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COMPUTING THE k-BINOMIAL COMPLEXITY OF THE THUE–MORSE

WORD

MARIE LEJEUNE, JULIEN LEROY, AND MICHEL RIGO

Abstract. Two words are k-binomially equivalent whenever they share the same subwords,
i.e., subsequences, of length at most k with the same multiplicities. This is a refinement
of both abelian equivalence and the Simon congruence. The k-binomial complexity of an
infinite word x maps the integer n to the number of classes in the quotient, by this k-
binomial equivalence relation, of the set of factors of length n occurring in x. This complexity
measure has not been investigated very much. In this paper, we characterize the k-binomial
complexity of the Thue–Morse word. The result is striking, compared to more familiar
complexity functions. Although the Thue–Morse word is aperiodic, its k-binomial complexity
eventually takes only two values. In this paper, we first obtain general results about the
number of occurrences of subwords appearing in iterates of the form Ψℓ(w) for an arbitrary
morphism Ψ. We also thoroughly describe the factors of the Thue–Morse word by introducing
a relevant new equivalence relation.

1. Introduction

The Thue–Morse word t = 011010011001 · · · is ubiquitous in combinatorics on words [2, 25].
It is an archetypal example of a 2-automatic sequence: it is the fixed point of the morphism
0 7→ 01, 1 7→ 10. See, for instance, [3]. Its most prominent property is that it avoids
overlaps, i.e., it does not contain any factors of the form auaua where u is a word and a a
symbol. Consequently it also avoids cubes of the form uuu and is aperiodic. The Thue–Morse
word appears in many problems with a number-theoretic flavor, to cite a few: the Prouhet–
Tarry–Escott problem for partitioning integers, transcendence of real numbers, duplication
of the sine,. . . [1, 4, 10, 16]. Let us also mention a sentence from the review of [6]: “The
nice combinatorial properties of its subword structure have inspired a number of papers” and
Ochsenschläger [23] was the first to consider the subwords of its prefixes.

Various measures of complexity of infinite words have been considered in the literature. In
terms of descriptional complexity (i.e., here we are not concerned with algorithms generating
infinite words), the most usual one is the factor complexity that one can, for instance, relate
to the topological entropy of a symbolic dynamical system. The factor complexity of an
infinite word x simply counts the number px(n) = #Facn(x) of factors of length n occurring
in x. One can also consider other measures such as arithmetical complexity related to Van
der Waerden’s theorem [5], abelian complexity introduced by Erdös in the sixties (he raised
the question whether abelian squares can be avoided by an infinite word over an alphabet of
size 4) or, recently k-abelian complexity [14]. In an attempt to generalize Parikh’s theorem
on context-free languages, k-abelian complexity counts the number of equivalence classes
partitioning the set of factors of length n for the so-called k-abelian equivalence. Two finite
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words u and v are k-abelian equivalent if |u|x = |v|x, for all words of length at most k, and
where |u|x denotes the number of occurrences of x as a factor of u.

The celebrated theorem of Morse–Hedlund characterizes ultimately periodic words in terms
of a bounded factor complexity function; for a reference, see [3] or [7, Section 4.3]. Hence,
aperiodic words with the lowest factor complexity are exactly the Sturmian words character-
ized by px(n) = n+1. It is also a well-known result of Cobham that a k-automatic sequence
has factor complexity in O(n). The factor complexity of the Thue–Morse word is in Θ(n)
and is recalled in Proposition 7.

For many complexity measures, Sturmian words have the lowest complexity among aperi-
odic words, and variations of Morse–Hedlund theorem notably exist for k-abelian complexity
[15]. However, the arithmetical complexity of Sturmian words is in O(n3); see [9].

Binomial coefficients of words have been extensively studied [19]:
(u
x

)
denotes the number

of occurrences of x as a subword, i.e., a subsequence, of u. They have been successfully used
in several applications: p-adic topology [6], non-commutative extension of Mahler’s theorem
on interpolation series [24], formal language theory [13], Parikh matrices, and a generalization
of Sierpiński’s triangle [18].

Binomial complexity of infinite words has been recently investigated [26, 28]. The definition
is parallel to that of k-abelian complexity. Two finite words u and v are k-binomially equivalent
if

(u
x

)
=

(v
x

)
, for all words of length at most k. This relation is a refinement of abelian

equivalence and Simon’s congruence. We thus take the quotient of the set of factors of length
n by this new equivalence relation. For all k ≥ 2, Sturmian words have k-binomial complexity
that is the same as their factor complexity. However, the Thue–Morse word has bounded k-
binomial complexity [28]. So we have a striking difference with the usual complexity measures.
This phenomenon therefore has to be closely investigated. In this paper, we compute the exact
value of the k-binomial complexity bt,k(n) of the Thue–Morse word t. To achieve this goal, we
first obtain general results computing the number of occurrences of a subword in the (iterated)
image by a morphism. This discussion is not restricted to the Thue–Morse morphism.

This paper is organized as follows. In Section 2, we recall basic results about binomial coef-
ficients, binomial equivalence and the Thue–Morse word. In Section 3, we give an expression

to compute the coefficient
(
Ψ(w)
u

)
for an arbitrary morphism Ψ in terms of binomial coefficients

for the preimage w. To that end, we study factorizations of u of the form u = xΨ(u′)y. In

particular, we are able to express the difference
(Ψ(w)

u

)
−

(Ψ(w′)
u

)
as a linear combination of

the form
∑

x

m(x)

[(
w

x

)
−

(
w′

x

)]
,

where the sum is ranging over words x shorter than u, and we are able to precisely describe
the integer coefficients m(x). These coefficients are studied in detail in Section 4 where we
prove results about k-binomially (non)-equivalent factors of the Thue–Morse word of the form
ϕk(a). In particular, we recover the result of Ochsenschläger about prefixes of the Thue–Morse
word [23]. Indeed, to prove that two words u, v are not k-binomially equivalent, it is enough
to show that the difference

(u
x

)
−

(v
x

)
is non-zero for some word x of length k.

In the second part of this paper, we specifically study the k-binomial complexity of the
Thue–Morse word. For k = 1, the abelian complexity of t is well-known and takes only the
values 2 and 3. The case k = 2 is treated in Section 5. In the last three sections, we consider
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the general case k ≥ 3. The precise statement of our main result is given in Theorem 6.
The principal tool to get our result is a new equivalence relation discussed in Section 7. This
relation is based on particular factorizations of factors occurring in the Thue–Morse word.
Many authors have been interested in the so-called desubstitution [12, 20, 21].

2. Basics

Let A = {0, 1}. Let ϕ : A∗ → A∗ be the classical Thue–Morse morphism defined by
ϕ(0) = 01 and ϕ(1) = 10. The complement of a word u ∈ A∗ is the image of u under the
involutive morphism mapping 0 to 1 and 1 to 0. It is denoted by u. The length of the word
u is denoted by |u|.

2.1. Binomial coefficients and binomial equivalence. The binomial coefficient
(u
v

)
of

two finite words u and v is the number of times v occurs as a subsequence of u (meaning as
a “scattered” subword). As an example, we consider two particular words over {0, 1} and

(
101001

101

)
= 6 .

Indeed, if we index the letters of the first word u1u2 · · · u6 = 101001, we have

u1u2u3 = u1u2u6 = u1u4u6 = u1u5u6 = u3u4u6 = u3u5u6 = 101 .

Observe that this concept is a natural generalization of the binomial coefficients of integers.
For a one-letter alphabet {a}, we have

(
am

an

)
=

(
m

n

)
, ∀m,n ∈ N

where am denotes the concatenation of m a’s. For more on these binomial coefficients, see,
for instance, [19, Chap. 6]. In particular,

(u
ε

)
= 1. In this paper, a factor of a word is made

of consecutive letters. However this is not necessarily the case for a subword of a word.

Definition 1 (Binomial equivalence). Let k ∈ N and u, v be two words over A. We let A≤k

denote the set of words of length at most k over A. We say that u and v are k-binomially
equivalent if (

u

x

)
=

(
v

x

)
, ∀x ∈ A≤k .

We simply write u ∼k v if u and v are k-binomially equivalent. The word u is obtained as a
permutation of the letters in v if and only if u ∼1 v. In that case, we say that u and v are
abelian equivalent and we write instead u ∼ab v. Note that, for all k ≥ 1, if u ∼k+1 v, then
u ∼k v.

Example 2. The four words 0101110, 0110101, 1001101 and 1010011 are 2-binomially equiv-
alent. Let u be any of these four words. We have

(
u

0

)
= 3,

(
u

1

)
= 4,

(
u

00

)
= 3,

(
u

01

)
= 7,

(
u

10

)
= 5,

(
u

11

)
= 6 .

For instance, the word 0001111 is abelian equivalent to 0101110 but these two words are
not 2-binomially equivalent. To see this, simply compute the number of occurrences of the
subword 10.
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Many classical questions in combinatorics on words can be considered in this binomial
context [27, 29]. Avoiding binomial squares and cubes is considered in [26]. The problem of
testing whether or not two words are k-binomially equivalent is discussed in [11]. In particular,
one can introduce the k-binomial complexity function.

Definition 3 (Binomial complexity). Let x be an infinite word. The k-binomial complexity
function of x is defined as

bx,k : N → N, n 7→ #(Facn(x)/∼k)

where Facn(x) is the set of factors of length n occurring in x.

2.2. Context of this paper. The Thue–Morse word denoted by t is the fixed point starting
with 0 of the morphism ϕ. In [28, Thm. 13], it is shown that t has a bounded k-binomial
complexity. Actually, this behavior occurs for all morphisms where images of letters are
permutations of the same word.

Theorem 4. [28] Let k ≥ 1. There exists Ck > 0 such that the k-binomial complexity of the
Thue–Morse word satisfies bt,k(n) ≤ Ck for all n ≥ 0.

In the same paper, the following remark was made, [28, Rem. 5].

Remark 5. By computer experiments, bt,2(n) is equal to 9 if n ≡ 0 (mod 4) and to 8
otherwise, for 10 ≤ n ≤ 1000. Moreover, bt,3(n) is equal to 21 if n ≡ 0 (mod 8) and to 20
otherwise, for 8 ≤ n ≤ 500.

Our contribution is the exact characterization of bt,k(n).

Theorem 6. Let k be a positive integer. For all n ≤ 2k − 1, we have

bt,k(n) = pt(n).

For all n ≥ 2k, we have

bt,k(n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Observe that 3 · 2k − 4 is exactly the number of words of length 2k − 1 in t, for k 6= 2.
Indeed, the factor complexity of t is well known [7, Corollary 4.10.7].

Proposition 7. [8] The factor complexity pt of the Thue–Morse word is given by pt(0) = 1,
pt(1) = 2, pt(2) = 4 and for n ≥ 3,

pt(n) =

{
4n − 2 · 2m − 4, if 2 · 2m < n ≤ 3 · 2m;
2n + 4 · 2m − 2, if 3 · 2m < n ≤ 4 · 2m.

There are 2 factors of length 1 = 21 − 1 and 6 factors of length 3 = 22 − 1. The number of
factors of t of length 2k − 1 for k ≥ 3 is given by 2(2k − 1) + 4 · 2k−2 − 2 = 3 · 2k − 4,

(pt(2
k − 1))k≥0 = 1, 2, 6, 20, 44, 92, 188, 380, 764, 1532, . . .

which is exactly one of two values stated in our main result, Theorem 6.
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2.3. Basic facts about binomial coefficients. We collect some standard results about
binomial coefficients.

Lemma 8. Let u, v be two words and let a, a′ be two letters. Then we have
(
au

a′v

)
=

(
u

a′v

)
+ δa,a′

(
u

v

)

and (
ua

va′

)
=

(
u

va′

)
+ δa,a′

(
u

v

)
.

Lemma 9. Let s, t, w be three words over A. Then we have
(
sw

t

)
=

∑

uv=t
u,v∈A∗

(
s

u

)(
w

v

)
.

As a consequence of this lemma, the k-binomial equivalence is a congruence. Assume that
u1 ∼k u2 and v1 ∼k v2, then u1v1 ∼k u2v2.

Lemma 10 (Cancellation property). Let u, v, w be three words. We have

v ∼k w ⇔ u v ∼k uw and v ∼k w ⇔ v u ∼k wu .

Proof. Since ∼k is a congruence, we only have to prove that the condition is sufficient. Assume
that v ≁k w. There exists a shortest word t, of length at most k, such that

(
v

t

)
6=

(
w

t

)
.

We compute

(1)

(
uv

t

)
=

∑

rs=t
r,s∈A∗

(
u

r

)(
v

s

)
=

(
u

t

)
+

∑

rs=t
r,s∈A+

(
u

r

)(
v

s

)
+

(
v

t

)
.

In the above formula,
(v
s

)
=

(w
s

)
for all s shorter than t. Hence, we get exactly the same

decomposition for
(uw

t

)
except for the last term. Thus,

(
uv

t

)
−

(
uw

t

)
=

(
v

t

)
−

(
w

t

)
6= 0 .

This means that uv ≁k uw. Proceed similarly for the second equivalence or observe that
(
x̃

ỹ

)
=

(
x

y

)

where x̃ is the reversal of x. �

Lemma 11. Let u, v, u′, v′ be four words such that u ∼k−1 u′ but u ≁k u′ and v ∼k v′, then
uv ≁k u′v′.

Proof. There exists a word of length k such that
(
u
t

)
6=

(
u′

t

)
but equality holds for all words

shorter than t. One may apply exactly the same reasoning as in (1). �



6 MARIE LEJEUNE, JULIEN LEROY, AND MICHEL RIGO

3. Occurrences of subwords in images by ϕ

The aim of this section is to obtain an expression for coefficients of the form
(ϕ(w)

u

)
. Even

though we are mainly interested in the Thue–Morse word, our observations can be applied to
any non-erasing morphism as summarized by Theorem 24.

A multiset is just a set where elements can be repeated with a (finite) integer multiplicity.
If x belongs to a multiset M , its multiplicity is denoted by mM (x) or simply m(x). If x 6∈ M ,
then mM (x) = 0. If we enumerate the elements of a multiset, we adopt the convention to
write multiplicities with indices. The multiset sum M ⊎ N of two multisets M,N is the
union of the two multisets and the multiplicity of an element is equal to the sum of the
respective multiplicities, i.e., for x ∈ M ∪ N , mM⊎N (x) = mM(x) + mN (x). For instance,
{12, 31, 43} ⊎ {13, 21, 34} = {15, 21, 35, 43}.

Let us start with an introductory example. We hope that this example will forge the
intuition of the reader about the general scheme.

Example 12. We want to compute
(
ϕ(0110001)

u

)
with u = 01011 .

The word w = ϕ(0110001) belongs to {01, 10}∗ . It can be factorized with consecutive blocks
b1b2 · · · b7 of length 2. To count the number of occurrences of the subword u in the image by
ϕ of a word, several cases need to be taken into account:

• the five symbols of u appear in pairwise distinct 2-blocks of w (each 2-block contains
both 0 and 1 exactly once), and there are

(
|w|/2

|u|

)
=

(
7

5

)

such choices;
• the prefix 01 of u is one of the 2-blocks bi of w and the last three symbols of u appear in
subsequent pairwise distinct 2-blocks bj, j > i. Since ϕ(0) = 01, we have to count the
number of occurrences of the subword 0z, for all words z of length 3, in the preimage
of w. There are ∑

z∈A3

(
0110001

0z

)
=

(
6

3

)
+ 1

such choices;
• the first symbol of u appear in a 2-block, the first occurrence of 10 in u appears as
a whole 2-block and the last two symbols 11 occur in subsequent pairwise distinct
2-blocks. There are

∑

x∈A

∑

z∈A2

(
0110001

x1z

)
=

(
5

2

)
+

(
2

1

)(
4

2

)

such choices;
• the first two symbols of u appear in distinct 2-blocks, the second occurrence of 01 in
u appears as a whole 2-block and the last symbol 1 occurs in a subsequent 2-block.
There are

∑

x∈A2

∑

z∈A

(
0110001

x0z

)
=

(
3

2

)(
3

1

)
+

(
4

2

)(
2

1

)
+

(
5

2

)
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such choices;
• finally, u can appear as two 2-blocks ϕ(0) followed by a single letter occurring in a
subsequent 2-block. There are

∑

z∈A

(
0110001

00z

)
=

(
3

1

)
+

(
2

1

)(
2

1

)
+

(
3

1

)

such choices.

The general scheme behind this computation is expressed by Theorem 20 given below.
The reader can already feel that we need to take into account particular factorizations of u
with respect to occurrences of a factor ϕ(0) or ϕ(1). The five cases discussed in Example 12
correspond to the following factorizations of u:

01011, ϕ(0)011, 0ϕ(1)11, 01ϕ(0)1, ϕ(0)ϕ(0)1

We thus introduce the notion of a ϕ-factorization.

Definition 13 (ϕ-factorization). If a word u ∈ A∗ contains a factor 01 or 10, then it can be
factorized as

(2) u = w0 ϕ(a1)w1 · · ·wk−1 ϕ(ak)wk

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗ (some of these words are possibly empty).
We call this factorization, a ϕ-factorization of u. It is coded by the k-tuple of positions where
the ϕ(ai)’s occurs:

κ = (|w0|, |w0ϕ(a1)w1|, |w0ϕ(a1)w1ϕ(a2)w2|, . . . , |w0ϕ(a1)w1ϕ(a2)w2 · · ·wk−1|) .

The set of all the ϕ-factorizations of u is denoted by ϕ-Fac(u).

Since |ϕ(a)| = 2, for all a ∈ A, observe that if (i1, . . . , ik) codes a ϕ-factorization, then
ij+1 − ij ≥ 2 for all j. Note that u starts with a prefix 01 or 10 if and only if there are
ϕ-factorizations of u coded by tuples starting with 0.

Example 14. Consider the word 010110. It has 9 ϕ-factorizations. These factorizations and
the coding tuples are depicted in Figure 1.

010110

(01)0110
(0)

(01)(01)10
(0,2)

(01)(01)(10)
(0,2,4)

(01)01(10)
(0,4)

0(10)110
(1)

0(10)1(10)
(1,4)

01(01)10
(2)

01(01)(10)
(2,4)

0101(10)
(4)

Figure 1. The tree of ϕ-factorizations of 010110.
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We define a map f from A∗ to the set of finite multisets of words over A∗. This map is
defined as follows.

Definition 15. If u ∈ 0∗ ∪ 1∗, then f(u) = ∅ (the meaning for this choice will be clear with
Theorem 20). If u is not of this form, it contains a factor 01 or 10. With every ϕ-factorization
κ ∈ ϕ-Fac(u) of u of the form (2)

u = w0 ϕ(a1)w1 · · ·wk−1 ϕ(ak)wk

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗, we define the language

L(u, κ) := A|w0| a1 A
|w1| · · ·A|wk−1|akA

|wk|

of words of length |u|−k (there are 2|u|−2k of these words1). Such a language is considered as
a multiset whose elements have multiplicities equal to 1. Now, f(u) is defined as the multiset
sum (i.e., we sum the multiplicities) of the above languages for all ϕ-factorizations of u, i.e.,

f(u) :=
⊎

κ∈ϕ-Fac(u)

L(u, κ) .

Note that for u 6∈ 0∗ ∪ 1∗, f(u) only contains words of length less than |u|. In particular,
since there always exist ϕ-factorizations coded by a 1-tuple, then f(u) contains words of length

|u| − 1. If |u| ≥ 2, the languages of the form A|w0|a1A
|w1| associated with this ϕ-factorization

coded by a 1-tuple contains at least one word not in 0∗ ∪ 1∗ because |w0|+ |w1| = |u| − 1 ≥ 1.

Example 16. Consider the word u = 01011. It has four ϕ-factorizations of the form (2)

(01)011, 0(10)11, 01(01)1, (01)(01)1 .

The first three are coded respectively by the 1-tuples (0), (1) and (2). The last one is coded
by (0, 2). The corresponding four languages are

0A3 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111},

A 1A2 = {0100, 0101, 0110, 0111, 1100, 1101, 1110, 1111},

A2 0A = {0000, 0001, 0100, 0101, 1000, 1001, 1100, 1101},

00A = {000, 001} .

Consequently, f(u) is the multiset (multiplicities are indicated as indices)

{0001, 0011, 00002, 00012, 00101, 00111, 01003, 01013, 01102, 01112,

10001, 10011, 11002, 11012, 11101, 11111}.

Definition 17. Now that f is defined over A∗, we can extend it to any finite multiset M
of words over A. It is the multiset sum of the f(v)’s, for all v ∈ M , repeated with their
multiplicities.

Example 18. Continuing Example 16 with u = 01011, we get

f2(u) = {004, 012, 102, 00020, 00116, 01028, 01124, 10012, 1018, 11020, 11116}

and

f3(u) = {02, 12, 0076, 01100, 1044, 1168} .

Observe that if we apply f an extra time, f4(u) = {0100, 144} and for all n ≥ 5, fn(u) = ∅.

1We have all the words of length |u| − k where in k positions the occurring symbol is given.
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Remark 19. The observation made in the previous example is general. If u does not belong
to 0∗ ∪ 1∗, then f |u|−2(u) contains only elements in {0, 1, 00, 01, 10, 11} and f |u|−1(u) contains
only elements in {0, 1}. For n ≥ |u|, fn(u) is empty.

Recall that f(u) is a multiset. Hence mf(u)(v) denotes the multiplicity of v as element of
f(u).

Theorem 20. With the above notation, for all words u,w, we have
(
ϕ(w)

u

)
=

(
|w|

|u|

)
+

∑

κ∈ϕ-Fac(u)
v∈L(u,κ)

(
w

v

)
=

(
|w|

|u|

)
+

∑

v∈f(u)

mf(u)(v)

(
w

v

)
.

Proof. The reader should probably reconsider the introductory Example 12. The result di-
rectly follows from the definitions of ϕ-factorization and L(u, κ). If u belongs to 0∗ ∪ 1∗, then
there is no ϕ-factorization of u. The stated formula is reduced to the first term: we have
to pick the symbols of u in pairwise distinct 2-blocks of ϕ(w). Otherwise, we also have to
consider all the cases corresponding to the ϕ-factorizations of u where some factors of u are
realized by ϕ(0) or ϕ(1). �

Corollary 21. Let k ≥ 1. For all words u, v, we have

u ∼k v ⇒ ϕ(u) ∼k+1 ϕ(v) .

Proof. Let t be a word of length at most k + 1. From Theorem 20, we have
(
ϕ(u)

t

)
=

(
|u|

|t|

)
+

∑

s∈f(t)

mf(t)(s)

(
u

s

)
.

For all s ∈ f(t), we have |s| ≤ k and thus
(u
s

)
=

(v
s

)
. The conclusion follows since |u| = |v|. �

Theorem 20 can be extended to iterates of ϕ. If we apply it twice, we get
(
ϕ2(w)

u

)
=

(
|ϕ(w)|

|u|

)
+

∑

v∈f(u)

mf(u)(v)

(
ϕ(w)

v

)

=

(
|ϕ(w)|

|u|

)
+

∑

v∈f(u)

mf(u)(v)



(
|w|

|v|

)
+

∑

z∈f(v)

mf(v)(z)

(
w

z

)


=

(
|ϕ(w)|

|u|

)
+

∑

v∈f(u)

mf(u)(v)

(
|w|

|v|

)
+

∑

x∈f2(u)

mf2(u)(x)

(
w

x

)
.

The last equality comes from the fact that
∑

v∈f(u)

∑

z∈f(v)

mf(u)(v)mf(v)(z) =
∑

x∈f2(u)

mf2(u)(x) .

Indeed, z appears mf(v)(z) times in the multiset f(v) and v itself appears mf(u)(v) times in

f(u). Thus z appears mf(u)(v)mf(v)(z) in f2(u).

We set f0(u) = {u} (where u has multiplicity one).
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Corollary 22. With the above notation, for ℓ ≥ 1 and all words u,w, we have
(
ϕℓ(w)

u

)
=

ℓ−1∑

i=0

∑

v∈f i(u)

mf i(u)(v)

(
|ϕℓ−i−1(w)|

|v|

)
+

∑

x∈fℓ(u)

mfℓ(u)(x)

(
w

x

)
.

Proof. Proceed by induction on ℓ. �

When proving that two words x, y are not k-binomially equivalent, it is convenient to find
a word u of length k such that the difference

(x
u

)
−
(y
u

)
is non-zero. It is therefore interesting

to make the following observation.

Remark 23. Since |ϕi(w)| = 2i|w|, note that the first of the two terms in the above Corollary
only depends on |w| and u. Otherwise stated, if w,w′ are two words of the same length, then

(
ϕℓ(w)

u

)
−

(
ϕℓ(w′)

u

)
=

∑

x∈fℓ(u)

mfℓ(u)(x)

[(
w

x

)
−

(
w′

x

)]
.

The reader should be convinced that the following general statement holds.

Theorem 24. Let Ψ : A∗ → B∗ be a non-erasing morphism and u ∈ B+, w ∈ A+ be two
words.

(
Ψ(w)

u

)
=

|u|∑

k=1

∑

u1,...,uk∈A
+

u=u1···uk

∑

a1,...,ak∈A

(
Ψ(a1)

u1

)
· · ·

(
Ψ(ak)

uk

)(
w

a1 · · · ak

)
.

The word u occurs as a subword of Ψ(w) if and only if there exists k ≥ 1 such that u can
be factorized into u1 · · · uk where, for all i, ui is a non-empty subword occurring in Ψ(ai) for
some letter ai and such that a1 · · · ak is a subword of w.

Corollary 25. With the above notation, if w and w′ are two words of the same length, we
have
(
Ψ(w)

u

)
−

(
Ψ(w′)

u

)
=

|u|∑

k=1

∑

u1,...,uk∈A
+

u=u1···uk

∑

a1,...,ak∈A

(
Ψ(a1)

u1

)
· · ·

(
Ψ(ak)

uk

)[(
w

a1 · · · ak

)
−

(
w′

a1 · · · ak

)]
.

4. About multiplicities

In this section we give more insight about multiplicities of the form mfℓ(u)(x) appearing in

Corollary 22. This will permit us to prove results about k-binomially (non)-equivalent factors
of the Thue–Morse word of the form ϕk(a).

Lemma 26. Let w be a word. Let M be a (finite) multiset of words such that u belongs to
M if and only if its complement u belongs to M with the same multiplicity. For all i ≥ 0, the
multiplicity of w in f i(M) is equal to the one of w.

Proof. Let u be a word in M . Because of the special form of the morphism ϕ, we deduce
that the set of tuples coding the ϕ-factorizations of u is equal to the set of tuples coding
the ϕ-factorizations of u. Moreover, a word v belongs to L(u, κ) if and only if v belongs to
L(u, κ). Indeed, these two languages are respectively of the form

A|w0| a1A
|w1| · · ·A|wk−1|akA

|wk| and A|w0| a1 A
|w1| · · ·A|wk−1|akA

|wk| .
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Think about Example 16 and consider the word u = 10100,

u = (01)011, 0(10)11, 01(01)1, (01)(01)1

and

u = (10)100, 1(01)00, 10(10)0, (10)(10)0 .

For instance, the third ϕ-factorization gives, respectively, the languages

A2 0A and A2 1A .

Let w be a word over A. Since u and u have the same multiplicity, the total number of times
w occurs in the m(u) copies of L(u, κ) is equal to the number of times w occurs in the copies
of L(u, κ). This observation holds true for every ϕ-factorization. Consequently f(M) has
the same property as M : words and their complement appear with the same multiplicity in
f(M). We can thus iterate the construction and the argument. �

Example 27. Consider the multiset M = {0112, 1002, 01101, 10011}. In f(M) the words 00
and 11 have multiplicity 2, 01 and 10 have multiplicity 3 and all words of length 3 appear
twice. Then

f2(M) = {03, 13, 008, 118, 018, 108} .

Proposition 28. For all n ≥ 1, the multiplicity of 01 (resp., of 00) in the multiset fn(01n+1) =
fn−1(0An) is larger than the one of 10 (resp., of 11). More precisely, these multiplicities in
the multiset fn(01n+1) satisfy

m(01)−m(10) = m(00) −m(11) = 1 · 2 · 4 · 8 · · · 2n−1 = 2n(n−1)/2.

Proof. We proceed by induction on n. For n = 1, f0(0A) = {00, 01} and the result is obvious.
Let n ≥ 2. Assume that the result holds for all j < n. We consider fn−1(0An).

Note that 0An is the disjoint union of {00u | u ∈ An−1} and {01u | u ∈ An−1}. These two
sets are in one-to-one correspondence with the map 0w 7→ 0w. Since we proceed by induction,
let us start by applying f once. We will apply fn−2 later on.

Let u ∈ An−1. First observe that there is a one-to-one correspondence between the set
of ϕ-factorizations of 00u and the set of ϕ-factorizations of 01u coded by tuples whose first
element is at least equal to 1. In this case, we have exactly the same tuples. For instance,
consider the word u = 1011.

00u = 001011 κ 01u = 010100
0(01)011 (1) 0(10)100
00(10)11 (2) 01(01)00
001(01)1 (3) 010(10)0
0(01)(01)1 (1, 3) 0(10)(10)0

For each such ϕ-factorization κ of 00u, we have a language of the form

L(00u, κ) = Ai0a1A
i1 · · ·Aik−1akA

ik

with i0 ≥ 1, k ≥ 1, a1, . . . , ak ∈ A, i1, . . . , ik ≥ 0 and the corresponding ϕ-factorization of 01u
gives the language

L(01u, κ) = Ai0a1A
i1 · · ·Aik−1akA

ik .

Observe that the union of these two languages satisfies the assumption of the previous
lemma. Thus, applying iteratively f to the words belonging to these languages will eventually
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m(01) m(10) m(01) −m(10)
1 1 0 1 = 20

2 3 1 2 = 21

3 28 20 8 = 23

4 800 736 64 = 26

5 61952 60928 1024 = 210

6 11812864 11780096 32768 = 215

7 5285871616 5283774464 2097152 = 221

Table 1. Multiplicities in fn−1(0An).

provide words 01 and 10 (resp., 00 and 11) with the same multiplicity. We stress the fact
that in the above ϕ-factorizations, i0 is non-zero.

We still have to consider the ϕ-factorizations of 01u coded with tuples starting with 0
(these are the only remaining ones). With the running example u = 1011, we have the extra
three ϕ-factorizations:

(01)0100, (01)(01)00, (01)0(10)0 .

Let us consider ϕ-factorizations of 01u coded by a k-tuple starting with 0 and for k ≥ 2.
Thus the resulting languages are made of words of length at most |u|+2−k = n+1−k ≤ n−1.
By Remark 19, applying fn−2 to words of such lengths will only provide words in {0, 1}.
Hence, they do not provide any copy of 00, 01, 10 or 11.

We finally have the ϕ-factorization of 01u coded by the 1-tuple (0). The corresponding

language L(01u, (0)) is 0A|u|. Recall that u (and thus u) is ranging over An−1. Thus there
are 2n−1 copies of this language. By induction hypothesis, the difference of multiplicities for
01 and 10 (resp., 00 and 11) for fn−2(0An−1) is 1 · 2 · · · 2n−2. Multiplying the latter number
by the number of copies provides us with the result. �

Table 1 provides the computed multiplicities of 01 and 10 in fn−1(0An) for the first few
values of n. We also indicate the corresponding differences given in the previous proposition.

Proposition 29. For all n ≥ 1, the multiplicity of 0 in the multiset fn(01n+1) = fn−1(0An)
is larger than or equal to the multiplicity of 1.

Proof. For n = 1, 2, there is no 0 and no 1 in fn(01n+1). Assume n ≥ 3. The multiplicity
of 0 (resp., 1) in the multiset fn(01n+1) is equal to the multiplicity of 01 (resp., 10) in
fn−1(01n+1) = fn−2(0An). One can thus follow the lines of the proof of Proposition 28
except for ϕ-factorizations starting with 0 and for k ≥ 2 where a more careful discussion is
needed.

Consider the ϕ-factorizations of the words 01u of length n+ 1 coded by a k-tuple starting
with 0 and for k ≥ 2. If k > 2, when applying f once, the resulting languages are made
of words of length less than n − 1 and applying fn−3 to these words will provide no 01 nor
10. But for k = 2, applying f once to all such words, we get the multiset 0An−2 where
each word has multiplicity 2n−3. Indeed, the word u is ranging over An−1 and we consider
ϕ-factorizations where one replacement of 01 or 10 is made inside u. For all i, j ≤ n − 3, we
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have

#{x01y ∈ An−1 | |x| = i} = #{x01y ∈ An−1 | |x| = j}

= #{x10y ∈ An−1 | |x| = i} = #{x10y ∈ An−1 | |x| = j} = 2n−3.

To conclude the proof, observe that the difference of multiplicity of 01 and 10 in fn−3(0An−2)
is obtained from the previous proposition. �

4.1. Some consequences for the factors of Thue–Morse. We collect some important
properties of iterates of ϕ with respect to the k-binomial equivalence ∼k. A trace of the first
result below can be found in [23].

Lemma 30 (Ochsenschläger). Let k ≥ 1. We have

ϕk(0) ∼k ϕk(1) and ϕk(0) ≁k+1 ϕ
k(1) .

In particular, if |u| = |v|, then ϕk(u) ∼k ϕk(v).

Proof. We have ϕ(0) ∼1 ϕ(1). Thus the first part follows from Corollary 21.

Let us show that ϕk(0) ≁k+1 ϕk(1). The case k = 1 is obvious: 01 ≁2 10. Observe that
f(01k) = 0Ak−1 thus fk−1(01k) = fk−2(0Ak−1). Using Remark 23, we compute

(
ϕk(0)

01k

)
−

(
ϕk(1)

01k

)

and get
(
ϕk−1(ϕ(0))

01k

)
−

(
ϕk−1(ϕ(1))

01k

)
=

∑

v∈fk−1(01k)

mfk−1(01k)(v)

[(
ϕ(0)

v

)
−

(
ϕ(1)

v

)]
.

The elements of the multiset fk−1(01k) belong to {0, 1, 00, 01, 10, 11}. The last factor in
brackets in the previous sum is non-zero only if v = 01 or v = 10. Hence, we get

(
ϕk(0)

01k

)
−

(
ϕk(1)

01k

)
= mfk−1(01k)(01) −mfk−1(01k)(10) = 2(k−1)(k−2)/2 ≥ 1 .

The last equality comes from Proposition 28. �

Lemma 31 (Transfer lemma). Let k ≥ 1. Let u, v, v′ be three non-empty words such that
|v| = |v′|. We have

ϕk−1(u)ϕk(v) ∼k ϕk(v′)ϕk−1(u) .

Proof. Observe that uϕ(v) ∼1 ϕ(v
′)u because v and v′ have the same length. The conclusion

follows from Corollary 21: ϕk−1(uϕ(v)) ∼k ϕk−1(ϕ(v′)u). �

Corollary 32. Let k ≥ 1 and n ≥ 2. Let u1, . . . , un be non-empty words. Let i1, . . . , in be
integers greater than or equal to k, except for one of these being equal to k − 1 and denoted
by ir. For all permutations ν of {1, . . . , n}, we have

ϕi1(u1)ϕ
i2(u2) · · ·ϕ

in(un) ∼k ϕiν(1)(u′ν(1))ϕ
iν(2)(u′ν(2)) · · ·ϕ

iν(n)(u′ν(n))

for all words u′1, . . . , u
′
n where |ui| = |u′i|, for all i, and uir = u′ir .

Proof. It is enough to see that one can permute any two consecutive factors: any permutation
is a product of such type of transpositions. This is a direct consequence of the two previous
lemmas. �
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5. 2-binomial complexity

In this section we compute the value of bt,2(n). First of all, the next proposition ensures us
that all the words we will consider in the proof of Theorem 34 really appear as factors of t.
The reader familiar with Büchi’s theorem and the characterization of k-automatic sequence
in terms of first-order logic can obtain an alternative proof of this result. Basically, one has
to check that the four closed formulas (for a, b ∈ {0, 1})

(∀m)(∃i)(ti = a ∧ ti+m+1 = b)

hold. This can be done automatically using the Walnut package [22]. Here, we proceed with
a classical proof relying on the definition of the Thue–Morse word in terms of the base-2
sum-of-digits function. We let rep2(n) denote the base-2 expansion of n. If n > 0, we assume
that rep2(n) starts with a 1 (i.e., has no leading zeroes).

Proposition 33. Let k,m ∈ N and a, b ∈ {0, 1}. Let pu be a suffix of ϕk(a) and su be a
prefix of ϕk(b). There exists z ∈ {0, 1}m such that puϕ

k(z)su is a factor of t.

Proof. Let a, b ∈ {0, 1},m ∈ N. We will prove that there exists z ∈ {0, 1}m such that
azb ∈ Fac(t). Therefore, ϕk(a)ϕk(z)ϕk(b) (and thus, puϕ

k(z)su) is a factor of t. We set
ℓ = | rep2(m+ 1)|.

For all n ∈ N, we let tn denote the (n + 1)th letter of t. From [3], we know that

tn = | rep2(n)|1 mod 2.

The idea of the proof is to find x ∈ N such that tx = a and tx+m+1 = b. Eight cases have
to be considered depending on the parity of a, b, ℓ. Let us first assume a = b = 0.

If | rep2(m+ 1)|1 ≡ 0 (mod 2), we can take x = 2ℓ+1 + 2ℓ+2, so tx = 0, rep2(x+m+ 1) =
110 · rep2(m+1) where · is just the concatenation product and thus, evaluating the parity of
1’s in the expansion, we get tx+m+1 = 0.

Otherwise, | rep2(m+ 1)|1 ≡ 1 (mod 2) and we can set x = 2ℓ−1 + 2ℓ+1. Thus, we have to
take care of a carry for 2ℓ−1 + 2ℓ−1 = 2ℓ and

rep2(x+m+ 1) = 110 · 0j rep2(m+ 1− 2ℓ−1)

where j = ℓ− 1− | rep2(m+ 1− 2ℓ−1)| and thus, tx+m+1 = 1.
The other cases are similarly treated. If a = 0, b = 1, one can verify that

x =

{
2ℓ+1 + 2ℓ+2, if | rep2(m+ 1)|1 ≡ 1 (mod 2);
2ℓ+1 + 2ℓ−1, otherwise.

is convenient. Similarly, if a = 1, b = 0, we can set

x =

{
2ℓ+1, if | rep2(m+ 1)|1 ≡ 1 (mod 2);
2ℓ−1, otherwise.

and finally, if a = b = 1, then take

x =

{
2ℓ+1, if | rep2(m+ 1)|1 ≡ 0 (mod 2);
2ℓ−1, otherwise.

�

Using this result, we can compute the values of bt,2.
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Theorem 34. [17, Thm. 3.3.6] We have bt,2(0) = 1, bt,2(1) = 2, bt,2(2) = 4, bt,2(3) = 6 and
for all n ≥ 4,

bt,2(n) =

{
9, if n ≡ 0 (mod 4);
8, otherwise.

Proof. Assume n ≥ 4. First observe that, for all words u, v of the same length,

u ∼2 v ⇔

(
u

0

)
=

(
v

0

)
and

(
u

01

)
=

(
v

01

)
.

Indeed, this is due to the fact that
(u
1

)
= |u| −

(u
0

)
,
( u
aa

)
=

(|u|a
2

)
for every a ∈ {0, 1} and(

u
10

)
=

(
|u|
2

)
−

(
u
00

)
−

(
u
01

)
−

(
u
11

)
.

We will consider four cases depending on the value of λ ∈ {0, 1, 2, 3} such that n ≡ λ
(mod 4). For every one of them, we will compute

bt,2(n) = #

{((
u

0

)
,

(
u

01

))
∈ N× N : u ∈ Facn(t)

}
.

Since t is the fixed point of the morphism ϕ, we know that every factor u of length n of t
can be written puϕ

2(z)su for some z ∈ A∗ and pu (resp., su) suffix (resp., prefix) of a word
in {ϕ2(0), ϕ2(1)}. From the previous proposition, we also know that every word of that form
occurs at least once in t. Moreover, we have |pu| + |su| ∈ {λ, λ + 4} and, as a consequence,
|z| =

⌊
n
4

⌋
= n−λ

4 or |z| =
⌊
n
4

⌋
− 1. Set ℓ = n−λ

4 .
Let us first consider the case λ = 0. We have

Facn(t) = {ϕ2(az), 0ϕ2(z)011, 0ϕ2(z)100, 1ϕ2(z)011, 1ϕ2(z)100,

01ϕ2(z)01, 01ϕ2(z)10, 10ϕ2(z)01, 10ϕ2(z)10,

110ϕ2(z)0, 110ϕ2(z)1, 001ϕ2(z)0, 001ϕ2(z)1 : z ∈ Aℓ−1, a ∈ A, az ∈ Fac(t)}

Let us illustrate the computation of
((

u
0

)
,
(
u
01

))
on u = 0ϕ2(z)011 ∈ Facn(t). Firstly,

(
u

0

)
=

(
0

0

)
+

(
ϕ2(z)

0

)
+

(
011

0

)
= 2 + 2|z| = 2ℓ

since |z| = ℓ− 1. Similarly, we have

(
u

01

)
=

(
0

01

)
+

(
ϕ2(z)

01

)
+

(
011

01

)
+

(
0

0

)(
ϕ2(z)

1

)
+

(
0

0

)(
011

1

)
+

(
ϕ2(z)

0

)(
011

1

)

=

(
|ϕ(z)|

2

)
+

(
ϕ(z)

0

)
+ 2 + |ϕ(z)| + 2 + 2|ϕ(z)|

= |z|(2|z| − 1) + |z|+ 6|z| + 4 = 2ℓ2 + 2ℓ.
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All the computations are summarized in the table below. We give the form of the factors
and respective values for the pairs

((u
0

)
,
( u
01

))
.

Case ϕ2(az) 0ϕ2(z)011 1ϕ2(z)100 0ϕ2(z)100 001ϕ2(z)0
01ϕ2(z)10 001ϕ2(z)1 110ϕ2(z)0
10ϕ2(z)01(u

0

)
2ℓ 2ℓ 2ℓ 2ℓ+ 1 2ℓ+ 1(

u
01

)
2ℓ2 2ℓ2 + 2ℓ 2ℓ2 − 2ℓ 2ℓ2 − 1 2ℓ2

Case 1ϕ2(z)011 110ϕ2(z)1 01ϕ2(z)01 10ϕ2(z)10(
u
0

)
2ℓ− 1 2ℓ− 1 2ℓ 2ℓ( u

01

)
2ℓ2 2ℓ2 + 1 2ℓ2 + 1 2ℓ2 − 1

This is thus clear that if n ≡ 0 (mod 4), we have bt,2(n) = 9.
Let us now present the results in the case λ = 1. Let a be a letter and z be any word of

Aℓ−1. We obtain the results below, showing that bt,2(n) = 8.

Case ϕ2(az)0 0ϕ2(az) ϕ2(az)1 1ϕ2(az)
01ϕ2(z)100 110ϕ2(z)01 10ϕ2(z)011 001ϕ2(z)10(u

0

)
2ℓ+ 1 2ℓ+ 1 2ℓ 2ℓ( u

01

)
2ℓ2 2ℓ2 + 2ℓ 2ℓ2 + 2ℓ 2ℓ2

Case 10ϕ2(z)100 001ϕ2(z)01 01ϕ2(z)011 110ϕ2(z)10(u
0

)
2ℓ+ 1 2ℓ+ 1 2ℓ 2ℓ( u

01

)
2ℓ2 − 1 2ℓ2 + 2ℓ+ 1 2ℓ2 + 2ℓ+ 1 2ℓ2 − 1

In the case of λ = 2, if z is a word of Aℓ−1 and if a is a letter, we obtain bt,2(n) = 8 due
to the following results:

Case ϕ2(az)01 ϕ2(az)10 1ϕ2(az)1 0ϕ2(az)0
01ϕ2(az) 10ϕ2(az) 110ϕ2(z)011 001ϕ2(z)100(u

0

)
2ℓ+ 1 2ℓ+ 1 2ℓ 2ℓ+ 2( u

01

)
2ℓ2 + 2ℓ+ 1 2ℓ2 + 2ℓ 2ℓ2 + 2ℓ 2ℓ2 + 2ℓ

Case 1ϕ2(az)0 0ϕ2(az)1 001ϕ2(z)011 110ϕ2(z)100(u
0

)
2ℓ+ 1 2ℓ+ 1 2ℓ+ 1 2ℓ+ 1( u

01

)
2ℓ2 2ℓ2 + 4ℓ+ 1 2ℓ2 + 4ℓ+ 2 2ℓ2 − 1

Finally, if λ = 3 and using the same notation, we obtain that bt,2(n) = 8 due to the
following computations,

Case ϕ2(az)011 110ϕ2(az) ϕ2(az)100 001ϕ2(az)
01ϕ2(az)1 1ϕ2(az)10 10ϕ2(az)0 0ϕ2(az)01(u

0

)
2ℓ+ 1 2ℓ+ 1 2ℓ+ 2 2ℓ+ 2( u

01

)
2ℓ2 + 4ℓ+ 2 2ℓ2 + 2ℓ 2ℓ2 + 2ℓ 2ℓ2 + 4ℓ+ 2

Case 1ϕ2(az)01 10ϕ2(az)1 0ϕ2(az)10 01ϕ2(az)0(u
0

)
2ℓ+ 1 2ℓ+ 1 2ℓ+ 2 2ℓ+ 2( u

01

)
2ℓ2 + 2ℓ+ 1 2ℓ2 + 4ℓ+ 1 2ℓ2 + 4ℓ+ 1 2ℓ2 + 2ℓ+ 1

which concludes the proof. �
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6. How to cut factors of the Thue–Morse word

Computing bt,k(n), for all k ≥ 3, will require much more knowledge about the factors of t.
This section is concerned about particular factorizations of factors occurring in t.

Since t is a fixed point of ϕ, it is very often convenient to view t as a concatenation of
blocks belonging to {ϕk(0), ϕk(1)}. Hence, we first define a function bark that roughly plays
the role of a ruler marking the positions where a new block of length 2k occurs (these positions
are called cutting bars of order k). For all k ≥ 1, let us consider the function bark : N → N

defined by
bark(n) = |ϕk(t[0,n))| = n · 2k,

where t[0,n) is the prefix of length n of t.
Given a factor u of t, we are interested in the relative positions of bark(N) in u: we look

at all the occurrences of u in t and see what configurations can be achieved, that is how an
interval I such that tI = u can intersect bark(N).

For instance, for k = 1, the word u = 010 occurs in t with two different factorizations:

(3)

t = ϕ(0) ϕ(1) ϕ(1) ϕ(0) ϕ(1) ϕ(0) ϕ(0) ϕ(1) · · ·
= 01 10 10 01 10 01 01 10 · · ·

= 01 · 1 0 · 10 · 01 · 10 · 01 · 0 1 · 10 · · ·

The first occurrence of 010 is obtained as a suffix of ϕ(11) and the second one as a prefix of
ϕ(00). The dots represented in the above figure are representing the cutting bars (of order 1)
of the substitution. So, we see that for the factor 010, two kinds of configurations of the
cutting bars can be achieved.

Definition 35 (Cutting set). For all k ≥ 1, we define the set Cutk(u) of non-empty sets of
relative positions of cutting bars

Cutk(u) :=

{(
[i, i + |u|] ∩ bark(N)

)
− i | i ∈ N, u = t[i,i+|u|)

}
.

A cutting set of order k is an element of Cutk(u). Observe that we consider the closed interval
[i, i + |u|] because we are also interested in knowing if the end of u coincide with a cutting
bar.

To continue with our example, we have Cut1(010) = {{1, 3}, {0, 2}}, meaning that u con-
tains two cutting bars and the first one is situated before or after the first letter. We also
represent this by

Cut1(010) = {0 · 10 ·, · 01 · 0}.

Remark 36. Let u be a factor of t. Observe that, for all ℓ ≥ 1, Cutℓ(u) 6= ∅. It results
from the following three observations. Obviously, bark(N) ⊂ bark−1(N) and thus if Cutk(u)
is non-empty, then the same holds for Cutk−1(u).

Next notice that if Cutk(u) contains a singleton, then Cutk+1(u) contains a singleton.
Indeed, we can write u = u1u2 with u1 a suffix of ϕk(a), u2 a prefix of ϕk(b). Thus u1 is a
suffix of ϕk+1(a) and u2 is a prefix of ϕk+1(b).

Finally, there exists a unique k such that 2k−1 ≤ |u| ≤ 2k − 1. There also exists i such that
u = t[i,i+|u|). Simply notice that either [i, i+|u|]∩bark(N) is a singleton or, [i, i+|u|]∩bark−1(N)
is a singleton. The conclusion follows.

Observe that for any word u and any set C ∈ Cutk(u), there is a unique integer r ∈
{0, 1, . . . , 2k − 1} such that C ⊂ 2kN+ r.
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Lemma 37. Let k be a positive integer, u be a factor of t and C = {i1 < i2 < · · · < in} be
a set in Cutk(u). There is a unique factor v of t of length n− 1 such that u = pϕk(v)s, with
|p| = i1. Furthermore, if i1 > 0 (resp., in < |u|), there is a unique letter a such that p (resp.,
s) is a proper suffix (resp., prefix) of ϕk(a).

Proof. Since u[i1,in) belongs to ϕk(A∗), the uniqueness of v follows from the injectivity of ϕ.

For the uniqueness of a, this follows from the fact that ϕk(0) and ϕk(1) do not have any
(non-empty) common prefix or suffix. �

Definition 38 (Factorization of order k). Given a factor u of t of length at least 2k−1, there
always exists a set C in Cutk(u). By Lemma 37, we can associate with C a unique pair

(p, s) ∈ A∗ ×A∗

and a unique triple
(a, v, b) ∈ (A ∪ {ε}) ×A∗ × (A ∪ {ε})

such that u = pϕk(v)s, where either a = p = ε (resp., b = s = ε), or a 6= ε and p is a proper
suffix of ϕk(a) (resp., b 6= ε and s is a proper prefix of ϕk(b)). In particular, we have a = p = ε
exactly when min(C) = 0 and b = s = ε exactly when max(C) = |u|. The triple (a, v, b) is
called the desubstitution of u associated with C and the pair (p, s) is called the factorization of
u associated with C. If C ∈ Cutk(u), then (a, v, b) and (p, s) are respectively desubstitutions
and factorizations of order k.

If u is a factor of t of length at least 4, then Cut1(u) contains a single set. Indeed, the
factors of length 4 of t are

{0010, 0011, 0100, 0101, 0110, 1001, 1010, 1011, 1101, 1100}.

If the word 00 or 11 occurs in u, then u necessarily has a cutting bar between the two
occurrences of 0 or of 1 and this cutting bar determines all the others, forcing the set Cut1(u)
to be a singleton. If 00 and 11 do not occur in v, then v = 0101 or v = 1010, those cases
being symmetric. If v = 0101, then the potential cutting bars are

· 01 · 01 · or 0 · 10 · 1.

However, the second case implies that the factor v occurs in t as a factor of ϕ(111). As 111
is not a factor of t, this shows that Cut1(v) = {· 01 · 01 ·}.

In the following statement, taking k ≥ 3 ensures that we consider long enough words to
have a unique set in Cut1(u).

Lemma 39. Let k ≥ 3 be an integer, u be a factor of t of length at least 2k−1. Let (a, v, b) be
the desubstitution of u associated with the unique set in Cut1(u) and let us write u = pϕ(v)s,
with p suffix of ϕ(a) and s prefix of ϕ(b). Let finally C be a set in Cutk(u).

(1) If minC < 2k − 1 and |u| −maxC < 2k − 1, then the set C ′ = (C + |p|)/2 belongs to
Cutk−1(avb);

(2) If minC = 2k−1 and |u|−maxC < 2k−1, then the set C ′ = {0}∪(C+ |p|)/2 belongs
to Cutk−1(avb);

(3) If minC < 2k − 1 and |u| −maxC = 2k − 1, then the set C ′ = {|avb|} ∪ (C + |p|)/2
belongs to Cutk−1(avb);

(4) If minC = 2k − 1 and |u| −maxC = 2k − 1, then the set C ′ = {0, |avb|} ∪ (C + |p|)/2
belongs to Cutk−1(avb).

Moreover, the application from Cutk(u) to Cutk−1(avb) that maps C to C ′ is a bijection.
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Proof. We consider the desubstitution (a0, a1a2 · · · at, at+1) associated with C. By definition,
there is a unique r ∈ {0, 1, . . . , 2k − 1} such that C = {r, r + 2k, r + 2 · 2k, . . . , r + t · 2k} and
we have

u = αϕk(a1 · · · at)β,

with α the suffix of length r of ϕk(a0) and β the prefix of length |u| − r − t · 2k of ϕk(at+1).
There exist words u1, u2, . . . , um, u′1, u

′
2, . . . , u

′
n in ϕ(A) such that

α = pu1u2 · · · um and β = u′1u
′
2 · · · u

′
ns.

Let v1, . . . , vm, v′1, . . . , v
′
n ∈ A such that ui = ϕ(vi) and u′i = ϕ(v′i) for all i. We have

(4) avb = av1 · · · vmϕk−1(a1 · · · at)v
′
1 · · · v

′
nb

and av1 · · · vm is a suffix of ϕk−1(a0) and v′1 · · · v
′
nb is a prefix of ϕk−1(at+1).

If |α|, |β| < 2k − 1, then

|av1 · · · vm| = ⌈r/2⌉ < 2k−1 and |v′1 · · · vnb| < 2k−1.

Therefore, the set C ′ ∈ Cutk−1(avb) associated with the factorization (4) is

C ′ = {⌈r/2⌉, ⌈r/2⌉ + 2k−1, . . . , ⌈r/2⌉ + t · 2k−1}.

For the other cases, if for instance |α| = 2k − 1, then |av1 · · · vm| = 2k−1, which explains why
we add 0 in C ′.

Let us show that the correspondence between C and C ′ is bijective. It is trivially surjective.
If there is some other cutting set D = {r′, r′+2k, . . . } in Cutk(u), then |r− r′| ≥ 2 since both
C and D must be included in the unique set of Cut1(u). This shows that the associated sets
C ′,D′ ∈ Cutk−1(avb) are different. �

The substitution ϕ being primitive and t being aperiodic, Mossé’s recognizability theorem
ensures that the substitution ϕk is bilaterally recognizable [20, 21] for all k ≥ 1, i.e., any
sufficiently long factor u of t can be uniquely desubstituted by ϕk (up to a prefix and a suffix
of bounded length). In the case of the Thue–Morse substitution, we can make this result more
precise. Similar results are considered in [12] where the term (maximal extensible) reading
frames is used.

Lemma 40. Let k be a positive integer. If u is a factor of t of length |u| > 3 · 2k−1, then
Cutk(u) is a singleton.

Proof. First observe that given a word u and a prefix v of u, a set of cutting bars for v can
be extended in a unique way into a set of cutting bars for u. More precisely, if v is a prefix of
u and if C belongs to Cutk(v), there is a unique set C ′ such that C ′ ∈ Cutk(u) and C ⊂ C ′.
It is thus enough to prove the result for words of length exactly 3 · 2k−1 + 1.

We proceed by induction on k. The case k = 1 has already been considered before
Lemma 39. Let us now assume that the result is true for all ℓ ≤ k and let us prove it
for k + 1. If |u| = 3 · 2k + 1, then by the induction hypothesis, Cut1(u) is a singleton and,
using Lemma 37, there is a unique factor v of t such that

(1) u is a factor of ϕ(v);
(2) u is not a factor of ϕ(v′) for any proper factor v′ of v.

Since u is a factor of ϕ(v), we have |u| ≤ 2|v| and thus, since |v| is an integer, |v| > 3 · 2k−1.
Using again the induction hypothesis and Lemma 37, there is a unique factor w of t such that

(1) v is a factor of ϕk(w);
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(2) v is not a factor of ϕk(w′) for any proper factor w′ of w.

This word w is thus the unique factor of t such that

(1) u is a factor of ϕk+1(w);
(2) u is not a factor of ϕk+1(w′) for any proper factor w′ of w.

This shows that Cutk+1(u) is a singleton. �

Lemma 41. Let k ≥ 3 be an integer and u be a factor of t of length 2k − 1 ≤ |u| ≤ 3 · 2k−1.
Then Cutk(u) is a not a singleton if and only if u is a factor of ϕk−1(010) or of ϕk−1(101),
in which case Cutk(u) = {C1, C2} and |minC1 − minC2| = 2k−1. In this case, let (p1, s1),
(p2, s2) be the two factorizations of order k respectively associated with C1, C2 ∈ Cutk(u).
Without loss of generality, assume that |p1| < |p2|. Then, there exists a ∈ A such that either

|p1|+ |s1| = |p2|+ |s2| and (p2, ϕ
k−1(a)s2) = (p1ϕ

k−1(a), s1)

or,

||p1|+ |s1| − (|p2|+ |s2|)| = 2k and (p2, s2) = (p1ϕ
k−1(ā), ϕk−1(a)s1).

Proof. The case k = 3 can be checked by hand. Assume that the result holds for k ≥ 3 and
let us prove for k + 1. Let (a, v, b) be the desubstitution of u associated with the unique set
in Cut1(u). By Lemma 39, we have #Cutk+1(u) = #Cutk(avb) and if Cutk(avb) = {C ′

1, C
′
2}

and Cutk+1(u) = {C1, C2}, then |minC1 − minC2| = 2|minC ′
1 − minC ′

2|. Furthermore, u
is a factor of ϕk(010) (resp., of ϕk(101)) if and only if avb is a factor of ϕk−1(010) (resp., of
ϕk−1(101)).

For the last part of the proof, first assume that u is a factor of ϕk−1(aāa), but not a prefix
nor a suffix. Since |u| ≥ 2k − 1, we have u = u′ϕk−1(ā)u′′, with u′ and u′′ respectively suffix
and prefix of ϕk−1(a), |u′|, |u′′| < 2k−1. Therefore, u admits the two cuttings sets

u′ · ϕk−1(ā)u′′ and u′ϕk−1(ā) · u′′.

The associated factorizations are

(u′, ϕk−1(ā)u′′) and (u′ϕk−1(ā), u′′)

so we are in the first situation.
Assume now that u is a prefix of ϕk−1(aāa); the case where u is a suffix is similar. Two

cases can occur: either ϕk−1(aā) is a prefix of u, or u is a proper prefix of ϕk−1(aā). If
ϕk−1(aā) is a prefix of u, then u = ϕk−1(aā)u′ for some prefix u′ of ϕk−1(a). If |u′| < 2k−1,
the two cutting sets of order k of u are

·ϕk(a) · u′ and ϕk−1(a) · ϕk−1(ā)u′

and the associated factorizations are respectively

(ε, u′) and (ϕk−1(a), ϕk−1(ā)u′).

We are thus in the second situation. Else, u′ = ϕk−1(a), the two cutting sets of order k of u
are

·ϕk(a) · u′ and ϕk−1(a) · ϕk−1(ā)u′ ·

and the associated factorizations are respectively

(ε, u′) and (ϕk−1(a), ε).

We are in the first situation.
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If u is a proper prefix of ϕk−1(aā), then u = ϕk−1(a)u′ where u′ is the prefix of length
2k−1 − 1 of ϕk−1(ā) (because |u| ≥ 2k − 1). The two cutting sets of order k of u are

·ϕk−1(a)u′ and ϕk−1(a) · u′

and the associated factorizations are respectively

(ε, ϕk−1(a)u′) and (ϕk−1(a), u′).

We are thus in the first situation. �

7. Types associated with a factor

Remark 42. All the following constructions rely on Lemma 41. Thus, in the remaining of
this paper, we will always assume that k ≥ 3.

Lemma 41 ensures us that whenever a word has two cutting sets, then their associated
factorizations are strongly related. We will now show that whenever two factors u, v of the
same length of t admits factorizations of order k that are similarly related, then these two
words are k-binomially equivalent.

To this aim, we introduce an equivalence relation ≡k on the set of pairs (x, y) ∈ A<2k×A<2k .
The core result of this section is given by Theorem 48 stating that two words are k-binomially
equivalent if and only if their factorizations of order k are equivalent for this new relation ≡k.
So, the computation of bt,k(n) amounts to determining the number of equivalence classes for
≡k among the factorizations of order k for words in Facn(t).

Definition 43. Two pairs (p1, s1) and (p2, s2) of A
<2k ×A<2k are equivalent for ≡k whenever

there exists a ∈ A such that one of the following situations occurs:

(1) |p1|+ |s1| = |p2|+ |s2| and
(a) (p1, s1) = (p2, s2);
(b) (p1, ϕ

k−1(a)s1) = (p2ϕ
k−1(a), s2);

(c) (p2, ϕ
k−1(a)s2) = (p1ϕ

k−1(a), s1);
(d) (p1, s1) = (s2, p2) = (ϕk−1(a), ϕk−1(ā));

(2)
∣∣|p1|+ |s1| − (|p2|+ |s2|)

∣∣ = 2k and

(a) (p1, s1) = (p2ϕ
k−1(a), ϕk−1(ā)s2);

(b) (p2, s2) = (p1ϕ
k−1(a), ϕk−1(ā)s1).

Remark 44. Note that if (p1, s1) ≡k (p2, s2), then either |p1| = |p2| or, ||p1| − |p2|| = 2k−1.
So (p1, s1) ≡k (p2, s2) implies that |p1| ≡ |p2| (mod 2k−1).

Example 45. Let us consider k = 3 and

u = 0101100110100110010110100 = 01ϕ2(0)ϕ3(01)100,

v = 0110010110100101100110100 = 01ϕ3(11)ϕ2(0)100.

From Lemma 40, they admit a unique factorization of order 3 that are respectively

(pu, su) = (01ϕ2(0), 100) and (pv, sv) = (01, ϕ2(0)100).

By definition of ≡3, we thus have (pu, su) ≡3 (pv, sv).
Similarly, consider now

u′ = 0010110100110010110100101100 = 001ϕ3(011)0,

v′ = 0010110100101100110100110010 = 001ϕ2(0)ϕ3(10)ϕ2(1)0.
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They admit a unique factorization of order 3 that are respectively

(pu′ , su′) = (001, 0) and (pv′ , sv′) = (001ϕ2(0), ϕ2(1)0),

so that we again have (pu′ , su′) ≡3 (pv′ , sv′)

The next result is a direct consequence of Lemma 41.

Corollary 46. If a factor of t has two distinct factorizations of order k, then these two are
equivalent for ≡k.

Definition 47 (Type of order k). Given a factor u of t of length at least 2k − 1, the type of
order k of u is the equivalence class of a factorization of order k of u. We also let (pu, su) denote
the factorization of order k of u for which |pu| is minimal (we assume that k is understood
from the context). Therefore, two words u and v have the same type of order k if and only if

(pu, su) ≡k (pv, sv).

Theorem 48. Let u, v be factors of t of length n ≥ 2k − 1. We have

u ∼k v ⇔ (pu, su) ≡k (pv, sv).

The condition is trivially sufficient using Lemma 10 and Lemma 31. For instance, ap-
plying several times these two lemmas, we obtain ϕ3(01) ∼3 ϕ3(11), thus ϕ2(0)ϕ3(01) ∼3

ϕ2(0)ϕ3(11) ∼3 ϕ
3(11)ϕ2(0) and finally u ∼3 v for the words of Example 45.

The proof that the condition is necessary is done in Section 8. Preliminary to this, we
consider the case of words u, v that do not have any non-empty common prefix of suffix and
split the result into two lemmas: either |pu| 6≡ |pv| (mod 2k−1) (Lemma 49) or, |pu| ≡ |pv|
(mod 2k−1) (Lemma 50). We end the section with Lemma 51 that permits us to deal with
factors having some common prefix or suffix.

Lemma 49. Let u, v be factors of t of length n ≥ 2k−1 with no non-empty common prefix or
suffix. If (pu, su), (pv, sv) satisfy |pu|+ |su| < |u|, |pv|+ |sv| < |v| and |pu| 6≡ |pv| (mod 2k−1),
then u ≁k v.

Proof. The assumptions |pu| + |su| < |u| and |pv| + |sv| < |v| imply there exist non-empty
words z, z′ such that

u = pu ϕ
k(z) su and v = pv ϕ

k(z′) sv .

Let x ∈ {u, v}. If px = sx = ε, set jx := k. Otherwise, define jx as the largest integer such
that |x| ≡ 0 (mod 2jx−1) and |px| or |sx| is congruent to 2jx−1 modulo 2jx . In that case,
such a jx ≥ 1 exists because px (resp., sx) is a suffix (resp., prefix) of ϕk(a) for some letter
a: so it is of the form px = ϕir(ar) · · ·ϕ

i2(a2)ϕ
i1(a1) with ir < · · · < i2 < i1 < k (resp.,

sx = ϕi′s(a′s) · · ·ϕ
i′2(a′2)ϕ

i′1(a′1) with k > i′s > · · · > i′2 > i′1). More precisely, we have

x = ϕir(ar) · · ·ϕ
i2(a2)ϕ

i1(a1)ϕ
k(z)ϕi′s(a′s) · · ·ϕ

i′2(a′2)ϕ
i′1(a′1)

for some word z and jx = 1 +min{ir, i
′
1}.

Let j = min{ju, jv}. Observe that j ≤ k−1. First, since |pu| 6≡ |pv| (mod 2k−1), we cannot
have pu = pv = su = sv = ε. Moreover, proceed by contradiction and assume that j = k, i.e.,
ju = jv = k. In that case, since |u| ≡ 0 (mod 2k−1), the fact that |pu| or |su| is congruent
to 2k−1 modulo 2k implies that |u|, |pu|, |su| are all congruent to 0 modulo 2k−1. The same
conclusion holds for v contradicting the assumption |pu| 6≡ |pv| (mod 2k−1).
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We will prove that u ≁j+1 v. We have two main cases to discuss. Since u and v have
the same length and |u|, |v| ≡ 0 (mod 2j−1), we have either |u| = |v| ≡ 2j−1 (mod 2j) or,
|u| = |v| ≡ 0 (mod 2j).

The first case is split into three sub-cases.

1.1) Since u and v have no common prefix, we can first assume that u = ϕj−1(0)ϕj(u′)
and v = ϕj−1(1)ϕj(v′) for some words u′, v′ (we can exchange the roles of 0 and 1).
The conclusion u ≁j v follows directly from Lemma 11 because ϕj−1(0) ≁j ϕj−1(1)
by Lemma 30.

1.2) Consider the case where u = ϕj−1(0)ϕj(u′) and v = ϕj(v′)ϕj−1(1) for some words
u′, v′. We can make use of Lemma 31, v ∼j ϕj−1(1)ϕj(v′) and conclude as in the
previous case.

1.3) The last sub-case is when u = ϕj−1(0)ϕj(u′) = ϕj−1(0ϕ(u′)) and v = ϕj(v′)ϕj−1(0) =
ϕj−1(ϕ(v′)0) (the situation with 1 instead of 0 can be treated similarly). If j = 1, we
have

(
u
01

)
−
(
v
01

)
= |u′| > 0. We will assume j > 1. Consequently, |u| = 2j−1+2j |u′| is

even, thus |u| ≥ 2k and |u′| ≥ 2k−j ≥ 2. From Remark 23 where multiplicities m(x)
are here related to f j−1(01j), we get

(
u

01j

)
−

(
v

01j

)
=

∑

x∈fj−1(01j)

m(x)

[(
0ϕ(u′)

x

)
−

(
ϕ(v′)0

x

)]
.

Recall that f j−1(01j) only contains elements in A≤2. In the above formula, only
x = 01 and x = 10 will give non-zero terms. Compute

(
0ϕ(u′)

01

)
−

(
ϕ(v′)0

01

)
= |u′|+

(
ϕ(u′)

01

)
−

(
ϕ(v′)

01

)

= |u′|+

(
|u′|

2

)
+

(
u′

0

)
−

(
|v′|

2

)
−

(
v′

0

)
.

Hence,
(

u

01j

)
−

(
v

01j

)
= (m(01) −m(10)) |u′|

+m(01)

((
u′

0

)
−

(
v′

0

))
+m(10)

((
u′

1

)
−

(
v′

1

))

= (m(01) −m(10))

(
|u′|+

(
u′

0

)
−

(
v′

0

))
.

The last equality comes from the fact that
(u′

0

)
−
(v′
0

)
=

(v′
1

)
−
(u′

1

)
because |u′| = |v′|.

Since u′ and v′ are factors of t of the same length, it is clear that
(
u′

0

)
−

(
v′

0

)
∈

{−2,−1, 0, 1, 2}. However, in this sub-case the value −2 is not realized, since v′ starts
with 1 (because u and v have no common prefix). Thus, by Proposition 28,

(
u

01j

)
−

(
v

01j

)
≥ (m(01) −m(10))(|u′| − 1) > 0

and u ≁j+1 v.

For the second case, we assume that |u| = |v| ≡ 0 (mod 2j). We have four sub-cases for
which we know that |u′| ≥ 1.
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2.1) If u = ϕj−1(0)ϕj(u′)ϕj−1(0) and v = ϕj(v′), then we know that v′ is of the form 1v′′

because u and v have no common prefix. We have u ∼j ϕj−1(0)ϕj−1(0)ϕj(u′) and
v = ϕj−1(1)ϕj−1(0)ϕj(v′′) so we can directly conclude that u ≁j v applying Lemma 11
and Lemma 30.

2.2) If u = ϕj−1(0)ϕj(u′)ϕj−1(1) = ϕj−1(0ϕ(u′)1) and v = ϕj(v′), we know that v′ starts
with 1 and ends with 1 because u and v have no common prefix or suffix. We have

(
u

01j

)
−

(
v

01j

)
= m(01)

((
0ϕ(u′)1

01

)
−

(
ϕ(v′)

01

))
+m(10)

((
0ϕ(u′)1

10

)
−

(
ϕ(v′)

10

))

= m(01)

[
1 + 2|u′|+

(
u′

0

)
−

(
v′

0

)
+

(
|u′|

2

)
−

(
|v′|

2

)]

+m(10)

[(
|u′|

2

)
−

(
|v′|

2

)
+

(
u′

1

)
−

(
v′

1

)]

Here, |u′| = |v′| − 1, so
(u′

1

)
−

(v′
1

)
=

(v′
0

)
−

(u′

0

)
− 1,

(|u′|
2

)
−

(|v′|
2

)
= −|u′| and we

obtain

(
u

01j

)
−

(
v

01j

)
= (m(01) −m(10))

(
1 + |u′|+

(
u′

0

)
−

(
v′

0

))
.

We need to characterize the values that can be taken by
(u′

0

)
−
(v′
0

)
. Two cases may

happen: if |u′| is even, there exists ℓ > 0 such that |u′| = 2ℓ. In this case, |v′| = 2ℓ+1.

Since v′ begins and ends with a 1,
(v′
0

)
= ℓ. Therefore,

(
u′

0

)
−

(
v′

0

)
∈ {−1, 0, 1}.

If |u′| is odd, there exists ℓ such that |u′| = 2ℓ + 1 and |v′| = 2ℓ + 2. For the same

reason as above, we cannot have
(v′
0

)
= ℓ + 2 and

(u′

0

)
−

(v′
0

)
takes the same values.

We thus have, in both cases,
(

u
01j

)
−

(
v
01j

)
> 0.

2.3) Now assume that u = ϕj−1(0)ϕj(u′)ϕj−1(0) and v = ϕj−1(1)ϕj(v′)ϕj−1(1). Since
|0u′0|0 6= |1v′1|0, when applying Remark 23 all words in A≤2 are contributing and we
obtain

(
u

01j

)
−

(
v

01j

)
= 2(m(0) −m(1)) + (m(00) −m(11))(2|u′|+ 1)

+m(01)

((
u′

0

)
−

(
v′

0

))
+m(10)

((
u′

1

)
−

(
v′

1

))

= 2(m(0) −m(1)) + (m(00) −m(11))

(
2|u′|+ 1 +

(
u′

0

)
−

(
v′

0

))

where the last equality comes from Proposition 28. One can again conclude in the
same way, making use of Proposition 29.
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2.4) The last case is when u = ϕj−1(0)ϕj(u′)ϕj−1(1) and v = ϕj−1(1)ϕj(v′)ϕj−1(0). We
have

(
u

01j

)
−

(
v

01j

)
= m(01)

((
0ϕ(u′)1

01

)
−

(
1ϕ(v′)0

01

))
+m(10)

((
0ϕ(u′)1

10

)
−

(
1ϕ(v′)0

10

))

= (m(01) −m(10))(2|u′|+ 1)

+m(01)

((
u′

0

)
−

(
v′

0

))
+m(10)

((
u′

1

)
−

(
v′

1

))

= (m(01) −m(10))

(
2|u′|+ 1 +

(
u′

0

)
−

(
v′

0

))

≥ (m(01) −m(10))(2|u′| − 1) > 0

with the same reasoning as above.

�

Lemma 50. Let u, v be factors of t of length n ≥ 2k − 1 with no non-empty common prefix
or suffix. If (pu, su) 6≡k (pv, sv) with |pu| ≡ |pv| (mod 2k−1), then u ≁k v.

Proof. Let ℓ (resp., ℓ′) be the greatest integer less than k such that |pu| ≡ 0 (mod 2ℓ)

(resp., |su| ≡ 0 (mod 2ℓ
′

)). The assumption |pu| ≡ |pv| (mod 2k−1) implies that |su| ≡ |sv|
(mod 2k−1) and thus, |pu| ≡ |pv| (mod 2ℓ) and |su| ≡ |sv| (mod 2ℓ

′

). We have three cases to
take into account.

1) If ℓ < ℓ′ (the case ℓ′ < ℓ is symmetric taking the reversal of the words), then |su| and
|sv| are even multiples of 2ℓ, i.e., there exist x, x′ ∈ A∗ such that su = ϕℓ+1(x) and
sv = ϕℓ+1(x′). Moreover, by maximality of ℓ, |pu| and |pv| are odd multiples of 2ℓ,
i.e., there exist a ∈ A and y, y′ ∈ A∗ such that

pu = ϕℓ(a)ϕℓ+1(y), pv = ϕℓ(a)ϕℓ+1(y′)

hence

u = puϕ
ℓ+1(z)su = ϕℓ(a)ϕℓ+1(y)ϕℓ+1(z)ϕℓ+1(x)

and

v = pvϕ
ℓ+1(z′)sv = ϕℓ(a)ϕℓ+1(y′)ϕℓ+1(z′)ϕℓ+1(x′)

for some z, z′. As usual, by Lemma 31, we can conclude because ϕℓ(a) ≁ℓ+1 ϕℓ(a),
|yzx| = |y′z′x′| and ℓ+ 1 ≤ ℓ′ ≤ k − 1.

2) If ℓ = ℓ′ = k − 1, we have to distinguish the cases where pu or su are empty.
– If pu = ε = su, we have neither pv = ε = sv nor, pv = ϕk−1(a), sv = ϕk−1(a)

because u and v do not have the same type of order k. This implies that v is of
the form ϕk−1(a)ϕk(z)ϕk−1(a) and we can conclude that u ≁k v. Indeed, since
z = az′′ (recall that u and v have no common prefix), then

u = ϕk(z) ∼k ϕk−1(a)ϕk−1(a)ϕk(z′′) ∼k ϕk−1(a)ϕk(z′′)ϕk−1(a)

≁k ϕk−1(a)ϕk(z′)ϕk−1(a) = v.

– If pu = ε and su = ϕk−1(a) (or the opposite), the fact that (pu, su) 6≡k (pv, sv)
gives us the possibilities v = ϕk−1(a)ϕk(z′) or, v = ϕk(z′)ϕk−1(a) for some z′.
But obviously u ≁k v.
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– If pu = ϕk−1(a) and su = ϕk−1(b), then u = ϕk−1(a)ϕk(z′)ϕk−1(b) and v =
ϕk−1(a)ϕk(z′)ϕk−1(b) for some z, z′. Moreover a = b because u and v do not
have the same type of order k.
Let us assume that a = b = 0. Since ϕk−1(0) ≁k ϕk−1(1), there exists a word w
of length k such that

(
ϕk−1(0)

w

)
6=

(
ϕk−1(1)

w

)
.

Therefore, we get
(
u

w

)
−

(
v

w

)
=

∑

r,s,t∈A∗

rst=w

[(
ϕk−1(0)

r

)(
ϕk(z)

s

)(
ϕk−1(0)

t

)
−

(
ϕk−1(1)

r

)(
ϕk(z′)

s

)(
ϕk−1(1)

t

)]
.

In the above sum, every term such that |r| < k and |t| < k vanishes because
ϕk−1(0) ∼k−1 ϕ

k−1(1). Hence, we get
(
u

w

)
−

(
v

w

)
= 2

[(
ϕk−1(0)

w

)
−

(
ϕk−1(1)

w

)]
6= 0.

3) Now assume ℓ = ℓ′ < k − 1. Hence, there exist letters a, b and words z, z′ such that

u = ϕℓ(a)ϕℓ+1(z)ϕℓ(b) and v = ϕℓ(a)ϕℓ+1(z′)ϕℓ(b).

If a = b, then we can conclude that u ≁k v as in the last part of case 2). Assume that
a 6= b (and a = 0, b = 1). Then compute (the reader should be used to this kind of
computations)

(
u

01ℓ

)
−

(
v

01ℓ

)

=
(
mfℓ−1(01ℓ)(01) −mfℓ−1(01ℓ)(10)

) [
1 + 2|z|+

(
ϕ(z)

01

)
−

(
ϕ(z′)

01

)]

=
(
mfℓ−1(01ℓ)(01) −mfℓ−1(01ℓ)(10)

) [
1 + 2|z|+

(
|z|

2

)
+ |z|0 −

(
|z′|

2

)
− |z′|0

]

which is positive since |z| = |z′|.

�

When deleting common prefixes and suffixes of two factors with different types of order k,
if the resulting factors are long enough, their types of order k are different.

Lemma 51. Let u and v be factors of t of the same length which do not have the same type
of order k. Let x (resp., y) be the longest common prefix (resp., suffix) of u and v, i.e.,
u = xu′y and v = xv′y. If |u′y| ≥ 2k − 1 then u′y and v′y do not have the same type of
order k. Similarly, if |xu′| ≥ 2k − 1 then xu′ and xv′ do not have the same type of order k.

Proof. We only show the result for u′y and v′y. Let us assume that x 6= ε.
Let D ∈ Cutk(u) such that |pu| = minD. There exists C ∈ Cutk(u

′y) such that C + |x| ⊂
D. In particular, |x| + minC ≡ minD (mod 2k). There exists C ′ ∈ Cutk(u

′y) such that
|pu′y| = minC ′. From Lemma 41, we know that minC ≡ minC ′ (mod 2k−1). Hence

|xpu′y| = |x|+minC ′ ≡ |x|+minC (mod 2k−1)
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and we conclude that |xpu′y| ≡ |pu| (mod 2k−1). Otherwise stated,

|pu| ≡ |pv| (mod 2k−1) if and only if |pu′y| ≡ |pv′y| (mod 2k−1) .

Using that fact, if |pu| 6≡ |pv| (mod 2k−1) then u′y and v′y do not have the same type of
order k (see Remark 44). In what follows, we may assume that |pu| ≡ |pv| (mod 2k−1) and
thus, |su| ≡ |sv| (mod 2k−1).

We have two main cases to discuss: either |pu| = |pv| or, ||pu| − |pv|| = 2k−1.

1) Assume |pu| = |pv|. This implies that pu = pv. Indeed these two words are suffixes of
the same length of a word of the form ϕk(a) (where a is a letter). Since they share a
common prefix (x 6= ε), they must be equal. Consequently, we have su 6= sv, otherwise
u and v would have the same type. Therefore, y = ε and we will write u′ instead
of u′y. Let us show that (pu′ , su′) = (ε, su) and (pv′ , sv′) = (ε, sv) meaning that u′y
and v′y do not have the same type. The words u and v are respectively of the form
puϕ

k(u′′)su and pvϕ
k(v′′)sv for some words u′′, v′′.

Since pu = pv, we have |x| ≥ |pu|. If |x| = |pu|, u
′ = ϕk(u′′)su and v′ = ϕk(v′′)sv

so (pu′ , su′) = (ε, su) and (pv′ , sv′) = (ε, sv). Otherwise, |x| > |pu| and there exists
ℓ > 0 such that2 puϕ

k(u′′[1,ℓ−1]) is a proper prefix of x and such that x is a prefix

of puϕ
k(u′′[1,ℓ]). Then x = puϕ

k(u′′[1,ℓ]). This is due to the fact that if ϕk(a) and

ϕk(b) share a non-empty common prefix, then a = b. Thus, u′ = ϕk(u′′[ℓ+1,|u′′|])su,

v′ = ϕk(v′′[ℓ+1,|v′′|])sv and we are done.

2) Let us consider the second case and assume that |pv| = |pu|+ 2k−1. As usual, u and
v are of the form puϕ

k(u′′)su, pvϕ
k(v′′)sv and set u′′′ = ϕ(u′′) and v′′′ = ϕ(v′′). Let a

be the letter such that pv is a suffix of ϕk(a). Two sub-cases have to be considered:
either |sv| = |su|+2k−1 or, |su| = |sv|+2k−1. In each one of them, we let the letter b
be such that the longest word in {su, sv} is a prefix of ϕk(b).

2.a) Consider the first sub-case, |sv| = |su|+2k−1. By definition of b, sv is a prefix of ϕk(b).
We have pv = w1ϕ

k−1(a) and sv = ϕk−1(b)w2 where w1 (resp., w2) is a suffix (resp.,
prefix) of ϕk−1(a) (resp., ϕk−1(b)). Recall that u and v have a non-empty common
prefix x. Since |sv| = |su|+2k−1 < 2k, we get |pu| < 2k−1 and pu is a suffix of ϕk−1(a).
Hence, pu = w1. Figure 2 illustrates the situation.

w1u : su

w1 ϕk−1(a)v : ϕk−1(b) w2

ϕk(b)ϕk(a)

x

Figure 2. Decomposition of u and v in the first sub-case.

2We assume that a finite word u′′ has its first symbol indexed by 1, so u′′

[1,j] denotes the prefix of u′′ of

length j.



28 MARIE LEJEUNE, JULIEN LEROY, AND MICHEL RIGO

The word su is a prefix of some ϕk(c). Hence w2 = su or w2 = su depending on
whether y is empty or not. Since u and v do not have the same type, w2 = su and
these words are non-empty or, a = b.

Using the same argument as before, |x| ≥ |pu|. If |x| = |pu|, we have u′y =
ϕk(u′′)su and v′y = ϕk−1(a)ϕk(v′′)ϕk−1(b)w2 and comparing the pairs (ε, su) and
(ϕk−1(a), ϕk−1(b)w2), we conclude that u

′y and v′y do not have the same type (when-
ever w2 = su 6= ε or, a = b).

Otherwise, |x| > |pu| and there exists some ℓ > 0 such that

x = puϕ
k−1(u′′′[1,ℓ]) = puϕ

k−1(a)ϕk−1(v′′′[1,ℓ−1]).(5)

We thus have

u′y = ϕk−1(u′′′[ℓ+1,|u′′′|])su and v′y = ϕk−1(v′′′[ℓ,|v′′′|])sv.

From equalities (5), we observe that

u′′′i =

{
a, if i = 1;
v′′′i−1, if 1 < i ≤ ℓ.

(6)

Moreover, since u′′′2i+1u
′′′
2i+2 = ϕ(u′′i+1), for all i ∈ {1, . . . , |u′′|}, we have u′′′2i+1 = u′′′2i+2.

Similarly, we have v′′′2i+1 = v′′′2i+2. We may thus conclude that

u′′′i =

{
a, if i is odd;
a, if i is even.

(7)

If ℓ is even, we have

u′y = ϕk(u′′
[ ℓ+2

2
,|u′′|]

)su and v′y = ϕk−1(v′′′ℓ )ϕ
k(v′′

[ ℓ+2
2

,|v′′|]
)ϕk−1(b)w2 .

Thus, (pu′y, su′y) = (ε, su) and (pv′y, sv′y) = (ϕk−1(a), ϕk−1(b)w2) and u′y, v′y do not
have the same type of order k.

If ℓ is an odd number,

u′y = ϕk−1(u′′′ℓ+1)ϕ
k(u′′

[ ℓ+3
2

,|u′′|]
)su and v′y = ϕk(v′′

[ ℓ+1
2

,|v′′|]
)ϕk−1(b)w2 .

In that case, (pu′y, su′y) = (ϕk−1(a), su) and (pv′y, sv′y) = (ε, ϕk−1(b)w2) and again,
u′y, v′y do not have the same type of order k.

2.b) Let us care about the second sub-case: |su| = |sv| + 2k−1. By definition of b, su is a
prefix of ϕk(b). Thus pv = w1ϕ

k−1(a) and su = ϕk−1(b)w2 where w1 (resp., w2) is
a suffix (resp., prefix) of ϕk−1(a) (resp., ϕk−1(b)). Otherwise stated, as illustrated in
Figure 3, we have

u = puϕ
k(u′′)ϕk−1(b)w2 and v = puϕ

k−1(a)ϕk(v′′)sv .

Observe again that w2 = sv or w2 = sv.
Because u and v do not have the same type of order k, w2 = sv and these words

are non-empty or, a = b.
If x = pu, (pu′y, su′y) = (ε, ϕk−1(b)w2) and (pv′y, sv′y) = (ϕk−1(a), sv). Comparing

these two pairs, we get (pu′y, su′y) 6≡k (pv′y, sv′y), i.e., u
′y and v′y do not have the

same type.
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w1u : w2

w1 ϕk−1(a)v :

ϕk−1(b)

sv

ϕk(b)

ϕk(a)

x

Figure 3. Decomposition of u and v in the second sub-case.

Otherwise, as in the previous case, there exists ℓ > 0 such that x = puϕ
k−1(u′′′[1,ℓ]).

Observe that equalities (6) and (7) are still valid. It remains to discuss about the
parity of ℓ to conclude.

�

8. k-binomial complexity of the Thue–Morse word

Using the lemmas from the previous section, we first show that two different factors of t of
length at most 2k−1 are never k-binomially equivalent. Then, we take into account factors of
length at least 2k. On the one hand, we prove that (pu, su) 6≡k (pv, sv) implies u ≁k v. On the
other hand, we compute the number of equivalence classes of # ({(pu, su) : u ∈ Facn(t)}/≡k).

Proposition 52. Let u, v be two different factors of t of length n ≤ 2k − 1, which do not
have any common prefix or suffix. We have u ≁k v.

Proof. If n ≤ 3, this is trivial: take u, v two different factors of length n,
(u
u

)
= 1 and

(v
u

)
= 0.

Since k ≥ 3, u ≁k v. Let us assume n ≥ 4 and set j = max{i ≤ k : |u| ≥ 2i+1}. Notice
that 1 ≤ j ≤ k − 2. The type of order j of u and v is well-defined. Either they have the
same type of order j or, they don’t. If they do not have the same type, since we always have
|pu|+ |su| ≤ 2j+1−2, we have |pu|+ |su| < |u|. The same holds for v. By applying Lemmas 49
or 50, we obtain that u 6∼j v, thus u ≁k v.

We can thus assume that (pu, su) ≡j (pv, sv). Let us consider the different cases of Def-
inition 43. Since u and v do not share any common prefix or suffix, this gives restrictions
to the different possibilities. For instance, in the situation (1.a) of the definition, we get
(pu, su) = (pv, sv) = (ε, ε). For all what remains, let a, b be two different letters.

(1.a) If (pu, su) = (pv, sv), then pu = pv = su = sv = ε, so u = ϕj(u′) and v = ϕj(v′) for
some words u′ and v′ of length 2 or 3 (by definition of j). Since u and v do not have
any non-empty common prefix and suffix, u′ and v′ have distinct first and last letter.
Recalling that t is cube-free, we thus have to consider the cases

(u′, v′) ∈ {(aa, bb), (aab, bba), (aba, bab), (ab, ba), (aab, baa) | a, b ∈ A, a 6= b}.

Using the same kind of computations as before, e.g., in the proof of Lemma 49 making
use of Remark 23, we get

(
u

abj

)
−

(
v

abj

)
=

(
ϕj(u′)

abj

)
−

(
ϕj(v′)

abj

)
=

(
mfj−1(abj)(ab)−mfj−1(abj)(ba)

)
(|u′|a − |v′|a)
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which is positive for the first three pairs (u′, v′). For the last two ones, simply compute
(

u

abj+1

)
−

(
v

abj+1

)
=mfj(abj+1)(ab)

((
u′

ab

)
−

(
v′

ab

))

−mfj(abj+1)(ba)

((
u′

ba

)
−

(
v′

ba

))
> 0.

Since j ≤ k − 2, this implies in all cases that u ≁k v.
(1.b) and (1.c) Let us consider the case where there exists some letter a such that u = ϕj−1(a)ϕj(u′)

and v = ϕj(v′)ϕj−1(a) (or the converse). We know that the first letter of v′ is b and
the last letter of u′ is a (because u and v have distinct first and last letter). Since t

is overlap-free, we have to consider the cases

(u′, v′) ∈{(aa, ba), (aa, bb), (ba, ba), (ba, bb),

(aba, bab), (aba, bba), (baa, bab), (baa, bba) | a, b ∈ A, a 6= b}.

Indeed, u′ cannot be equal to bba because otherwise u would be equal to ϕj−1(ababaab).
Similarly, v′ cannot be equal to baa. For every pairs in the above set, compute

(
ϕj−1(aϕ(u′))

abj

)
−

(
ϕj−1(ϕ(v′)a)

abj

)
= (mfj−1(abj )(ab)−mfj−1(abj)(ba))(|u

′|+ |u′|a−|v′|a) > 0.

(1.d) Assume now that there exists a letter a such that u = ϕj−1(a)ϕj(u′)ϕj−1(b) and
v = ϕj−1(b)ϕj(v′)ϕj−1(a). We have |u| = 2j + 2j |u′| and from the definition of j, we
get |u′| ≤ 2. Then compute

(
ϕj−1(aϕ(u′)b)

abj

)
−

(
ϕj−1(bϕ(v′)a)

abj

)
= (mfj−1(abj )(ab)−mfj−1(abj)(ba))(1+2|u′|+|u′|a−|v′|a).

This quantity is positive for every u′, v′ ∈ A ∪A2.
(2.a) and (2.b) Otherwise, there exists some letter a such that u = ϕj−1(a)ϕj(u′)ϕj−1(b) and v =

ϕj(v′). Again |u′| ≤ 2 and |v′| = |u′|+ 1. Then, v′ has to begin with a and end with
b. The cases to consider are the following ones:

(u′, v′) ∈{(a, ab), (b, ab), (aa, aab), (aa, abb),

(ab, aab), (ab, abb), (ba, aab), (ba, abb) | a, b ∈ A, a 6= b}.

Reasoning as in the sub-case 2.2) of Lemma 49,
(
ϕj−1(aϕ(u′)b)

abj

)
−

(
ϕj−1(ϕ(v′))

abj

)
= (mfj−1(abj )(ab)−mfj−1(abj)(ba))(1+|u′|+|u′|a−|v′|a) > 0.

�

Corollary 53. Let k ≥ 3. For all n ≤ 2k − 1, we have bt,k(n) = pt(n).

Proof. Let us take two different factors u and v of the same length n ≤ 2k − 1. If u and v
do not share any common prefix or suffix, u ≁k v by the previous proposition. Otherwise,
there exist words x, y, u′, v′ such that u = xu′y, v = xv′y where u′ and v′ do not share any
common prefix or suffix. We apply the previous proposition to u′, v′ and conclude using the
cancellation property (Lemma 10). �

Let u, v be distinct factors of t of length n ≥ 2k − 1. We are now ready to prove that
(pu, su) 6≡k (pv, sv) implies u ≁k v.
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Proof of Theorem 48. Let x and y respectively denote the longest common prefix and suffix
of u and v: u = xu′y and v = xv′y. We obviously have u′ 6= v′ and, by Lemma 10, we have
u ∼k v if and only if u′ ∼k v′.

If |u′| ≤ 2k−1, using Proposition 52, we conclude that u′ ≁k v′. Otherwise, from Lemma 51,
u′ and v′ do not have the same type of order k. Thus, without loss of generality we may now
assume that u and v do not have any non-empty common prefix or suffix.

Let j be the greatest integer less than or equal to k such that |u|, |v| ≥ 2j+1. If u and v
do not have the same type of order j, then we fall into one of the complementary situations
of Lemmas 49 or 50 (indeed, the extra assumption of Lemmas 49 holds because |u| ≥ 2j+1,
|pu|, |su| ≤ 2j − 1 and thus (pu, su), (pv , sv) satisfy |pu|+ |su| < |u|, |pv|+ |sv| < |v|). We thus
have u ≁j v and then u ≁k v.

Otherwise u and v have the same type of order j. By assumption, they do not have the
same type of order k, hence j < k. One has to do the same proof as the one of Proposition 52,
except that one more argument is needed. In case (1.a) and if (u′, v′) ∈ {(ab, ba), (aab, baa)},
we compute

(
u

abj+1

)
−

(
v

abj+1

)
. We need to stress the fact that in this particular case, j <

k − 1. Indeed, j = k − 1 would give u = ϕk−1(ab), v = ϕk−1(ba) or u = ϕk−1(a)ϕk(a),
v = ϕk(b)ϕk−1(a). In both cases, this is impossible since u and v do not have the same type
of order k. �

Due to Theorem 48, the k-binomial complexity of t can be computed from

bt,k(n) = # (Facn(t)/∼k) = # ({(pu, su) : u ∈ Facn(t)}/≡k) .

The last theorem provides this quantity.

Theorem 54. For all k ≥ 3, n ≥ 2k, we have

#({(pu, su) : u ∈ Facn(t)}/≡k) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Proof. Let n ≥ 2k and set λ ∈ {0, . . . , 2k − 1} the integer such that n ≡ λ (mod 2k).
For every ℓ ∈ {0, . . . , 2k−1 − 1},

Pℓ = {(pu, su) : u ∈ Facn(t), |pu| = ℓ or |pu| = 2k−1 + ℓ}

and

Sℓ = {(pu, su) : u ∈ Facn(t), |su| = ℓ or |su| = 2k−1 + ℓ}.

If ℓ and ℓ′ are two distinct elements from {0, . . . , 2k−1 − 1} then, due to Definition 43, for all
(pu, su) ∈ Pℓ, (pv, sv) ∈ Pℓ′ , we have (pu, su) 6≡k (pv, sv). The idea of the proof is to count the
number of equivalence classes in the pairwise disjoint sets Pℓ.

We can notice that |pu|+ |su| ∈ {λ, λ+ 2k} for all factorizations (pu, su). From that, note
that P0 = S0 if and only if λ = 0 or λ = 2k−1. In that case, we set ℓ0 = 0 and thus Pℓ0 = S0.
Otherwise, there exists ℓ0 6= 0 such that Pℓ0 = S0.

We will show that

# ((P0 ∪ Pℓ0)/≡k) = # ((P0 ∪ S0)/≡k) =





3, if λ = 0;
2, if λ = 2k−1;
8, otherwise

and that, for every ℓ ∈ {0, . . . , 2k−1 − 1} \ {0, ℓ0},

# (Pℓ/≡k) = 6.
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Obviously, we have

#{0, . . . , 2k−1 − 1} \ {0, ℓ0} =

{
2k−1 − 1, if λ = 0 or λ = 2k−1;
2k−1 − 2, otherwise.

Putting together the previous observations, we therefore get

# ({(pu, su) : u ∈ Facn(t)}/≡k) = #
2k−1−1⋃

ℓ=0

Pℓ =





6 (2k−1 − 1) + 3, if λ = 0;
6 (2k−1 − 1) + 2, if λ = 2k−1;
6 (2k−1 − 2) + 8, otherwise,

which gives us the expected result.
First, let us deal with P0 and S0. If λ = 0, due to Proposition 33 (ensuring that every pair

appears and this argument is repeated all along the proof), we have P0 = S0 which is equal
to

{(ε, ε), (ϕk−1(0), ϕk−1(0)), (ϕk−1(0), ϕk−1(1)), (ϕk−1(1), ϕk−1(0)), (ϕk−1(1), ϕk−1(1))}.

By Definition 43, # (P0/≡k) = 3. If λ = 2k−1,

P0 = S0 = {(ε, ϕk−1(0)), (ϕk−1(0), ε), (ε, ϕk−1(1)), (ϕk−1(1), ε)}

and # (P0/≡k) = 2. Finally, two sub-cases have to be distinguished if λ 6∈ {0, 2k−1}: either
0 < λ < 2k−1 or 2k−1 < λ < 2k. Let y be the prefix of ϕk(0) of length λ.

In the first sub-case, y is also a prefix of ϕk−1(0). We thus have

P0 = {(ε, y), (ε, y),(ϕk−1(0), ϕk−1(1)y), (ϕk−1(1), ϕk−1(1)y),

(ϕk−1(0), ϕk−1(0)y), (ϕk−1(1), ϕk−1(0)y)}

and # (P0/≡k) = 4. We can proceed in the same way for S0 and get a total of 8 classes.
In the second sub-case, we can write y = ϕk−1(0)z where z is the prefix of ϕk−1(1) of length

λ− 2k−1. We have

P0 = {(ε, ϕk−1(0)z), (ε, ϕk−1(1)z), (ϕk−1(0), z), (ϕk−1(1), z), (ϕk−1(0), z), (ϕk−1(1), z)}

and once again, # (P0/≡k) = 4. The same result holds for S0.

Let us now consider ℓ ∈ {0, . . . , 2k−1 − 1} \ {0, ℓ0} and show that # (Pℓ/≡k) = 6. Two
cases have to be considered: either λ < ℓ or, λ > ℓ. Indeed, we cannot have λ = ℓ. Observe
that if λ = ℓ or λ = ℓ + 2k−1, then S0 = Pℓ which means that ℓ0 = ℓ but we are assuming
that ℓ 6∈ {0, ℓ0}. Recall that that |pu| + |su| ∈ {λ, λ + 2k} for all factorizations (pu, su). We
will make a constant use of this fact.

a) If λ < ℓ, we cannot have |pu| + |su| = λ, so obviously |pu| + |su| = 2k + λ for all
(pu, su) ∈ Pℓ. Therefore, if |pu| = ℓ < 2k−1, then |su| > 2k−1. On the opposite, if
|pu| = ℓ+ 2k−1, then |su| < 2k−1. Set x (resp., y) the suffix (resp., prefix) of ϕk−1(0)
of length ℓ (resp., λ+ 2k − ℓ). We thus have

Pℓ = {(x, ϕk−1(0)y), (x, ϕk−1(1)y), (x, ϕk−1(0)y), (x, ϕk−1(1)y),

(xϕk−1(1), y), (xϕk−1(1), y), (xϕk−1(0), y), (xϕk−1(0), y)}

and, from Definition 43, # (Pℓ/≡k) = 6.
b) If ℓ < λ, observe that |pu| = ℓ ⇒ |su| = λ − ℓ. Indeed, since |su| < 2k, |pu| + |su| <

ℓ+ 2k < λ+ 2k, hence we have |pu|+ |su| = λ. Two sub-cases have to be considered:
λ− ℓ < 2k−1 or, λ− ℓ > 2k−1.
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b.1) In the first sub-case, |pu| = ℓ ⇒ |su| = λ− ℓ < 2k−1. Otherwise stated, if pu is a
suffix of some ϕk−1(a), then su is a prefix of some ϕk−1(b). Moreover, ℓ > λ−2k−1

ensures that

|pu| = ℓ+ 2k−1 ⇒ |pu|+ |su| = λ+ 2k.

Therefore, if |pu| = ℓ+2k−1, then |su| > 2k−1. Otherwise stated, if pu has a suffix
of the form ϕk−1(a), then su has a prefix of the form ϕk−1(b).

b.2) In the second sub-case, ℓ+ 2k−1 < λ implies that

|pu| = ℓ+ 2k−1 ⇒ |pu|+ |su| = λ.

This is why, if |pu| = ℓ + 2k−1, then |su| < 2k−1. Otherwise stated, if pu has
a suffix of the form ϕk−1(a), then su is a prefix of some ϕk−1(b). Finally, we
already know that if |pu| = ℓ, then |su| = λ− ℓ which is here greater than 2k − 1.
Otherwise stated, if pu is a suffix of some ϕk−1(a), then su has a prefix of the
form ϕk−1(b).

Let us denote by x the suffix of ϕk−1(0) of length ℓ and y the prefix of ϕk−1(0), whose
length is λ− ℓ in the first sub-case, λ− ℓ−2k−1 in the second one. The case b.1) gives
us

Pℓ = {(x, y), (x, y), (x, y), (x, y), (xϕk−1(1), ϕk−1(1)y),

(xϕk−1(1), ϕk−1(0)y), (xϕk−1(0), ϕk−1(1)y), (xϕk−1(0), ϕk−1(0)y)}

while the case b.2) gives

Pℓ = {(x, ϕk−1(1)y), (x, ϕk−1(1)y), (x, ϕk−1(0)y), (x, ϕk−1(0)y),

(xϕk−1(1), y), (xϕk−1(1), y), (xϕk−1(0), y), (xϕk−1(0), y)}.

Both of them lead to the conclusion that # (Pℓ/≡k) = 6.

�

As a consequence of Corollary 53, Theorem 48 and Theorem 54, we get the expected result
stated in Theorem 6.
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