Skip to main content

CAPIRCI: A Multi-modal System for Collaborative Robot Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11553))

Abstract

This paper presents CAPIRCI (Chat And Program Industrial Robots through Convenient Interaction), a multi-modal web application supporting end users, with no expertise in computer science, to define and modify tasks to be executed by collaborative robots. The application provides two interaction modalities, the former based on a chat interface, the latter presenting a visual programming language inspired to block-based solutions but tailored to the domain at hand. In order to investigate how different kinds of users may accept and use CAPIRCI, a user study with 20 participants has been carried out. Participants were equally split in expert programmers and non-expert programmers; execution times do not show any significant differences between the two groups, while qualitative data collected through direct observation and interviews provide useful hints and suggestions for system refinement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    “Capirci” is an Italian word with a double meaning: “to understand each other” but also “I understand this”.

References

  1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  2. Arias, E.G., Eden, H., Fischer, G.: The Envisionment and Discovery Collaboratory (EDC): Explorations in Human-Centered Informatics, vol. 8. Morgan & Claypool Publishers LLC (2015)

    Google Scholar 

  3. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24, 574–594 (2008)

    Article  Google Scholar 

  4. Barricelli, B.R., Cassano, F., Fogli, D., Piccinno, A.: End-user development, end-user programming and end-user software engineering: a systematic mapping study. J. Syst. Softw. 149, 101–137 (2019)

    Article  Google Scholar 

  5. Bischoff, R., Kazi, A., Seyfarth, M.: The MORPHA style guide for icon-based programming. In: Proceedings 11th IEEE International Workshop on Robot and Human Interactive Communication, Berlin, Germany, pp. 482–487 (2002)

    Google Scholar 

  6. Brooke, J., Jordan, P.W., Weerdmeester, B., Thomas, A., McLelland, I.L.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., McClelland, A.L. (eds.) Usability Evaluation in Industry. Taylor and Francis (1996)

    Google Scholar 

  7. Costabile, M.F., Fogli, D., Lanzilotti, R., Mussio, P., Piccinno, A.: Supporting work practice through end-user development environments. J. Organ. End User Comput. 18(4), 43–65 (2006)

    Article  Google Scholar 

  8. Fischer, G., Fogli, D., Piccinno, A.: Revisiting and broadening the meta-design framework for end-user development. In: Paternò, F., Wulf, V. (eds.) New Perspectives in End-User Development, pp. 61–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60291-2_4

    Chapter  Google Scholar 

  9. Fischer, G., Herrmann, T.: Socio-technical systems: a meta-design perspective. Int. J. Sociotechnol. Knowl. Dev. (IJSKD) 3(1), 1–33 (2011)

    Article  Google Scholar 

  10. Fischer, G., Nakakoji, K., Ye, Y.: Metadesign: guidelines for supporting domain experts in software development. IEEE Softw. 26(5), 37–44 (2009)

    Article  Google Scholar 

  11. Franklin, D., et al.: Using upper-elementary student performance to understand conceptual sequencing in a blocks-based curriculum. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2017), pp. 231–236. ACM, New York (2017)

    Google Scholar 

  12. Frey, C.B., Osborne, M.: The future of employment: how susceptible are jobs to computerisation. https://www.oxfordmartin.ox.ac.uk/publications/view/1314. Accessed 24 Jan 2019

  13. Fryman, J., Matthias, B.: Safety of industrial robots: from conventional to collaborative applications. In: Proceedings of the seventh German conference ROBOTIK, pp. 1–5 (2012)

    Google Scholar 

  14. Fujii, M., Murakami, H., Sonehara, M.: Study on application of a human-robot collaborative system using hand-guiding in a production line. IHI Eng. Rev. 49(1), 24–29 (2016)

    Google Scholar 

  15. Grover, S., Pea, R., Cooper, S.: Designing for deeper learning in a blended computer science course for middle school students. Comput. Sci. Educ. 25(2), 199–237 (2015)

    Article  Google Scholar 

  16. Harper, C., Virk, G.: Towards the development of international safety standards for human robot interaction. Int. J. Soc. Robot. 2, 229 (2010)

    Article  Google Scholar 

  17. Herbert, C.W.: An Introduction to Programming Using Alice 2.2, 2nd edn. Course Technology Press, Boston, MA (2010)

    Google Scholar 

  18. Huang, J., Cakmak, M.: Code3: a system for end-to-end programming of mobile manipulator robots for novices and experts. In: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI 2017), pp. 453–462. ACM, New York (2017)

    Google Scholar 

  19. Huang, J., Lau, T., Cakmak, M.: Design and evaluation of a rapid programming system for service robots. In: Proceedings of the Eleventh ACM/IEEE International Conference on Human Robot Interaction (HRI 2016), pp. 295–302. IEEE Press, Piscataway (2016)

    Google Scholar 

  20. Ioannidou, A., Repenning, A., Webb, D.C.: AgentCubes: incremental 3D end-user development. J. Vis. Lang. Comput. 20(4), 236–251 (2009)

    Article  Google Scholar 

  21. Lieberman, H., Paternò, F., Klann, M., Wulf, V. (eds.): End User Development, pp. 1–8. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-5386-X

    Book  Google Scholar 

  22. Ludwig, T., Dax, J., Pipek, V., Wulf, V.: A practice-oriented paradigm for end-user development. In: Paternò, F., Wulf, V. (eds.) New Perspectives in End-User Development, pp. 23–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60291-2_2

    Chapter  Google Scholar 

  23. Marvel, J.A., Norcross, R.: Implementing speed and separation monitoring in collaborative robot workcells. Robot. Comput. Integr. Manuf. 44, 144–155 (2017)

    Article  Google Scholar 

  24. Neto, P., Mendes, N.: Direct off-line robot programming via a common CAD package. Robot. Auton. Syst. 61(8), 896–910 (2013)

    Article  Google Scholar 

  25. Norman, D., Spencer, E.: Community-based, Human-centered design, 1 January 2019. https://jnd.org/community-based-human-centered-design/. Accessed 31 Jan 2019

  26. Pan, Z., Polden, J., Larkin, N., Van Duin, S., Norrish, J.: Recent progress on programming methods for industrial robots. Robot. Comput. Integr. Manuf. 28(2), 87–94 (2012)

    Article  Google Scholar 

  27. Paterno, F., Wulf, V. (eds.): New Perspectives in End-User Development. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60291-2

    Book  Google Scholar 

  28. Paxton, C., Jonathan, F., Hundt, A., Mutlu, B., Hager, G.D.: Evaluating methods for end-user creation of robot task plans. In: Proceedings 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6086–6092. IEEE Press, USA (2018)

    Google Scholar 

  29. PwC. Workforce of the Future: The Competing Forces Shaping 2030. https://www.pwc.com/gx/en/services/people-organisation/publications/workforce-of-the-future.html. Accessed 24 Jan 2019

  30. Ogden, W., Bernick, P.: Using natural language interfaces. In: M. Helander (ed.) Handbook of Human-Computer Interaction. Elsevier Science Publishers B.V., North-Holland (1996)

    Chapter  Google Scholar 

  31. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67 (2009)

    Article  Google Scholar 

  32. Rogowski, A.: Industrially oriented voice control system. Robot. Comput. Integr. Manuf. 28(3), 303–315 (2012)

    Article  Google Scholar 

  33. Romero, et al.: Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In: Proceedings CIE46, Tianjin, China (2016)

    Google Scholar 

  34. Ruppert, T., Jasko, S., Holczinger, T., Abonyi, J.: Enabling technologies for operator 4.0: a survey. Appl. Sci. 8(1650), 1–19 (2018)

    Google Scholar 

  35. Schou, C., Andersen, R.S., Chrysostomou, Bøgh, S., Madsen, O.: Skill-based instruction of collaborative robots in industrial settings. Robot. Comput. Integr. Manuf. 53, 72–80 (2018)

    Article  Google Scholar 

  36. Tsarouchi, P., Makris, S., Chryssolouris, G.: Human–robot interaction review and challenges on task planning and programming. Int. J. Comput. Integr. Manuf. 29(8), 916–931 (2016)

    Article  Google Scholar 

  37. van Delded, S., Umrysh, M., Rosario, C., Hess, G.: Pick-and-place application development using voice and visual commands. Ind. Robot. 39(6), 592–600 (2012)

    Article  Google Scholar 

  38. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018)

    Article  Google Scholar 

  39. Vysocky, A., Novak, P.: Human–robot collaboration in industry. Mod. Mach. Sci. J., June, 903–906 (2016)

    Google Scholar 

  40. Weintrop, D., et al.: Evaluating CoBlox: a comparative study of robotics programming environments for adult novices. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI 2018), Paper 366, 12 pages. ACM, New York (2018)

    Google Scholar 

  41. Weintrop, D., Shepherd, D.C., Francis, P., Franklin, D.: Blockly goes to work: block-based programming for industrial robots. In: Proceedings of the 2017 IEEE Blocks and Beyond Workshop, pp. 29–36. IEEE Press, USA (2017)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the participants in the user evaluation for their willingness and their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Fogli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beschi, S., Fogli, D., Tampalini, F. (2019). CAPIRCI: A Multi-modal System for Collaborative Robot Programming. In: Malizia, A., Valtolina, S., Morch, A., Serrano, A., Stratton, A. (eds) End-User Development. IS-EUD 2019. Lecture Notes in Computer Science(), vol 11553. Springer, Cham. https://doi.org/10.1007/978-3-030-24781-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24781-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24780-5

  • Online ISBN: 978-3-030-24781-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics