Z occurs with multiplicity |S ∩ g−1(q)|. For
j ∈ Z, it is clear that, with q = g(j),

rankS(j) = rankg((S))(q − 1) + rankS∩g−1(q)(j), (1)

since the terms rankg((S))(q − 1) and rankS∩g−1(q)(j) count the elements i of {i ∈ S : i ≤ j}
with g(i) < q and with g(i) = q, respectively. Furthermore, for k ∈ {1, . . . , |S|}, g(selectS(k)) =
selectg((S))(k) and therefore, with q = selectg((S))(k),

selectS(k) = selectS∩g−1(q)(k − rankg((S))(q − 1)), (2)

since rankg((S))(q−1) again is the number of elements i ∈ S with g(i) < q, so that, if S is presented
in sorted order in |S| positions, selectS(k) is the element in position k− rankg((S))(q− 1) among
the elements with the same value under g as itself, i.e., within S ∩ g−1(q). Let us use (S|g)
as a convenient notation for the function (g|S)

−1 that maps each q ∈ Z to S ∩ g−1(q). Then
answering rank and select queries about S in constant time reduces to answering rank and select

queries about g((S)) and about values of (S|g) in constant time. For brevity, we express this by
saying that S reduces to g((S)) and (S|g). We will use this only with g = gλ for some λ ∈ N,
where gλ(i) = ⌊i/λ⌋ for all i ∈ Z, and call λ the parameter of the reduction. Variations of this
reduction have been used since the early days of rank-select indices [9,10]. We call it BR1 (“basic
reduction 1”) and denote it symbolically with a triangular shape, as shown in the left subfigure
of Fig. 1: S, at the apex of the triangle, reduces to gλ((S)) and (S|gλ) at its base. The double
line serves as a reminder that gλ((S)) in general is a multiset even if S is not, and a bar through
the line to (S|gλ) indicates that (S|gλ) is a set-valued function rather than just a set. We refrain
from connecting S to the triangle with a double line because we will use the reduction only for
simple sets S.
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Fig. 1. The three basic reductions BR1–BR3.

Denote by supp(S) the support of the multiset S, i.e., the simple set that contains exactly the
same values as S, but each value only once, and let rankS(Z) be the image of the rankS function.
For example, with S = {1, 1, 2, 4, 4, 4} we have supp(S) = {1, 2, 4} and rankS(Z) = {0, 2, 3, 6}.
A second reduction is given by the formulas

rankS(j) = selectrankS(Z)(ranksupp(S)(j) + 1) and (3)

selectS(k) = selectsupp(S)(rankrankS(Z)(k − 1)), (4)

for j ∈ Z and k ∈ {1, . . . , |S|}. To see the validity of the first formula, whose origins can
be traced back to Fano [4, Step 2], note that the (q + 1)st smallest element of rankS(Z), for
q = 0, . . . , |supp(S)|, is the total number of occurrences in S of the q smallest distinct values
in S. With q = ranksupp(S)(j), this is precisely rankS(j). The second formula is implied by the
following observation: If S, presented in sorted order in |S| positions, is thought of as partitioned
into maximal ranges of occurrences of the same value, then rankrankS(Z)(k−1) is one more than

the number of ranges that end strictly before the kth position. Thus S also reduces to rankS(Z)
and supp(S). We call this reduction BR2 and depict it as shown in the middle subfigure of Fig. 1.

Denote by (S|g)∗ the function defined on {1, . . . , |g(S)|} that maps q to (S|g)(selectg(S)(q)),
for q = 1, . . . , |g(S)|. Informally, if (S|g) is thought of as a list of subsets of S, then (S|g)∗ is the
sublist that contains only the nonempty subsets. Clearly, for q ∈ Z,

(S|g)(q) =

{

(S|g)∗(rankg(S)(q)), if q ∈ g(S),

∅, otherwise.
(5)

Since we can test whether q ∈ g(S) by evaluating rankg(S)(q) − rankg(S)(q − 1), which is 1 if
q ∈ g(S) and 0 otherwise, (S|g) (i.e., (S|g)(q) for each q ∈ Z) reduces to g(S) and (S|g)∗. This
third and last basic reduction, BR3, is depicted in the right subfigure of Fig. 1.

2.3 Two Combined Reductions

We can combine BR1 and BR2 as illustrated in Fig. 2. This yields a reduction, CR1, of S to
rankgλ((S))(Z), supp(gλ((S))) = gλ(S), and (S|gλ). Incorporating also BR3, we obtain a second
combined reduction, CR2, shown in Fig. 3.

In the concrete rank-select index, sets of integers are represented as bit vectors with conve-
nient offsets and spans. The offsets and spans are not stored with every set, but calculated in
parallel with the application of reductions according to the following rules:

The client sequence B, prefixed by a 0 (see later), is viewed as representing a set with offset
0 and span |B|+ 1. Recursively, if a set S has offset a and span n and m = |S|, then

– rankgλ((S))(Z) has offset 0, span m+ 1 and size at most ⌈n/λ⌉+ 1.
– gλ(S) has offset gλ(a), span ⌈n/λ⌉+ 1 and size at most m.
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Fig. 2: The first combined reduction CR1. Left: Internal structure. Right: Pictorial representa-
tion.

Fig. 3: The second combined reduction CR2. Left: Internal structure. Right: pictorial represen-
tation.

– (S|gλ)(q) has offset λq and span λ for all q ∈ Z.

– (S|gλ)∗(q) has offset λ · selectgλ(S)(q) and span λ for all q ∈ {1, . . . , |gλ(S)|}.

Using the rules to keep track of offsets and spans enables us, at the bottom of a recursive
application of reductions, to translate queries about sets correctly to queries about their bit-
vector representations with the given offsets and spans. So as not to clutter the description, this
simple translation will not be formulated explicitly.

The effect of each type of combined reduction on spans and sizes is depicted in Fig. 4. A pair
of the form 〈n,m〉 indicates that a set has span n and size at most m, except that the rounding
to integer values and the occasional + 1 were ignored. When we refrain from bounding the size
of a set by anything better than its span, 〈n〉 is used as an abbreviation for 〈n, n〉. If S has offset
a and span n, (S|gλ)(q) can be nonempty only if q belongs to the set {gλ(a), . . . , gλ(a+ n− 1)}
of size at most ⌈n

λ⌉ + 1, which motivates the label n
λ · 〈λ〉 in the left subfigure. In terms of the

concrete data structure, the expression n
λ · 〈λ〉 should be thought of as indicating an array of
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(approximately) n
λ subordinate data structures, each of which is for a set of span λ. (S|g)∗(q) is

defined only for 1 ≤ q ≤ |g(S)| ≤ |S|, which motivates the label m · 〈λ〉 in the right subfigure.

Fig. 4. The approximate effect of the two combined reductions CR1 and CR2 on 〈span, size〉.

The new optimal rank-select index can be pieced together with little effort from a constant
number of instances of the combined reductions CR1 and CR2. As a warm-up and to familiarize
the reader with the approach and the notation, we first develop a simpler rank-select structure
that occupies Θ(n) bits for client sequences of n bits.

3 A Simplified O(n)-Bit Rank-Select Structure

The simplified rank-select structure is best thought of as the tree TS shown in Fig. 5 annotated
with 〈rank, size〉 pairs suitable for a client sequence of n bits. Each inner node in TS corresponds
to an instance of the composite reduction CR1 (for brevity, is a CR1-node) and is drawn with
the characteristic shape of that reduction. Each leaf in TS corresponds to an instance or an array
of instances of one of the variants of the table-lookup method and is drawn as a rectangle labeled
with the name of the relevant variant. During the execution of a query, each inner node in TS

applies its associated reduction and each leaf answers queries using its table-lookup variant.

The reductions in TS both use a parameter ℓ ∈ N. Here and in the following, we choose
ℓ = Θ(log n) such that the cost, in terms of time and space, of the table needed by table-
lookup variant T2 with N = ℓ is negligible. In concrete terms, we take this to mean that
2ℓℓ log ℓ = O(n/ logn), which is certainly satisfied if ℓ ≤ (1/2) log2 n.

The simplified rank-select structure is correct by construction and trivially executes queries
in constant time. Let us analyze its storage requirements, for the time being ignoring rounding
issues and pretending that the expressions for spans and sizes in Fig. 4 are exact. The first step
is to verify that the 〈span, size〉 pairs in Fig. 5 have indeed be calculated in accordance with
Fig. 4. Each node in TS needs to store a constant number of offsets, spans and other integers
that allow it to access arrays and bit sequences correctly. Beyond this, inner nodes have no
associated storage. Each leaf that uses table-lookup variant T1 (is a T1-leaf, say) stores a table
of rank and select for a sequence of n

ℓ bits, which needs O(nℓ logn) = O(n) bits. Similarly, each
T2-leaf stores an array of n

ℓ sequences, each of ℓ bits, again for a total of O(n) bits. Adding
the O(n/ logn) bits occupied by a global table for variant T2 and O(log n) bits for a constant
number of offsets, spans and other integers, we arrive at a grand total of O(n) bits. It is easy
to see that the error incurred by the approximation involved in Fig. 4 amounts to less than a
constant factor (this is because error terms bounded by constants affect only quantities that are
Ω(log n)), so that the true number of bits used by the simplified rank-select structure is also
O(n).
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Fig. 5. A simplified rank-select structure that uses O(n) bits.

4 The New Optimal Rank-Select Index

The new optimal rank-select index has much in common with the simplified rank-select structure
of the previous section. In order to achieve a better space bound, however, the optimal index must
comprise a few additional reductions. Its structure is given by the tree T shown in Fig. 6. While
most reductions use the parameter ℓ with ℓ = Θ(log n) introduced in Section 3, the reduction
at the root of T employs a larger parameter L ∈ N. We choose L = Θ((log n)2/log logn)
as a multiple of ℓ such that the cost of the table needed by table-lookup variant T3 with
N = L + 1 and M = 1 + L/ℓ is negligible. In concrete terms, we take this to mean that
(2(L+ 1))2+L/ℓ logL = O(n/ logn), which is ensured if L/ℓ ≤ (1/4)log2n/log2log2n.

4.1 Analysis of the Space Requirements

As in the case of the simplified rank-select structure, the optimal rank-select index is correct by
construction and trivially executes queries in constant time. Because we now aim for a space
bound of o(n) bits, we must pay special attention to the rightmost leaf in the tree T with its
(approximately) n

L · L
ℓ = n

ℓ sequences, each of (at most) ℓ bits. As is not difficult to see, each
of the relevant bit sequences is a subsequence of the client sequence B, so that there is no need
to store any data in the rightmost leaf—it suffices to provide it with constant-time access to
arbitrary subsequences of at most ℓ = Θ(log n) consecutive bits in B, which is precisely what
the rank-select index is allowed to rely on.

The remaining part of the analysis of the space requirements parallels what was done in
Section 3 for the simplified rank-select structure, and again we can pretend that the expressions
given in Fig. 4 are exact—as a minor exception, one should observe that table-lookup variant T3
is indeed used with N = L + 1 and M = 1 + L/ℓ. Again, the first step is to verify that the
〈span, size〉 pairs in Fig. 6 have been calculated in accordance with Fig. 4.

Each T1-leaf holds tables of rank and select for bit sequences of length n
L or n

ℓ2 . The number
of bits needed for the tables is therefore O((nL+

n
ℓ2 ) logn) = O(n log log n/ logn). The total length

of the bit sequences stored in T2-leaves is O((nL + n
ℓ2 )(ℓ+

L
ℓ )) = O(nL · ℓ) = O(n log logn/logn).

Finally, the single T3-leaf needs space for n
L bit sequences, each of which represents a tuple of

L
ℓ integers of O(logL) bits each, for a total of O(nL · L

ℓ · logL) = O(n log logn/logn) bits. In
summary, the number of bits occupied by the rank-select index is O(n log log n/logn).
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Fig. 6. The new optimal rank-select index.

4.2 The Execution of Queries

In a concrete implementation of the rank-select index, it is natural to represent each node in
T by an instance of a suitable class that supports operations rank and select . Assume that
U is such an instance that corresponds to an inner node u in T , that X , Y and Z are the
class instances that correspond to the children of u, in the order from left to right, and that Z
overloads the array-indexing syntax with an operation that incorporates the implicit offsets and
spans as appropriate. If u is a CR1-node with parameter λ, a combination of Equations (1)–(4)
in Subsection 2.2 shows that U ’s operations can be realized according to the formulas

U.rank(j) = let q = gλ(j) in X.select(Y.rank(q − 1) + 1) + Z[q].rank(j) and

U.select(k) = let q = Y.select(X.rank(k − 1)) in Z[q].select(k −X.select(Y.rank(q − 1) + 1)).

The formulas can clearly be expressed as straight-line code. If u is a CR2-node, the formulas
become a little more complicated in that, by Equation (5), Z[q].rank(j) must be replaced by
Z[Y.rank(q)].rank (j) ·(Y.rank (q)−Y.rank(q−1)) and Z[q].select(. . .) by Z[Y.rank(q)].select(. . .)
(for select , we always have Y.rank(q)−Y.rank(q−1) = 1). The computation is still straight-line,
but it could be argued that it would be more natural to replace the multiplication by a zero test
followed by a branch. This is why claiming that our rank and select operations are straight-line
involves a small amount of “cheating”. Class instances that correspond to leaves in T , of course,
realize their rank and select operations by a single access to a 1- or 2-dimensional array, handled
in accordance with the relevant offsets and spans.

We can improve the implementation of U.select as follows: If we compute r = X.rank(k− 1)
and then q = Y.select(r), we can use the equality Y.rank(Y.select(r) − 1) = r − 1 to replace
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the subexpression Y.rank(q − 1) + 1 by r, thus eliminating one call of Y.rank by reusing r.
If u is a CR2-node, since Y.rank(Y.select(r)) = r, we can avoid another call of Y.rank in the
implementation of U.select by substituting Z[r].select(. . .) for Z[Y.rank(q)].select(. . .).

4.3 The Construction of the Index

In order to construct the optimal rank-select index for a client sequence B of n bits, we interpret
each node in the tree T of Fig. 6 as a process whose task is to communicate with adjacent
nodes and, in the case of leaves, to compute and store a table or an array for use in subsequent
queries. Each inner node in T receives a stream of bits from its parent and sends streams of
bits or integers derived from its input stream to its children. An exception concerns the root of
T , which receives the client sequence B in the stream that feeds the overall construction and
prepends a single 0 to B before processing B, which is now considered to represent the same set
as before, but with offset 0 and span n+ 1.

In a preprocessing phase that proceeds top-down in the tree and takes constant time, each
node uses the rules formulated in Section 2.3 to compute the spans and sizes of the (multi)sets
that it will handle and possibly other simple functions of n that enable it to carry out the relevant
array accesses. If the node is a leaf, it also acquires the space needed to hold its table or array.

Consider an inner node u in T with parameter λ and assume that u’s input stream is a
bit-vector representation of a set S whose offset a is a multiple of λ—by the 0 prepended to the
client sequence as described above, this assumption, which we call the alignment assumption, is
satisfied for the root of T . If u receives a sequence of bit-vector representations, the assumption
as well as the following arguments should be applied independently to each element in the
sequence. The task of u is to send either a stream of the elements of rankgλ((S))(Z) (if u’s left
child is a T3-leaf) or a bit-vector representation of this set with offset 0 (otherwise) to its left
child, a bit-vector representation of gλ(S) with offset gλ(a) to its middle child, and bit-vector
representations of either (S|gλ)(q) with offset λq for q = gλ(a), gλ(a) + 1, . . . or (S|gλ)∗(q) with
offset λ · selectgλ(S)(q) for q = 1, . . . , |g(S)| to its right child.

The node u processes its input stream in batches of λ consecutive bits each, except that
the last batch may be smaller, in which case it is filled up to size λ with 0s. Note that by
the alignment assumption, a batch corresponds exactly to g−1

λ (q) for some q ∈ Z. Before the
processing of the first batch, u initializes a variable s to 0 and sends the integer 0 (if u’s left
child is a T3-leaf) or a single 1 (otherwise) to its left child. The processing of a batch begins by
determining the number k of 1s in the batch. If λ = ℓ, this is done in constant time by lookup in
a table whose construction time (O(2ℓ)) and space requirements (O(2ℓ log ℓ) bits) are negligible.
If λ = L, k is instead found by consulting the table L/ℓ times and summing the values found
there. If k > 0, u adds k to s and proceeds to send the current value of s (if u’s left child is a
T3-leaf) or k − 1 0s followed by a 1 (otherwise) to its left child, a 1 to its middle child and the
whole batch to its right child as the next sequence element; If k = 0, u instead sends nothing to
its left child, a 0 to its middle child and, only if u is a CR1-node, the whole batch to its right
child, again as the next sequence element.

It is easy to see that the successive values of s are precisely the elements of rankgλ((S))(Z),
so that what is sent by u to its left child is either a stream of the elements of rankgλ((S))(Z) in
sorted order (if u’s left child is a T3-leaf) or a bit-vector representation with offset 0 of this set
(otherwise). In particular, the alignment assumption is satisfied at the left child v of u unless v
is a leaf (in which case no alignment is needed). Similarly, the stream sent by u to its middle
child is obviously the bit-vector representation with offset gλ(a) of g(S). In the concrete tree of
Fig. 6, either a = 0 (this is the case for all inner nodes u except the right child of the root) or the
middle child of u is a leaf. Thus the alignment assumption is satisfied at the middle child v of u
if v is an inner node. Finally, the fact that u passes its input stream, subdivided into batches, on
to its right child if u is a CR1-node and does the same but omitting the batches without 1s if it
is a CR2-node is easily seen to be in accordance with the specification above. If the right child
v of u is not a leaf, u is the root of T , and the parameter L of u is a multiple of the parameter
ℓ of v, so that the alignment assumption is satisfied at v.
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Each T1-leaf in T constructs and stores a table of rank and select for the bit stream that it
receives, and each T2-leaf receives a sequence of bit streams and simply stores these in successive
cells of an array. An exception concerns the rightmost leaf, which ignores the bit stream that
it receives and stores nothing. Finally, the single T3-leaf, for each of the (approximately) n

L
sets that it receives, stores the concatenation of the ⌈log2(L + 1)⌉-bit binary representations of
the at most 1 + L/ℓ elements of the set in the next cell of an array, precisely as called for by
table-lookup variant T3.

If we introduce a buffer of L + ℓ bits between each pair of adjacent nodes in T (except
between the single T3-leaf and its parent, where a buffer of 1 + L/ℓ integers of ⌈log2(L + 1)⌉
bits each is suitable), we can repeatedly execute a top-down sweep over T in which the root
processes the next batch of L bits of the client sequence in O(L/ℓ) time, thereby adding bits
to its outbuffers, and every other node in T processes as many integers or complete batches of
ℓ bits, each in constant time, as available in its inbuffer, again adding integers or bits to its
outbuffers, if any. It is easy to see that each sweep can be executed in O(L/ℓ) time. Then the
whole process finishes in O(n/ℓ) = O(n/logn) time, and it uses O(L) bits in addition to what is
needed to store batches of B and the finished data structure, a total of O(n log logn/logn) bits.
This concludes the proof of Theorem 1.1.

4.4 Tuning the Tree of Reductions

At the price of having to observe more closely what happens in the individual nodes in the tree
T of reductions, it is possible to modify T in ways likely to reduce the operation times and space
requirements of the data structure by constant factors.

First, note that table-lookup variant T1 can deal with a multiset whose size and span are
both bounded by some N ∈ N as easily as with a simple subset of {1, . . . , N}. If a set S of
integers is of span n and size m and λ ∈ N, then gλ((S)) can be given span ⌈n

λ⌉ + 1 and is of
size m. As can be seen from Fig. 4, this implies that every CR1-node whose left and middle
children are both T1-leaves can be replaced by a BR1-node with a T1-leaf as its left child and
the former right child of the CR1-node as its right child. In other words, we can do away with an
instance of the reduction BR2 and a T1-leaf. This applies to the inner node of maximal depth
in Fig. 6 (and also in Fig. 5).

Second, a similar modification can be carried out at the right child u of the root in Fig. 6.
Begin by dissolving the reduction CR1 into its constituent parts, BR1 and BR2. Then the BR2-
node can be seen to be in charge of answering queries about multisets whose span, 1 + L

ℓ , is
significantly smaller than their size, L. For such multisets we introduce another table-lookup
variant:

T4. If S is a variable multiset of size at most M consisting of integers in {1, . . . , N} for some
given N ∈ N, S can be represented by the N -tuple (rankS(1), . . . , rankS(N)) of integers in
{0, . . . ,M}. Each of the N integers can in turn be represented in ⌈log2(M + 1)⌉ bits. Since
2⌈log2

(M+1)⌉ ≤ 2M , we can answer rank and select queries about a multiset stored in this way
with a table of O((2M)N+1 logM) bits that can be computed in O((2M)N+1) time.

We now replace the BR2-node and its children, a T3-leaf and a T2-leaf, by a T4-leaf with
the parameters N = 1 + L/ℓ and M = L. For each of O(nL) multisets, the T4-leaf must store

O(Lℓ ) integers, each of O(logL) bits, a total of O(n log logn/logn) bits. The size of the global
table needed by the T4-leaf and the time to compute it can be seen to be negligible.

Third, in some cases where a reduction is used to answer rank and select queries, it may
be possible to handle one of the two operations directly with table lookup. This speeds up the
operation in question, but because the relevant subtree can be tuned to deal only with the other
operation, additional benefits may accrue. To apply this observation most effectively, we also
dissolve the combined reduction CR1 at the root in Fig. 6 into its constituent parts, BR1 and
BR2. Since the new BR2-node u is in charge of queries about a multiset of large size (n) but
small span (approximately n

L ), it can answer rank queries with table-lookup variant T1—the
necessary table is of O(nL logn) = O(n log logn/logn) bits. As can be seen from Equation (4),
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this means that u will issue only rank queries to its left child v (the left child of the root in
Fig. 6) and only select queries to its right child (the middle child of the root). The discussion in
Subsection 4.2 then implies that v will in turn issue only select queries to its left child and rank

queries to its middle and right children, and this pattern repeats at v’s middle child.

We must still describe how to construct an index modified as above. Each change conceptually
begins by replacing a CR1-node by a BR1-node and a BR2-node. Consider a BR1-node u with
parameter λ whose input stream is a bit-vector representation of a set S for which the alignment
assumption holds. As described for CR1-nodes in Subsection 4.3, u consumes its input in batches
of λ consecutive bits, counts the number k of 1s in each batch, sums these counts in a variable
s that is initialized to 0, and passes on every batch to its right child. Where the behavior of u
differs from that of CR1-nodes is in its communication with its left child. Informally, the multiset
gλ((S)) is represented by the prefix sums of its multiplicities. More precisely, u transmits to its
left child the value of its variable s both before the processing of the first batch (when s = 0)
and after the processing of each batch (not just after batches that contain 1s).

Consider next a BR2-node u. By what was just described, u receives a nondecreasing sequence
of integers from its parent. When receiving the first integer, which is 0, it stores it in a variable
s and sends a 1 to its left child. For each subsequent integer s′, u does the following: If s′ > s, u
computes k = s′ − s, sends k − 1 0s followed by a 1 to its left child, sends a 1 to its right child,
and sets s := s′. If s′ = s, u just sends a 0 to its right child.

It can be seen that a BR1-node and a BR2-node, combined as in Fig. 2, together exhibit the
behavior of a CR1-node whose left child is not a T3-node. On the other hand, if the left child
of a BR1-node is a T1-leaf or a T4-leaf instead of a BR2-node, the leaf can easily construct its
table, as described earlier in this subsection, from the stream that it receives.

A tuned rank-select index that incorporates the modifications discussed in this subsection is
shown in Fig. 7. The notation 〈span, size〉 is now used also to characterize the salient properties
of multisets, but for a multiset the size may exceed the span. The operations rank and select were
associated arbitrarily with the left and right halves, respectively, of (the graphical representation
of) each node, and if a node handles only queries of one kind, only its corresponding half is shown
colored (by a rainbow color or gray). The resulting savings, in terms of space, can be estimated
from a comparison of Figs. 6 and 7 (note here that relieving a T2-leaf of the burden of answering
either rank or select queries—but not both—does not reduce the number of bits that the leaf
must store).

The evaluation of rank queries in the tuned index follows a recipe that goes back to Jacob-
son [9,10] and can hardly be improved upon: The client sequence B is partitioned into superblocks,
each of these in turn is partitioned into blocks, and to compute rankB(j) we locate the superblock
and the simple block that contain the jth bit (call these the target superblock and block) and
add the number of 1s before the target superblock (found in a first-level directory), the number
of 1s in the target superblock but before the target block (found in a second-level directory),
and the number of 1s in the target block until and including the jth bit of B, the latter quantity
being computed with table-lookup variant T2.
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