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Coinductive algorithms for Biichi automata

Denis Kuperberg, Laureline Pinault, and Damien Pous

Plume team, LIP, CNRS - ENS Lyon, France

Abstract. We propose a new algorithm for checking language equiva-
lence of non-deterministic Biichi automata. We start from a construction
proposed by Calbrix Nivat and Podelski, which makes it possible to reduce
the problem to that of checking equivalence of automata on finite words.
Although this construction generates large and highly non-deterministic
automata, we show how to exploit their specific structure and apply
state-of-the art techniques based on coinduction to reduce the state-space
that has to be explored. Doing so, we obtain algorithms which do not
require full determinisation or complementation.

Keywords: Biichi automata - Language equivalence - Coinduction.

1 Introduction

Biichi automata are machines which make it possible to recognise sets of infinite
words. They form a natural counterpart to finite automata, which operate on
finite words. They play a crucial role in logic for their links with monadic second
order logic (MSO) [5], and in program verification. For instance, they are widely
used in model-checking tools, in order to check whether a given program satisfies
a linear temporal logic formula (LTL) [28,13].

A key algorithmic property of Biichi automata is that checking whether two
automata recognise the same language is decidable, and in fact PSPACE-complete,
like in the finite case with non-deterministic finite automata. This is how one
obtains model-checking algorithms. Several algorithms have been proposed in
the literature [5,14,1,17] and implemented in various tools [15,27,22].

Two families of algorithms where recently discovered for non-deterministic
automata on finite words, which drastically improved over the pre-existing ones:
antichain-based algorithms [29,3,10] and algorithms based on bisimulations up
to congruence [4]. In both cases, those algorithms explore the starting automata
by resolving non-determinism on the fly through the powerset construction, and
they exploit subsumption techniques to avoid the need to explore all reachable
states (which can be exponentially many). The algorithms based on bisimulations
up to congruence improve over those based on antichains by using simultaneously
the antichain techniques and an older technique for deterministic automata, due
to Hopcroft and Karp [16].

The antichain-based algorithms could be adapted to Biichi automata by
exploiting constructions to compute the complement of a Biichi automaton, either
Ramsey-based [11,12] or rank-based [9,10]. Unfortunately, those complementation
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operations do not make it possible to adapt the algorithms based on bisimulations
up to congruence: those require a proper determinisation operation, which is not
available for Biichi automata.

Here we propose to circumvent this difficulty using a construction by Calbrix,
Nivat, and Podelski [6], which makes it possible to reduce the problem of checking
Biichi automata equivalence to that of checking equivalence of automata on finite
words, where determinisation is available.

The first observation, which is used implicitly in the so-called Ramsey-based
algorithms from the literature [11,12,1], is that it suffices to consider ultimately
periodic words: if the languages of two Biichi automata differ, then they must
differ on an ultimately period word. The second observation is that the set
of ultimately periodic words accepted by a Biichi automaton can be faithfully
represented as a rational language of finite words, for which Calbrix et al. give an
explicit non-deterministic finite automaton. This automaton contains two layers:
one for the prefixes of the ultimately periodic words, and one for their periods.
We show that algorithms like HKC [4] can readily be used to reason about the
prefix layer, without systematically determinising it. The period layer requires
more work in order to avoid paying a doubly exponential price; we nevertheless
show that coinductive techniques like the ones at work in [4] can also be used
there.

We first recall the algorithms from [4] for checking equivalence of automata
on finite words (Sect. 2). Then we revisit the construction of Calbrix et al.,
making their use of the Biichi transition monoid [23] explicit (Sect. 3). We define
a first version of the algorithm HKC in Sect. 4, which we refine in Sect. 5 using
techniques for reasoning about the transition monoid. We conclude with directions
for future work (Sect. 6).

Notation

We denote sets by capital letters X, Y, S, T ... and functions by lower case letters
f,9,... Given sets X and Y, X x Y is their Cartesian product, X WY is the
disjoint union XY is the set of functions f: ¥ — X. The collection of subsets of S
is denoted by P(S). The collection of relations on S is denoted by Rel(S) = P(S?).
Given a relation R € Rel(X), we write R y for (z,y) € R. We fix an alphabet
A of letters ranged over using letters a,b. We write A* for the set of all finite
words over A; e the empty word; wywsy the concatenation of words wq,ws € A*;
and |w| for the length of a word w and w; for its i'" letter (when i < |w|). We
write AT for the set of non-empty words and A% for the set of infinite words
over A, represented as functions from natural numbers to A. We use 2 for the
set {0,1} (Booleans) and 3 for the set {0, 1,*}.

A semilattice as a tuple (O, +,0) where O is a set of elements, +: 0% — O is
an associative, commutative and idempotent binary operation, and 0 € O is is a
neutral element for +. For instance, (2, max,0) is a semilattice. More generally
(P(X),U, ) is a semi-lattice for every set X.
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2 Coinductive algorithms for finite automata

We will need to work with Moore machines, which generalise finite automata by
allowing output values in an arbitrary set rather than Booleans. We keep the
standard automata terminology for the sake of readability.

A deterministic finite automaton (DFA) over the alphabet A and with outputs
in O is a triple (S, 0,t), where S is a finite set of states, 0: S — O is the output
function, and t: S — S4 is the transition function which returns, for each state
x and for each letter a € A, the next state t,(x). Note that we do not specify an
initial state in the definition of DFA: rather than comparing two DFAs, we shall
compare two states in a single DFA (obtained as disjoint union if necessary).

Every DFA A = (S, 0,t) induces a function [-] 4 mapping states to weighted
languages with weights in O (O4"), defined by [2] 4(€) = o(x) for the empty word,
and [z] 4(aw) = [ta(z)]a(w) otherwise. We shall omit the subscript A when it is
clear from the context. For a state x of a DFA, [z] is called the language accepted
by x. The languages accepted by some state in a DFA with Boolean outputs are
the rational languages.

2.1 Deterministic automata: Hopcroft and Karp’s algorithm

We fix a DFA (S, 0,t). Coinductive algorithms for checking language equivalence
proceed by trying to find a bisimulation relating the given starting states.

Definition 1 (Bisimulation). Let b: Rel(S) — Rel(S) be the function on
relations defined as

b(R) = {(z,y) | o(x) = o(y) and Va € A, to(x)Rta(y)}
A bisimulation is a relation R such that R C b(R).

The above function b being monotone, it admits the union of all bisimulations as
a greatest fixpoint, by Knaster-Tarski’s theorem [18,26]. This greatest-fixpoint is
actually language equivalence:

Theorem 1. For all z,y € S, [x] = [y] iff there exists a bisimulation R with
x Ry.

This theorem immediately gives a naive and quadratic algorithm for checking
language equivalence (Fig. 1): given two states z,y € S, try to complete the
relation {(z,y)} into a bisimulation, by adding the successors along all letters
and checking that o agrees on all inserted pairs.

The standard algorithm by Hopcroft and Karp [16], which is almost linear [25],
can be seen as an improvement of this naive algorithm where one searches for
bisimulations up to equivalence rather than plain bisimulations.

Definition 2. Let e: Rel(S) — Rel(S) be the function mapping a relation R to
the least equivalence relation containing R. A bisimulation up to equivalence is a
relation R such that R C b(e(R)).
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input :A DFA A= (S, 0,t) and two states z,y € S
output : true if [z]4 = [y]4; false otherwise

1 R:=0; todo := {(z,y)};

2 while todo # () do
// invariant: (z,y) € R C b(f(R U todo))

3 extract (z’,y’) from todo;

4 if o(z’) # o(y’) then return false;

5 if (z',y’) € f(RU todo) then skip;

6 forall a € A do

7 | insert (ta(z'),ta(y’)) in todo;

8 end

9 insert (z’,y’) in R;
10 end

11 return true; // because: (z,y) € R C b(f(R))

Fig. 1. Coinductive algorithm for language equivalence in a DFA; the function
f on line 5 ranges over the identity for the naive algorithm (Naive(A,z,y)) or e
for Hopcroft & Karp’s algorithm (HK(A, z,y)).

This coarser notion makes it possible to take advantage of the fact that language
equivalence is indeed an equivalence relation, so that one can skip pairs of states
whose equivalence follows by transitivity from the previously visited pairs. The
soundness of this technique is established by the following Proposition:

Proposition 1 ([4, Thm. 1]). If R is a bisimulation up to equivalence, then
e(R) is a bisimulation.

Complexity-wise, when looking for bisimulations up to equivalence in a DFA
with n states, at most n pairs can be inserted in R in the algorithm in Fig. 1:
we start with a discrete partition with n equivalence classes and each insertion
merges two of them.

2.2 Non-deterministic automata: HKC

A non-deterministic finite automaton (NFA) over the alphabet A and with
outputs in O is a triple (S, 0,t), where S is a finite set of states, 0: S — O is the
output function, and ¢: S — P(S)4 is the transition function which returns, for
each state x and for each letter a € A, a set t,(x) of potential successors. Like
for DFA, we do not specify a set of initial states in the definition of NFA.

We fix an NFA (S, 0, %) in this section and we assume that the set O of outputs
is a semilattice. Under this assumption, an NFA A = (S, 0,t) can be transformed
into a DFA A# = (P(S), 0", t#) using the well-known powerset construction:

o#(X) =) ofx) t#(X) = | tal@)

zeX rzeX
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This construction makes it possible to extend the function [-] into a function from
sets of states of a given NFA to weighted languages. It also gives immediately
algorithms to decide language equivalence in NFA: just use algorithms for DFA on
the resulting automaton. Note that when doing so, it is not always necessary to
compute the determinised automaton beforehand. For instance, with coinductive
algorithms like in Fig. 1, the determinised automaton can be explored on the
fly. This is useful since this DFA can have exponentially many states, even when
restricting to reachable subsets.

The key idea behind the HKC algorithm [4] is that one can actually do better
than Hopcroft and Karp’s algorithm by exploiting the semilattice structure of
the state-space of NFA determinised through the powerset construction. This is
done using bisimulations up to congruence.

Definition 3. Let c: Rel(P(S)) — Rel(P(S)) be the function mapping a relation
R to the least equivalence relation T containing R and such that X T'Y and
X' TY entail ( X +X')T (Y +Y') for all X, X', Y,Y’. A bisimulation up to
congruence is a relation R such that R C b(c(R)).

Proposition 2 ([4, Thm. 2]). If R is a bisimulation up to congruence, then
¢(R) is a bisimulation.

Checking whether a pair of sets belongs to the congruence closure of a finite
relation can be done algorithmically (see [4, Sect.3.4]). The algorithm HKC [4] is
obtained by running the algorithm from Fig. 1 on A%, replacing the function
f on line 5 with the congruence closure function c¢. We provide a variant of
this algorithm in Fig. 2, where we prepare the ground for the algorithms we
will propose for Biichi automata. There, we only explore the transitions of the
determinised automaton, leaving aside the verification that the output function
agrees on all encountered pairs. Indeed, while this verification step is usually
done on the fly in order to fail faster when a counter-example is found (as in
Fig. 1, line 4), it will be useful later to perform this step separately.

The advantage of HKC over HK is that it often makes it possible to skip
reachable subsets from the determinised automaton, thus achieving substantial
gains in terms of performance: there are families of examples where it answers
positively in polynomial time even though the underlying minimal DFA has
exponential size. Actually it can also improve exponentially over the more recent
antichain-based algorithms [4, Sect. 4]. These latter gains can be explained by
the fact that we focus on language equivalence rather than language inclusion:
while the two problems are interreducible (e.g., [X] C [V] iff [ X UY] = [Y]),
working with equivalence relations makes it possible to strengthen the coinductive
argument used implicitly by both algorithms.

3 From Biichi automata to finite words automata

A (non-deterministic) Biichi automaton (NBW) over the alphabet A is a tuple
(S, T) where S is a finite set of states, and T: A — 35” is the transition function.
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input :A NFA A= (S,0,t) and two sets of states X,Y C S
output : a relation R such that [X] = [V] iff V(X',Y') € R, o (X') = o*(Y”)

1 R:=0; todo := {{(X,Y)};
while todo # () do
// invariant: (X,Y) € R C b'(c(R U todo))
extract (X', Y’) from todo;
if (X',Y’") € ¢(RUtodo) then skip;
forall a € A do
| insert (7 (X'),t#(Y")) in todo;
end
insert (X', Y") in R;
end
10 return R;

N

© 0N o s ®

Fig. 2. HKC’(A, X,Y): computing a pre-bisimulation up to congruence in a NFA.

Like for DFA and NFA, we do not include a set of initial states in the definition.
We work with Blichi automata with Biichi transitions rather than Biichi states,
hence the type of T (the two models are equivalent and the one we chose is
slightly more succinct). We write T,, for T(a), 2 % 2’ when T, (z,z') # 0, and
x = 2’ when T,(z,2') = %; the latter denote Biichi transitions, those transitions
that should be fired infinitely often in order to accept an infinite word.

Given a NBW A = (S,t) and v : A“ an infinite word, we say that a sequence
of states x : S* accepts w if the sequence (Ty, (xs, Xi+1))ien contains infinitely
many * and no 0. The w-language [X] 4 of a set of states X C S is the set of
infinite words accepted by a sequence x such that yg € X. The w-languages
accepted by some set of states in a NBW are the rational w-languages [5].

Given a finite word u and a finite non-empty word v, write uv* for the infinite
word w € A* defined by w; = u; if i < [u[ and w; = V(i ju|)modjv| Otherwise.
Ultimately periodic words are (infinite) words of the form wv* for some u, v. Given
an w-language L C A%, we set

UP(L) = {w* | w" € L} L¥ = {u$v | wv® € L}

UP(L) is a w-language over A while L® is a language of finite words over the
alphabet A% = A {$}. The first key observation is that the ultimately periodic
words of a rational w-language fully characterise it:

Proposition 3 ([6, Fact 1]). For all rational w-languages L, L', we have that
UP(L)=UP(L") entails L =L'.

Proof. Consequence of the closure of rational w-languages under Boolean opera-
tions [5], and the fact that every non-empty rational w-language contains at least
one ultimately periodic word. a

As a consequence, to compare the w-languages of two sets of states in a NBW,
it suffices to compare the w-languages of ultimately periodic words they accept.
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Calbrix et al. show that these w-languages can be faithfully represented as rational
languages (of finite words):

Proposition 4 ([6, Prop. 4]). If L C A¥ is rational, then L® is rational.

To prove it, Calbrix et al. construct a NFA for L® from a NBW A for L, with
two layers. The first layer recognises the prefixes (the u in wv®). This is a copy
of the NBW for L (without accepting states, and where the Biichi status of the
transitions is ignored). This layer guesses non-deterministically when to read
the $ symbol and then jumps into the second layer, whose role is to recognise
the period (the v in wv*). We depart from [6] here, by using notions from [23]
which make the presentation easier and eventually make it possible to propose
our algorithm. We use the (Biichi) transition monoid of the NBW A = (S,t) [23]
to define the second layer.

Consider the set 3 as an idempotent semiring, using the following operations:

Write . = 35 for the set of square matrices over 3 indexed by S; it forms
a Kleene algebra [7,19] and in particular a semiring. The transition function
of A has type A — #; we extend it to finite words by setting T, = I and
Ty, = Ty -+ - Ty, . We have that T, (z,z") is % if there is a path along u
from z to 2’ visiting an accepting transition, 0 if there is no path from z to z’
along u, and 1 otherwise. We extend the notations z — 2’ and = = 2’ to words
accordingly.

A periodic word v¥ is accepted from a state z in A if and only if there is a
lasso for v starting from z: a state y and two natural numbers n, m with m such

that z —— y SN y. This information can be computed from the matrix T;,: given
a matrix M, compute® its Kleene star M* and set

w(M) =A{z | Iy, M*(z,y) #0ANM"(y,y) =} .

At this point, one can notice that with the previously defined operations, matrices
and subsets form the Wilke algebra associated to the NBW as in [23].

Lemma 1. For all words v, v¥ is accepted from a state z iff v € w(Ty).

We can now formally define the desired NFA: set A% = (5% 0% 1%), where
S% = S W Sx.# is the disjoint union of S and |S| copies of .#, and
t3(x) = {2’ | To(z,2") # 0} t3(w) = {(x, 1)} o*(x) =0
£ ({2, M)) = {{z, M - T,)} t3((w, M)) =0 o (&, M) =z € w(M)

! To compute M*, one can use the fact that M* = (I + M)™ with n = |S|, and use
iterated squaring.
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a,b

b —¢

$
reas(t) men-() P B
w4 omep -y ~(B
w(A) = {1} w(B)=0

a a,b a a,b

Fig.3. A NBW A (left) and the reachable part of its associated NFA A% (right).

(Where I denotes the identity matrix from .#.) The set .# can be replaced
here by its accessible part .#' = {T, | u € A*}. The main difference with the
construction from [6] is that we use deterministic automata in the second layer,
which enable a streamlined presentation in terms of matrices—which are not
mentioned explicitly in [6].

Theorem 2. For all set of states X from A, we have [X] 45 = ([X]4)®.

Ezxample 1. To illustrate this construction, consider the NBW depicted on the left
in Fig. 3. The state 0 accepts the words with a finite but non-zero number of b’s;
the state 1 only accepts the word a. Accordingly, we have [0]% = (a+b)*ba*$a*
and [1];34 = a*$a™. These are indeed the languages respectively recognised by the
states 0 and 1 from the NFA A% on the right.

We only depicted the relevant part of the second layer: the only relevant
matrices are those of the form T, for some word u. There are only three of them
in this example since T, - T, =Ty - T, =Ty - T, =T, and T, - T, = T,. We could
be willing to prune the automaton A% (i.e., remove the four states which are not
co-reachable), but we want in the sequel to exploit the structure shared by the
copies of the transition monoid: those copies only differ by the accepting status
of their states, by definition.

Note that since the second layer of A% is glready deterministic, one can determinise
A% into a DFA with at most 2" + 273" statesz, where n is the number of states
of A. This is slightly better than the 2" + 22""*" bound obtained in [6].

4 HKC for Biichi automata

By Prop. 3 and Thm. 2, given two sets of states X,Y of a NBW A, we have
[X]a = [Y]a iff [X] 45 = [Y]4s- One can thus use any algorithm for language
equivalence on NFA to solve language equivalence on NBW. Given the structure
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(and size) of A%, this would however be inefficient: many computations would be
duplicated. We show in this section that we can do better.

Given a an w-language L, the language L® can be seen as a weighted language
L%: P(AT)A" with weights in the semilattice (P(A™), U, 0):

L*¥ tu {ve AT |w® e L}

Given a NBW A = (S,T), one can immediately construct a NFA A% =
(S£,t£,0%) such that for every set of states X, [X]|4 = [X]4«. This is just
the first layer from the previous construction: set S = S and

ty (v) = {2’ | To(z,2") # 0} of(z) = {v]v” € [z]a}

To use algorithms such as HKC on A, it suffices to be able to compare the
outputs of any two states of AL#, i.e., compare the languages 0£#(X) and
of#(Y) for any two sets X,Y C S . Since those languages are rational (using the
second layer of the previous construction), it might be tempting to use algorithms
such as HK or HKC to perform this task. We proceed differently in order to exploit
the shared structure of those languages. We show in a second step, in Sect. 5
how to exploit optimisations ¢ la HK/HKC for this part of the computations.

Lemma 2. For all states x € S and sets X C S, we have
of(z) = {v |z € w(Ty)}
o #(X) = {v | X Nw(T,) # 0}

Proof. Immediate consequence of Lem. 1 and the definitions of o and o%#.
(Note that we do not need to impose that v is non-empty in the statement since

w(Te) =w(l) =0.)
Proposition 5. For all sets X, Y C S,
ot (X) = of#(Y) iff forallv, X Nw(T,) =0 < Y Nw(T,) = 0.

Let D = {w(T,) | v € A*}. We call the sets in D discriminating sets; as subsets
of S, there are at most 2/°! discriminating sets. Those can be enumerated since
there are finitely many matrices of the form T, (at most 3!5°). This is what is
done in the algorithm from Fig. 4.

We finally obtain the algorithm in Fig. 5 for language equivalence in a NBW:
we compute the discriminating sets (D) and a relation (R) which is almost a
bisimulation up to congruence: the outputs of its pairs must be checked against
the discriminating sets, which we achieve with a simple loop (lines 2-4).

Ezxample 2. We execute HKC* on the NBW on the left in Fig. 6, starting with
states {0} and {1}. The transition monoid has 13 elements, which we list in
App. A. Those matrices give rise to three discriminating sets: 0, {0,1}, and
{0,1,2}. Those arise, for instance, from the matrices

1-1 ST N
=1 T,= | «1 Tho =

*
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input :A NBW A= (S5,T)
output : The set of discriminating sets D = {w(T,) | v € A*}

D :=0; M :=0; todo := {I};
while todo # () do

extract M from todo;

if M € M then skip;

forall a € A do

‘ insert M - T, in todo;

end

insert M in M; insert w(M) in D;
end
return D;

© W N G N R

[uny
o

Fig. 4. Discr(.A): exploring the Biichi transition monoid of a NBW A to compute
discriminating sets.

input :A NBW A= (S, T) and two sets X,Y C S
output : true if [X]4 = [Y]4; false otherwise

R:=HKC'(A*,X,Y) || D := Discr(A);
forall (X',Y') € R, D € D do

| if X’ND =0+ Y'ND =0 then return false;
end
return true;

(S VN

Fig. 5. HKC¥ (A, X,Y"): checking language equivalence in a NBW using bisimula-
tions up to congruence.

where we denoted 0 by - for clarity purposes. HKC’ returns the relation R =
{{{0},{1}), ({1},{1,2})}, which contains only two pairs. The pairs ({0, 2}, {0}),
({1,2},{1,2}), and ({0}, {0,2}), which are reachable from ({0}, {1}) by reading
the words b, aa, and ab, are skipped thanks to the up to congruence technique.
The two pairs of R cannot be told apart using the three discriminating sets so
that HKC¥ returns true. States 0 and 1 are indeed equivalent: both of them accept
the words with infinitely many a’s.

If instead we run HKC* starting from sets {0} and {2} then it returns false
since the discriminating set {0, 1} distinguishes {0} and {2}. Indeed, the state 2
recognises the words with infinitely many a’s and starting with a b.

Note that HKC* can be instrumented to return a counterexample in case of
failure: it suffices to record the finite word u that lead to each pair in R as well
the finite word v that lead to each discriminating set in D: if the check on line 3
fails, the corresponding word uv® is a counter-example to language equivalence.

Also note that HKC is intrinsically parallel: the computations of D and R
can be done in parallel, and the checks in lines 2-4 can be performed using a
producer-consumer pattern where they are triggered whenever new values are
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a,b a
a

b

Fig. 6. The NBWs for Ex. 2 and Ex.3.

inserted in D and R. Alternatively, those checks can be delegated to a SAT
solver. Indeed, given a discriminating set D, define the following formula with

2|S| variables:
¥Yp = \/ T < \/ Z2
zeD xeD

For all sets X1, X3, we have X; N D =0 < YN D = ( iff pp evaluates to true
under the assignment x; — = € X;. Given the set of discriminating sets D, it
thus suffices to build the formula pp = A cp ¢p and to evaluate it on all pairs
from the relation R returned by HKC’. The main advantage of proceeding this way
is that the SAT solver might be able to represent ¢p in a compact and efficient
way. If we moreover use an incremental SAT solver, this formula can be built
incrementally, thus avoiding the need to store explicitly the set D.

One can also use a (incremental) SAT solver in a symmetrical way: Given a
pair of sets (X,Y) € S?, define the following formula with |S| variables:

1/f<X,Y)=\/$@ \/y

rzeX yey

For all set D, we have XND =0 < YND = iff Y(x,y) evaluates to {rue under
the assignment z — 2z € D. Like previously, one can thus construct incrementally
the formula ¢ = /\pe R ¥p before evaluating it on all discriminating sets.

5 Further refinements

A weakness of the algorithm HKCY is that it must fully explozre the transition
monoid of the starting NBW, which may contain up to 3™ elements when
starting with a NBW with n states. Since the goal of this exploration is to obtain
discriminating sets, we would like to isolate parts of the transition monoid that
can safely be skipped: for instance because they will lead to discriminating sets
which have already been encountered, or which are subsumed by previously
encountered ones. This leads us to optimisations which are similar in spirit to
those brought by HKC for the analysis of the prefix automaton.

To make this idea precise, given a set of sets of states &, define the following
equivalence relation on sets of states:

X~eY if VDEEXND=0=YND=0
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By Prop. 5, we can replace the sub-algorithm Discr (Fig. 4) by any algorithm
returning a subset D’ of D such that ~pr = ~p.

This sub-algorithm basically computes the least solution to an equation (the
least set of matrices containing the identity and closed under multiplication
on the right by the transition matrices of the starting NBW), and computes a
set of discriminating sets out of this solution. We can improve it by weakening
the equation to be satisfied, in the very same way HKC improves over HK by
allowing to look for bisimulations up to congruence rather than bisimulations up
to equivalence. We shall use the following abstract lemma about partial orders
to prove the correctness of such improvements:

Lemma 3. Let X,) be two partial orders. Let r, f: X — X and s: X — Y be
three order-preserving functions such that for <ro f;id < f; fo f < f; and
sof <s. Fir xg € X and assume x,x’ are the least elements of X such that
xo <z <r(x) and zog < o' < r(f(x')), respectively. Then we have s(x) = s(a’).

We prove this lemma in App. B. It is inspired by the abstract theory of coinduction

up-to [24], where the compatibility condition f or <ro f plays a central role.
Given a set M of matrices, set d(M) = {w(M) | M € M}. We can apply the

above lemma by choosing X = (P(.#),C), Y = (Rel(P(S)), D), o = {I}, and

r(M)={M |VYac A M -T, € M} s(M) = ~aqam

With such parameters, the = from statement of the lemma is the set of matrices M
obtained at the end of the execution of Discr. Accordingly, d(z) is the returned
set D of discriminating sets, and s(x) is the equivalence relation ~p.

Assume a function f satisfying the other requirements of the lemma for those
parameters. This function can be used as an up-to technique, in order to skip
elements from the transition monoid: we can obtain an algorithm Discr; by
replacing line 4 from Discr (Fig. 4) with

4’ | if M € f(M Utodo) then skip;

This algorithm terminates with a set M’ of matrices corresponding to the z’
from the statement of the lemma, and returns a set D’ of discriminating sets for
which the lemma guarantees that we have ~p/ = ~p, as required.

Such techniques can drastically improve performances: when an element is
skipped thanks to the up-to technique, all elements which were reachable only
through this element virtually disappear.

5.1 Working up to unions

A first property which we can exploit in order to cut-down the exploration of
the transition monoid is the following: if two discriminating sets D, D’ have been
discovered, then their union DU D’ is not useful as a discriminating set. Formally,
for all £ C P(S), if D, D" € £ then ~(pupiue = ~e-

One could think that this should allow us to skip matrices from the transition
monoid when they can be written as sums of already visited matrices. This is
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however completely wrong, because the discriminating set of a sum is in general
not the union of the underlying discriminating sets. For instance, we have

TRRERESCIE

In order to find an operation on matrices which corresponds to unions when
taking discriminating sets, we need to slightly generalise the notion of matrix.

Say that a matrix is a vector if it contains at most one non-zero coefficient
per line. Let 7" denote the set of vectors. The three matrices above are vectors. A
generalised matriz is an antichain of vectors, i.e, a non-empty set of vectors which
are pairwise incomparable, where vectors are ordered pointwise using the order
0 < 1<% .We write .#" for the set of generalised matrices. Given a non-empty
set M of matrices, write |M | for the antichain where only maximal elements
from M are kept. .#’ forms an idempotent semiring by setting

M&N=|MUN| 0={0} M-N=[{V-W|VeM, WeN}| 1={I}

Given a matrix M, write M for the generalised matrix [{V € ¥ |V < M}].
While the map M +— M is injective, it is not surjective: there are generalised
matrices which cannot be represented using a single matrix. Moreover, the
counter-example above shows that in general, M + N # M & N.

For M € .#', set w(M) = Uy, ¢pgw(V); this function is a homomorphism of
semilattices:

Lemma 4. For all M,N € .#' and M,N € .#, we have
() wMaN)=wM)Uw(N) (#H#) M- N=M-N (i) wM) =w(M)

Now lift the functions r,d,s we defined after Lem. 3 to sets of generalised
matrices: set 7(W) = {M |Va€ A, M- T, e W}, d(W) = {w(M) | M € W},
and s(W) = ~gwy. Finally define the up-to technique as the following function
u: P(A") — P(A):

uW)={M1®---&M, |Vi<n, M, e W}

Intuitively, this function will allow us to cut-down the exploration on the transition
monoid whenever we encounter a matrix which can be written as a sum (in the
sense of @) of already encountered matrices.

Proposition 6. The functions r,u and s satisfy the requirements of Lem. 3.

Proof. Compatibility of u w.r.t. 7 (uor <rowu) follows from distributivity of -
over @. The function u is obviously extensive and idempotent. s o u < s follows
from Lem. 4(i) and the observation at the beginning of Sect. 5.1. O

The semiring of generalised matrices is not convenient to use in practice:
many matrices expand into generalised matrices of exponential size (e.g. dense
matrices). However, we use this semiring only to establish the correctness of the
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optimisation: thanks to Lem 4(i4), the version of the algorithm Discr where we
use the function u to cut down the search-space only manipulates generalised
matrices of the form M, which can thus be represented as plain matrices.

It remains to check that we can implement the refined check on line 4’:

Proposition 7. Given a set M of matrices and and matriz N, deciding whether
N eu({M | M € M}) is CONP-complete.

Proof. We prove hardness in App. D. For membership in CONP, observe that
Neu{M|MeM})iff VW e N, IM e M, M <N and V € M. From this
fact we can easily derive a boolean formula which allows to delegate the refined
check to a SAT solver. O

Ezxample 3. When running this refined version of HKC* on the NBW on the right
in Fig. 6, the up-to-union technique makes it possible to explore only 11 matrices
of the monoid, although it contains 17 elements. Indeed, 4 matrices are skipped,
being recognised as sums of previously encountered matrices, and 2 matrices
are not even computed because they are reachable only through the 4 previous
matrices. We give the details of this computation in App. C.

5.2 Working up to equivalence

There is also room for improvement when we start with a disjoint union of NBWs:
the starting NBWs most probably contain loops, and the transition monoid of
the disjoint union will need to unfold those loops until they ‘synchronise’. Take
for instance the two NBWs A! and A2 over a single letter a, defined by the two
matrices on the left, whose disjoint .A union can be represented by the diagonal
block matrix on the right:

- %
s , k. * -
Ta % - Ta = . e %k Ta e -k -
* .. . . *
* .
We have T(laa)a = T}: the transition monoid of A! has size 3 (including I);

we have T(Qa a)a = T2: the transition monoid of A% has size 4; and we have
T(aaaaaa)a = Ta: the transition monoid of A has size 7. Generalising 2 and 3 into
n and m in the example, the transition monoid of the disjoint union contains
lcm(n, m) 4+ 1 matrices. By designing an up-to-equivalence technique reminiscent
of the one used in Hopcroft and Karp’s algorithm, we will obtain an algorithm
that explores at most the first n +m + 1 matrices. (On this specific example all
matrices but I give rise to the same discriminating set, so that we could stop

even earlier; but there is no generic argument behind this observation.)

We fix in the sequel a NBW A = (S, T) and two subsets S1,5% C S. Let .#y
be the set of matrices M such that

Vr,y €S, M(x,y) =0 V (z,y) € (S* x S) U (S* x S?)
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Such matrices look like the picture on the right. We require

T, € M, for all a € A: states from S? should only reach states Sll

from S°. Since .#, is closed under products (it actually forms a JS 2

sub-semiring of .#), we deduce T, € 4, for all u € A*.

If ST = 52 = S then the requirement is void, as well as the optimisation to be

described below; if S'1 N S? = () and S US? = S then this corresponds to the

case where A is a disjoint union of two NBWs. Intermediate cases are allowed.
Fori = 1,2, let .#" be the set of matrices indexed by S* and let 7;: .4y — #°

be the obvious surjective semiring homomorphism. For all M € .#;, we have

w(M) N S* = w(m;(M)). Define the following function €’: P(.#y) — P(My):
e'(M) = {N [ (m1(N), m2(N)) € e({(m1 (M), m2(M)) | M € M})}

where e(R) denotes the equivalence closure of a relation R, here for relations on
MW AH*. Like in the previous section, by working in a larger structure than
sets of matrices and by using Lem 3, one can show that when HKC* is restricted
to starting sets (X,Y) € P(S1) x P(S?), it remains correct when using e’ as
an up-to technique on line 4 from Fig. 4. We give more details on this proof in
App. E. As in Hopcroft and Karp’s algorithm [16], one can implement the up-to
equivalence test efficiently using an appropriate union-find data structure.

6 Conclusion and future work

We presented an algorithm for checking language equivalence of non-deterministic
Biichi automata. This algorithm exploits advanced coinductive techniques, at two
places: first, to analyse the finite prefixes of the considered languages, through
bisimulations up to congruence, as in the algorithm HKC for NFA; and second, to
analyse the periodic words of the considered languages, through coinduction up
to unions (Sect. 5.1) or coinduction up to equivalence (Sect. 5.2). For this second
part, using the two techniques at the same time is likely to be possible, i.e.,
using coinduction up to congruence. This however requires further investigations,
especially in order to find reasonably efficient ways to perform the corresponding
tests.

We also want to investigate how to exploit techniques using simulation
relations, which were successfully used in [10,1,2,22] and which tend to nicely fit
in the coinductive framework we exploit here [4, Sect. 5].

The algorithm we proposed stems from the construction of Calbrix et al. [6],
which we revisited using notions from [20] in Sect. 3. HKC* is rather close to
Ramsey-based algorithms [11,1] (as opposed to rank-based ones [21,8,9,10]). In
particular, our matrices are often called super-graphs in Ramsey-based algorithms.
A key difference is that we focus on language equivalence, thus enabling stronger
coinductive proof principles.

A prototype implementation is available [20].

Acknowledgements. We would like to thank Dmitriy Traytel for pointing us to
the work of Calbrix et al. [6].
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A Further details for Example 2

The transition monoid of the NBW on the left in Fig. 6 is given below, together
with the discriminating sets associated to its elements:

u T, w(Ty)

€ -1 %)

a |[[-+x1]]{0,1}

aa || -x* ]| {0,1}

v .
ab * 1 {0.1} Equations
% Taaa = Laa
ba ( x ) {0,1,2} o
. * . a a
1 Tooy, = Thp
bb (1 : 1) o ;‘”ZZ B T“b‘z
1 . 1 aa - aa
— Ta,baa = Taa
T aaa — T aa
aab (* . *) {0,1} TZ by = T:
- Tyavy = Thaab
. * .
aba ( * ) {0,1}
-,
baa | | - * x| |{0,1,2}
* *
* . .
bab | [ x| [{0,1,2}
* Y
* v -
abab| | * - {0,1}

*

* -k
baab -% | {0,1,2}
* - %
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B Proof of Lemma 3

Proof. Since id < f, we have x < r(x) < r(f(x)) and thus 2’ < z by minimality
of /. Since for <ro fand fof < f, we also have f(z') < f(r(f(z"))) <
r(f(f(2")) <r(f(z')), so that x < f(z') by minimality of . We deduce s(z') <
s(z) < s(f(z")) < s(2’) by monotonicity of s and so f < s. O

C Further details for Example 3

The explored part of the transition monoid of the NBW on the right in Fig. 6 is
given below, together with the discriminating sets associated to its elements and
the justification for the elements skipped thanks to the up-to-union technique:

Kept matrices

1: <fu> W(iu)
1

a (1 1) (0,1}
b (1 1) %)

c <* 1) {0,1}
aa (1 :) {0,1}
ac (: 1) {0,1}
be (*i) {0,1}
ca <*:> {0,1}
c (**) {0,1}
bee (: *) {0,1}
cec ( *) {0,1}

*

Equations
Ty =Tp
Ty =T
Tach = Tae
Taaa = Taa
Toab = Taca
Taae = Tae
Tyea = Tea
Toeo = Tap
Teaa = Tea
Teab = Taab
Teae = Tyee
Teca = Tace
Tech = Thee
Tycece = Tea

Unions
Tab = x1 = acEBch@Tbc
* %
T =( 1) =Tholor
ba — %/ = b be a
Toce = o =Toa @ T
ok
Toca = o =T @ Teq
* x

Accessible matrices not generated

1%
Thaa = wx] W(Tbaa) = {03 1}
Taccc = i* ; W(Taccc) = {07 1}

To alleviate notations, we identified matrices M with their associated gen-
eralised matrix M in the third column. (Note that T., = Tpe + Teee but
Teo 7# The D Tece)-
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D CoNP-completeness of reasoning up to union

Theorem 3 (Prop. 7). Given a set M of matrices and and matriz N, deciding
whether N € u({M | M € M}) is CONP-hard when we represent N and M as

plain matrices.

Proof. Let’s first detail what it means for N to be in u({M | M € M}:

Neu{M|MeM})e NESmemmenyM
& N € [Uppemm<ny M|
S VWV eN, Ve |[UmemmenyM]
SYWeEN,IMeM, M<NandIV' e Mst. V<V’
SV EN,IMeM, M<NandV € M

To show that the problem is CONP-Hard we will show that its complementary
problem is NP-Hard via a reduction from 3-SAT. Let Z = C7; A --- A Cy be an
instance of 3-SAT. We note x1,...,x, the Boolean variables of Z. We construct
an instance of our problem as:

110---0 yi0---0 10ifz; € G
N=|::: ] M=SMc | : Y, =<501ifz; €C;
110---0 v, 0---0) ) ., 11if 75,25 € C;

We can do some observations on this instance:

— For all M; e M, M; < N.

— There is a bijection between the set of truth value distribution of z1,...,z,
and N via the function:
2" - N 100---0iff §(z;) =T
[ (Vs)i = e U
0 =V 010---0iff 6(z;) =L

— For any M; € M, Vs € M; if and only if § does not satisfy the clause C;.
Then:

7 is not satisfiable < Vo € 2™, AC; s.t. § does not satisfy C;
& VVs e f(2"), IM; e M s.t. Vs € M;
SVWeN,IM;e Mst. VeM;
s Neul{M|Me M})

We have shown than 7 is satisfiable if and only if N € u({M | M € M}).
The problem is indeed cONP-Hard
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E Reasoning up to equivalence: proofs

In order to reason up to equivalence, we need to turn the set of discriminating
sets into a relation. Set U = {1} x ST U {2} x S%. Given a relation £ € Rel(U),
define the following relation between P(S') and P(S5?):

Xi~e Xy if V<<Z,D>7<],DI>> 657 XZ'QD:(Z)@XJ'OD/:Q)

(We define ~¢ as a relation between P(S!) and P(S?) because when starting
with sets X € 8! and Y C 52, HKC’ will return such a relation.)

Set A" = ({1} x. ' U {2} x #*)?, write iM for the pair (i, M) € {i} x A"
and define a mixed product operation -: .#" x .#y — .#" by setting:

(iM,jN) - O = (i(M - 7;(N)),j(N - 7;(N)))
Now lift the functions 7, s we defined after Lem. 3 to work on P(.Z"):

r(R)={Me.#"|Vaec A, M-T, € R}
d(R) = {(iw(M), jw(N)) | (iM,jN) € R}
s(R) = ~d(R)
Recall that e is the function taking the equivalence closure of a relation.

Proposition 8. The functions r,e and s satisfy the requirements of Lem. 3.

Proof. For compatibility of e w.r.t. r» (eor < roe), assume (i3 My,i,M,) €
e(r(R)). There are (ix, My)re[2..n such that for all & < n, either (ix My, ix11Mpi1)
r(R) or (ig41 Mpt1,i.My) € r(R). We need to show that (i; My,i,M,,) € r(e(R)).
Let a € A; for all k < n, either <Z'kMk7Z'k+1Mk+1> -T, € Ror <ik+1Mk+1,ikMk> .
T, € R, which means by definition that (i My - 71 (T%), ig41 Mi+1 - Thr1(To)) €
R or (igt1Mi+1 - o1 (Ta), i My, - m(Ty)) € R. Therefore, for all a € A,
(i1 My - 1 (Ta),inMy, - 7 (Th)) € e(R), which means (i; My,i,M,) € r(e(R)),
as required.

The function e is obviously extensive and idempotent, so that it only remains
to show that soe < s, i.e., for all R, s(R) C s(e(R)) (recall that we take reverse
inclusions for the partial order )). Suppose (X,Y) € s(R), i.e., X ~qg) Y, we
have to show (X,Y) € s(e(R)), i.e., X Rg(e(ry) Y. Let (i1D1,in,Dy) € d(e(R)).
There are My, M,, such that Dy = w(My), D, = w(My), and (ix, My)re[2..n]
such that for all k < n, either (ix My, ix41Mp+1) € R or {ig41Mpi1,ixMy) € R.
Since X ~4g) Y, we deduce that for all & < n, either X;, Nw(M) = 0 <
Xipor Nw(Myg1) =0, 0or X, ., Nw(Mjq1) =0 & X;, Nw(My,) = 0, which is just
the same. By transitivity of logical equivalence, we deduce that X;, Nw(M;) =
< X;, Nw(M,) =0, as required. O

Overloading the notation from Sect. 5.1, given a matrix M € .#,, write
M = (1m (M), 2me(M)) € A". For all M,N € My, we have M -N = M - N
and for all X C S'Y C 52,

X ~w(M) Y iff X %d(M) Y
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The first property guarantees that when taking xg = {I}, the  from Lem. 3 is
the set {M | M € M} where M is the set of matrices computed by Discr. The
second property ensures that s(z) properly discriminates the pairs provided by
HKC’ (R). By Lem. 3, so does s(z'), which can easily be shown to correspond
to the computation with the optimised algorithm Discr.,, where we use the
up-to-equivalence technique to skip redundant matrices.



