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Abstract. Consider a set of autonomous computational entities, called robots, operating inside a polygonal
enclosure (possibly with holes), that have to perform some collaborative tasks. The boundary of the polygon
obstructs both visibility and mobility of a robot. Since the polygon is initially unknown to the robots, the
natural approach is to first explore and construct a map of the polygon. For this, the robots need an unlimited
amount of persistent memory to store the snapshots taken from different points inside the polygon. However, it
has been shown by Di Luna et al. [DISC 2017] that map construction can be done even by oblivious robots by
employing a positional encoding strategy where a robot carefully positions itself inside the polygon to encode
information in the binary representation of its distance from the closest polygon vertex. Of course, to execute
this strategy, it is crucial for the robots to make accurate movements. In this paper, we address the question
whether this technique can be implemented even when the movements of the robots are unpredictable in the
sense that the robot can be stopped by the adversary during its movement before reaching its destination.
However, there exists a constant δ > 0, unknown to the robot, such that the robot can always reach its
destination if it has to move by no more than δ amount. This model is known in literature as non-rigid

movement. We give a partial answer to the question in the affirmative by presenting a map construction
algorithm for robots with non-rigid movement, but having O(1) bits of persistent memory and ability to make
circular moves.

Keywords: Autonomous robots · Map construction · Non-rigid movement · Polygon with holes · Look-
Compute-Move cycle · Distributed algorithm

1 Introduction

Distributed coordination of autonomous mobile robots has been extensively studied in literature in the last two
decades. Fundamental problems like Gathering [1, 8, 15, 19], Pattern Formation [3, 7, 20, 21] etc., have been
studied in the setting where the robots are deployed in the plane with infinite extent and without any obstacles.
Recently in [18], Meeting, which is a simpler version of the Gathering problem, has been investigated for
robots inside a polygonal enclosure containing polygonal obstacles, where their boundaries limit both visibility
and mobility of a robot. This setting models many real life scenarios like moping robots inside a room, robots
employed in factories or an art gallery etc. To solve the various distributed problems in this model, the robots
may have to first explore and construct a map of the environment. For this, the robots need an unlimited amount
of persistent memory. However, in [18], it has been shown that map construction can be done even by oblivious
robots with rigid movements, i.e., where a robot can accurately move by any distance. Their strategy is based on a
positional encoding technique, where the robot carefully moves within the polygonal enclosure in such a way that
their memory is implicitly encoded in its distance from the closest polygon vertex. In this paper, we show that
this technique can be adapted to the non-rigid setting (where the movements of the robots can be interrupted by
the adversary) as well, provided that the robot has a constant number of persistent bits and the ability to make
circular moves.

1.1 Related Works

The work that is closest to ours is [18], where the Meeting problem was studied for a set of anonymous, oblivious
and asynchronous robots in a polygon. The Meeting problem asks to design a distributed movement strategy
for n ≥ 2 robots, so that eventually at least two of them come to see each other and become ‘mutually aware’.
Rendezvous by two robots in polygons have been studied in [10–13], where the two robots have to meet at
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a point or get arbitrarily close to each other. However, their model is significantly different from [18]. Another
problem related to our map construction problem is that of constructing the visibility graph of a polygon by mobile
robots [4–6, 14].

Organization. The paper is organized as follows. In Section 2, the basic model and relevant definitions are
presented. In Section 3, a brief overview of the positional encoding technique is presented. Then in Section 4, we
describe our main algorithm. In Section 5, we briefly discuss how our algorithm and the techniques used in it can
be used to solve some distributed coordination problems in polygonal environment.

2 Model and Definitions

Polygon. A polygon P is a non-empty, connected, and compact region in R2 whose boundary ∂(P ) is a set of
finitely many disjoint simple closed polygonal chains. There is one connected component of ∂(P ), called the external
boundary, which encloses all others (if any), which are called holes. Vertices and edges of a polygon can be defined
in the standard way. V (P ) and E(P ) will respectively denote the set of vertices and edges of the polygon. For any
two points x, y ∈ P , we say that x and y are visible to each other if the line segment joining them lies in P , i.e.,
xy ⊂ P . We shall assume that there is some global coordinate system, with respect to which, the coordinates of
the polygon vertices are algebraic numbers.

Robot. By a robot, we mean an anonymous mobile computational entity modelled as a dimensionless point
inside P . The robot is equipped with visibility sensors which allow it to observe its surroundings. Formally, a robot
positioned at x ∈ P can observe a point y ∈ P if and only if x and y are visible to each other. The robot has
movement capabilities that allow it to move inside the polygon along a straight line or a circular arc. The robot is
endowed with O(1) bits of persistent memory. This model is known in literature as FState [16], where the internal
state of the robot can assume a finite number of ‘colors’. S will denote the set of all possible states of the robot.

A robot, when active, operates according to the so-called LOOK-COMPUTE-MOVE cycle. In each cycle, a
previously idle robot wakes up and executes the following steps. In the LOOK phase, the robot takes a snapshot
of the region of P that it can currently see. The snapshot is expressed in the local coordinate system of the robot
having the origin at its current position. In the COMPUTE phase, based on the snapshot and its internal state,
the robot performs computations according to a deterministic algorithm to decide 1) a destination point y ∈ P ,
2) a trajectory to y from its current location x ∈ P , which is either a straight line segment, or circular arc, 3) a
state s ∈ S. Then in the MOVE phase, the robot sets its internal state to s and moves towards the point y along
the decided trajectory. When a robot transitions from one LCM cycle to the next, all of its local memory (past
computations and snapshots) are completely erased, and only its internal state is retained. We shall assume that
the local coordinate system of the robot is persistent, in the sense that its orientation, scale, and handedness are
the same in each LCM cycle.

Depending on whether or not the adversary can stop a robot before it reaches its computed destination, there
are two movement models in literature, namely rigid and non-rigid, respectively. In the rigid model, a robot is
always able to reach its desired destination without any interruption. In the case of non-rigid movements, there
exists a constant δ > 0, such that if the robot decides to move by an amount (path length) smaller than δ, then
the robot will reach it; otherwise, it will move by at least δ amount. The value of δ is not known to the robot.

Geometric Definitions and Notations. Let v be any vertex of P , and u,w be its two adjacent vertices. We
shall say that u is the preceding vertex of v and w is the succeeding vertex of v if one can reach from vu to vw by
moving around v (staying inside P ) in the counterclockwise direction (according to the sense of handedness of the
robot). For any vertex pi ∈ V (P ), unless mentioned otherwise, pi−1 and pi+1 will respectively denote the vertices
preceding and succeeding pi.

For a set X = {x1, x2, . . . , xn} of distinct points in R2, n ≥ 2, the Voronoi region of any xi ∈ X , denoted
by V orX(xi) or simply V or(xi), is the set of all points in R2 which are closer to xi than any other point in X ,
that is, V orX(xi) = {y ∈ R2 | d(y, xi) ≤ d(y, xj), ∀i 6= j}. Points shared by two Voronoi regions V orX(xi) and
V orX(xj) constitute the Voronoi edge defined by xi and xj . Similarly, we can define Voronoi regions for a set
L = {l1, l2, . . . , ln},n ≥ 2 of straight line segments (any two of which can intersect only at their endpoints). We
will define the Voronoi region of li ∈ L as LV orL(li) = {y ∈ R2 | d(y, li) ≤ d(y, lj), ∀i 6= j} where d(y, lk) =
Inf {d(y, z) | z ∈ lk}. In the context for our problem, there is a minor technical issue that needs to be addressed.
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For a polygon P , the polygon edge closest to a point x ∈ P is of course visible to it. But the vertex closest to x

may not be visible from x (See Fig. 1). In the remainder of the paper, unless mentioned otherwise, whenever we say
‘closest vertex’, it should be understood as ‘closest visible vertex’. We will also define the polygon Voronoi region

of a vertex pi, denoted by PV orP (pi), as the set of points x ∈ P such that pi is visible to x and pi is closer to x

than any other vertex visible from x. V orV (P )(pi) or V orP (pi) will denote the usual Voronoi region of pi for the
set V (P ).

For any point x, and any real number r > 0, D(x, r) denotes the

p

p′
x

Fig. 1: The polygon vertex closest to x

is p′, but it is not visibile to x. Its closest
visible vertex is p.

closed disc {y ∈ R2 | d(y, x) ≤ r}. For any three points c, y, z such
that d(y, c) = d(z, c), we shall denote by arc(y, z, c), the circular arc
centered at c drawn from y to z in counterclockwise direction. Also,
arc(y, θ, c) will denote the circular arc arc(y, z, c) where ∠ycz = θ. A
point x ∈ P is said to be properly close to pi ∈ V (P ), if for any point
z ∈ arc(x, y, pi), where y ∈ pipi+1 with d(y, pi) = d(x, pi), the following
holds: 1) z ∈ PV orV (P )(pi) and 2) pi+1 is visible from z.

We can define a coordinate system by any ordered pair of distinct
points in the polygon. The coordinate system defined by (u, v) will be
the coordinate system with origin at u, −→uv as the positive X-axis, d(u, v)
as the unit distance and the positive Y -axis according to the chirality or
handedness of the robot.

3 A Brief Overview of the Positional Encoding Technique

Computational Model. We assume that each robot internally runs a Blum-Shub-Smale machine [2] extended
with a square-root primitive. A Blum-Shub-Smale machine is a random-access machine whose registers can store
arbitrary real numbers and can operate directly on them. Its computational primitives are the four basic arithmetic
operations on real numbers, and it can test whether a real number is positive. Each of these operations takes one unit
of time. Depending on the application, it is also customary to extend the basic model with additional primitives,
such as root extractions, trigonometric functions, etc. In our case, we only require the square-root primitive that
will be needed in geometric computations.

Encoding Algebraic Reals. Consider an algebraic real number α. The minimal polynomial of α over Q is the
unique monic polynomial in Q[x] of least degree which has α as a root. Let m(x) = xn+an−1x

n−1+ . . .+a1x+a0 ∈
Q[x] be the minimal polynomial of α over Q. Now m has n complex roots. However, the real roots can be arranged
in ascending order. So, let α be the ith real root of m. Then α can be uniquely represented by (n, i, an−1, . . . , a0).
Now any rational number (−1)s p

q
, with p, q > 0, s ∈ {0, 1}, can represented as a 3-tuple of non-negative integers

as (s, p, q) ∈ Z3
≥0. Thus α can be represented by an array of 3n+ 2 non-negative integers. We can represent each

non-negative integer m as the bit string 0m1. Let us denote by β(α), the bit string obtained by concatenating the
bit strings of the 3n + 2 non-negative integers. Now for any non-negative integer λ, let r(α, λ) < 1 be the real
number whose (usual) binary representation is 0.0λ1β(α). We shall say that r(α, λ) encodes α.

Lemma 1. If 0 < d < 1 be a real number such that d = r(α, λ), for some algebraic real α and non-negative integer

λ, then d
2 = r(α, λ + 1). Therefore, d

2k
= r(α, λ + k), for any integer k ≥ 1.

Computing the Code. Suppose a basic Blum-Shub-Smale machine has an algebraic number α stored in its
register and it has to construct its code β(α). The machine will generate all finite sequences of bits in lexicographic
order. For each sequence, it will check if it is a well-formed code of an algebraic number; if it is, it will extract the
coefficients of the polynomial q from it. Then it computes q(α). Since α is algebraic, eventually a polynomial q is
found such that q(α) = 0. Since q must be a multiple of the minimal polynomial m of α, we can determine it by
finding its irreducible factor that has α as a root. Then Sturm’s theorem [9] can be applied to find out how many
real roots of the minimal polynomial are smaller than α. Thus we have obtained all that are required to encode α.

Computations on the Implicit Form. Once a number is encoded in this form, we cannot necessarily retrieve
it in finite time. But we can approximate it arbitrarily well, for instance via Sturm’s theorem. However, we can do
Turing-computable bit manipulations on this implicit form to compute all kinds of common functions (e.g. basic
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arithmetic operations, root extractions of any degree etc.) on the algebraic number without decoding its explicit
form.

Encoding Snapshots. A snapshot taken by a robot contains the visible portion of the polygon P , which is
basically a union of line segments, each of which being a sub-segment of an edge of P . So, a snapshot can be
represented as an array of real numbers, say S = (x1, y1, x

′
1, y

′
1, x2, y2, x

′
2, y

′
2, . . .), where (xi, yi) and (x′

i, y
′
i) are the

endpoints of the ith visible segment of ∂(P ). Note that none of these points is necessarily a vertex of P .
We have discussed how to compute the code of a single algebraic number. Now we describe how we can encode

a snapshot of P with algebraic vertices taken from a point x ∈ P . The vertices of P have algebraic coordinate
with respect to some global coordinate system. Of course, the vertices may not have algebraic coordinates in the
local coordinate system of the robot. Let Φx be the transformation from the global coordinate system to the local
coordinate system of the robot. Note that x is not necessarily an algebraic point, and the parameters of Φx are not
necessarily algebraic numbers either. Therefore, the coordinates and the distances between vertices of Φx(P ) may
not be algebraic. However, all the ratios of the distances are algebraic, as Φx, being a similarity transformation,
preserves ratios between segment lengths. Then it follows that if the robot picks two visible vertices of Φx(P ), say v

and v′, and transforms all the visible vertices of Φx(P ) in the coordinate system (v, v′), then they will have algebraic
coordinates. Then they can be encoded by a basic Blum-Shub-Smale machine as we discussed earlier. However,
recall that a snapshot taken from x may not contain only vertices of Φx(P ). We can identify the potentially non-
vertex endpoints by a basic Blum-Shub-Smale machine, as a non-vertex point (xj , yj) ∈ S is necessarily of the form
(xj , yj) = c(xi, yi), c > 1 for some visible polygon vertex (xi, yi). These potentially non-vertex endpoints will be
simply marked with an ‘undefined’ flag in the snapshot. The robot will pick two ‘defined’ points in the snapshot
for the coordinate transformation. The coordinates of the ‘defined’ points of S will be transformed as discussed
earlier, and each ‘undefined’ point will be simply replaced with a (0, 0) or any algebraic point of our choice along
with the ‘undefined’ flag. Then these coordinates can be encoded into a finite bit string, and then they can be
concatenated into a single code for the entire snapshot. We can similarly encode multiple snapshots into a single
bit string. Along with the snapshots, we can also pack as many other finitely described elements as we want.

Positional Encoding. Suppose that β is the code or bit string of the information that the robot wants to encode.
Let d be a real number that encodes it, i.e., the binary representation of d is 0.0λ1β(α) for some non-negative integer
λ. The robot will encode the information by positioning itself in the polygon in such a way that its distance from
the closest polygon vertex is d (according to its local coordinate system). From Lemma 1, it follows that the robot
can encode the same information by placing itself at a distance d

2k from the vertex for any integer k ≥ 1. This
‘scalability’ property allows the robot to get arbitrarily close to the vertex without losing information.

4 The Algorithm

In [18], the memory of a robot is encoded in the distance from its closest polygon vertex. Obviously, the robot
needs rigid movements to accurately position itself at a point whose distance from the particular vertex correctly
encodes the memory. In the non-rigid setting, we need some additional options where we can encode our memory.
In particular, apart from the distance from some particular vertex, we shall also encode the memory in the tangent
of the angle that the robot makes with an edge or a diagonal, at some vertex. Note that computing the tangent
of an angle in the current snapshot, and also computing a destination point, so that the tangent of the angle it
makes with a line, at a vertex, is some given value, involves only the basic arithmetic operations and square root
extraction. In the remainder of the paper, whenever we say that the memory is encoded in some angle α, it is to be
understood that the memory is encoded by the real number tan(α). Notice that since tan(α) monotonically tends
to 0, as α < π

2 tends to 0, we can use the scalability property of the encoding scheme to encode the memory in an
angle as small as we want.

The persistent bits or the internal states are used so that each time a robot wakes up, it knows ‘where’ its
memory is encoded and which coordinate system the snapshots in the memory are expressed in. In each case, the
robot also sets a particular polygon vertex, that is visible to it, as its virtual vertex. A summary of this is provided
in Table 1.

Our map construction algorithm is similar to the one presented in [18]. The robot will keep exploring new
vertices (but not touching it), and near each vertex, it will take a new snapshot and encode it, merging with the old
snapshots. As it explores, it keeps track of the vertices that it has seen but not yet visited. Whenever it reaches a
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For any robot r at a point x inside the polygon P

State Virtual Vertex
Memory

encoded in expressed in the coordinate system

s1 pi = the closest visible vertex d(x, pi) (pi, pi+1)
s2 pi = the closest visible vertex d(x, pi) (pi−1, pi)

s3

pa = the nearer endpoint of the
closest boundary segment, say

pipi+1, a ∈ {i, i+ 1}

tan(∠xpapb), where pb is the other
endpoint of pipi+1

(pi, pi+1)

s4 pi = the closest visible vertex tan(∠xpipi−1 −
π
2 ) (pi−1, pi)

s5 pi = the closest visible vertex tan(π − ∠xpipi+1) (pi, pi+1)

s6 pi = the closest visible vertex
tan(∠xpiO), where piO is the angle

bisector of ∠pi−1pipi+1
(pi−1, pi)

s7 pi = the closest visible vertex

tan(∠xpi, pj), where either x lies
on the interior of the Voronoi edge

PV or(pi) ∩ PV or(pj) or
−→pix

intersects PV or(pi) ∩ PV or(pj)
first

(pi, pj) or (pj , pi)

Table 1: The virtual vertex and encoded memory of the robot, corresponding to its internal state.

new connected component of the boundary, it explores it entirely in the counterclockwise direction (i.e., by moving
from a vertex to its succeeding vertex). After exploring a connected component for the first time, it will take a
second tour of it, in the same direction. After completely exploring a previously unexplored connected component,
it will choose an unvisited vertex of a different component and move to it via a suitable path. The robot repeats
this until there are no unvisited vertices recorded in its encoded memory.

Implementation of this strategy in the non-rigid setting is based on four basic techniques that we shall discuss
in Section 4.1. From there follows the main result of the paper presented in Section 4.2.

4.1 Four Basic Techniques

4.1.1 Moving from One Virtual Vertex to Another in the Same Connected Component of the

Boundary

Suppose that pi is the virtual vertex of the robot r with internal state s1 (i.e., pi is the vertex closest to r), and
it has to approach the succeeding vertex pi+1. If r had rigid movements, it could have simply moved to a point
suitably close to pi+1 in one go, without any interruption. But since r has non-rigid movements, it can be stopped
multiple times during its journey. Now consider the situation shown in Fig. 2a. To move towards pi+1 via any path,
the robot has to pass through the Voronoi region of pj . Hence, if r is stopped by the adversary while it is in the
interior of PV orV (P )(pj), it will set pj as its virtual vertex. To resolve this, the robot will change its state to s3
before moving. When its state is s3, to set the virtual vertex, it considers the closest boundary segment, instead
of the closest vertex. The endpoint of its closest boundary segment that is closer to it, is set as the virtual vertex.
In case of a tie, any one of the endpoints can be chosen as the virtual vertex. The robot will move along a path as
shown in Fig. 2b. Such a path can be defined by a tuple (pi, pi+1, α), where the path consists of two linear segments
piq and qpi+1 of equal length with ∠qpipi+1 = ∠qpi+1pi = α and q lying on the perpendicular bisector of pipi+1.
We shall denote the path as P(pi, pi+1, α). The path should be chosen in such a way that any point on the path
is closer to the boundary segment pipi+1 than any other point of ∂(P ). In other words, P(pi, pi+1, α) should be
inside LV orE(P )(pipi+1).

Now let us describe our strategy more formally. Suppose that a robot r is at a point x inside the polygon P ,
such that the following are true.

A1 r.state = s1.
A2 x is properly close to the vertex pi.

Since r.state = s1, pi is the virtual vertex of r, and its memory is encoded in the distance d(x, pi) and expressed
in the coordinate system defined by (pi, pi+1). Since r is properly close to pi, if r moves around pi along a circular
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pi

pj

pi+1

(a)

pi+1

pi

q

(b)

Fig. 2: a) If a robot moves from pi towards pi+1, it has to pass through the Voronoi region of pj . b) The robot will
move along the path P(pi, pi+1, α) drawn in green.

arc in counterclockwise direction (i.e., keeping its distance from pi fixed), pi will remain its virtual vertex and also,
all of pipi+1 will remain visible to it. So, r will move around pi in counterclockwise direction to move to a point x′

such that the following conditions are satisfied.

B1 the data encoded by α = ∠x′pipi+1 is same as the data encoded by d(x′, pi) = d(x, pi) both expressed in the
coordinate system (pi, pi+1).

B2 the path P(pi, pi+1, α) is inside LV orE(P )(pipi+1).

After reaching such a point x′, r will change its state to s3. It will then follow the path P(pi, pi+1, α), where
α = ∠x′pipi+1, to move towards pi+1. However, note that r had decided that P(pi, pi+1, α) ⊂ LV orE(P )(pipi+1),
based on its view from x′. Therefore, it might happen that during its journey along the path P(pi, pi+1, α), it takes
a snapshot at some point y ∈ P(pi, pi+1, α) and finds that pipi+1 is not its closest boundary segment. We can easily
show that this is not possible.

We have to show that if y ∈ P(pi, pi+1, α) and z ∈ ∂(P )\pipi+1, such that z is visible from y, then d(pipi+1, y) <
d(y, z). Let us denote by P ′, the perception of r of the polygon P based on the snapshot taken at x′ (See Fig. 3).
LV or(pipi+1) according to r at x′ is based on P ′, and hence, can differ from the actual Voronoi region of pipi+1.
Therefore, it is better to denote it by LV orP ′(pipi+1). It is easy to see that either z ∈ ∂(P ′) or z ∈ R2 \ P ′. If
z ∈ ∂(P ′), then clearly d(pipi+1, y) < d(y, z) as y ∈ LV orP ′ (pipi+1). Now consider the case where z ∈ R2 \ P ′.
Let z′ be the point where yz intersects ∂(P ′). Again, d(pipi+1, y) < d(y, z′) as y ∈ LV orP ′ (pipi+1). Therefore,
d(pipi+1, y) < d(y, z′) < d(y, z′) + d(z′, z) = d(y, z) ⇒ d(pipi+1, y) < d(y, z).

x

Fig. 3: The perception of the polygon when seen from the point x.
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We have not yet specified how close r should get to pi+1. Our objective is to get close to pi+1, take a new snapshot
and encode the new snapshot (merged with the older ones) in its distance from pi+1. We want these snapshots
to be expressed in the coordinate system defined by (pi+1, pi+2), where pi+2 is the vertex succeeding pi+1. But in
order to do that, pi+2 should be visible to the robot. Notice that if some portion of pi+1pi+2 \ {pi+1} is visible to
r, then it will be able to see all points of pi+1pi+2 if it goes close enough to pi+1. However, if pi+1pi+2 \ {pi+1} is
completely invisible to r, the segment pi+1pi+2 will never be completely visible to it, no matter how close it gets
to pi+1. In this section, we will only discuss the first case. The later case is more complex and will be discussed in
the next section.

So, consider the case where some portion of pi+1pi+2 \ {pi+1} is visible to r. In this case, r will move to a point
x′′ that is close enough to pi+1 so that the following conditions are satisfied.

C1 x′′ is properly close to pi+1.
C2 d(x′′, pi+1) is encoding the old snapshots merged with its current view (newly discovered vertices) all expressed

in the coordinate system defined by (pi+1, pi+2).

The robot will first move close enough to pi+1, say at x′′′, so that the first condition is satisfied (See Fig.4), i.e.,
x′′′ is properly close to pi+1. Then the robot decides to further move towards pi+1 to a suitable point x′′ in order
to fulfill the last condition. There are two ways it may fail to achieve this.

1. If d(x′′, x′′′) > δ, the adversary can stop it at some point x′′′′ in between. However, the old snapshots are
still available as it is encoded in ∠x′′′′pi+1pi = ∠x′′′pi+1pi. So, r can identify that it has failed to reach its
destination. Then it will recompute the destination and move towards it.

2. Even if it reaches x′′, a new vertex may be discovered which is not present in the data encoded in d(pi+1, x
′′).

Therefore, r will again recompute a destination so that the newly discovered vertices are encoded (along with
the old data).

From the existence of δ > 0 and the fact that the polygon has finitely many vertices, it follows that r can
eventually reach a point x′′ where it finds that d(x′′, pi+1) encodes precisely the data encoded by ∠x′′pi+1pi
merged with the new vertices of the polygon that are visible from x′′. Observe that the visibility of both pi+1pi
and pi+1pi+2 are crucial at any point during this process. This is because the robot has to transform the data
encoded in ∠x′′pi+1pi from the coordinate system (pi, pi+1) to (pi+1, pi+2). When all three pi, pi+1, pi+2 are visible,
the robot knows their exact positions and hence, it can perform this conversion, which is computable by a rational
function, on (the implicit form of) the old snapshots. When the conditions C1, C2 are achieved, r will change its
state to s1. Clearly we are back to the situation where A1, A2 holds (pi to be replaced with pi+1), and hence r can
now move to pi+1 in the same manner.

pi+2

pi+1

y

(a)

pi+1

pi+2

y

z

(b)

Fig. 4: a) The shaded circular sector of radius d = d(pi+1, y) intersects no vertex other than pi+1. Any point on
−−−→pi+1y less than d

2 distance away from pi+1 satisfies the first condition of proper closeness to pi+1. b) Any point on
the interior of pi+1y satisfies the second condition of proper closeness to pi+1.
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4.1.2 Discovering the Succeeding Vertex and Encoding a New Snapshot

Now consider the case where pi+1pi+2 \ {pi+1} is completely invisible to r (See Fig. 5). This is possible only if
∠pipi+1pi+2 > π. Then no matter how close r gets to pi+1, pi+1pi+2 \ {pi+1} will remain completely invisible to it.
In this case, r will move to a point x′′ that is close enough to pi+1, such that the following conditions are satisfied.

D1 d(x′′, pi+1) = d should encode all the old data encoded by ∠x′′pi+1pi (both) expressed in the coordinate system
(pi, pi+1).

D2 Let S be the semicircular disc of radius 2d, centered at pi+1 and having diameter along the line ←−−→pipi+1. S
should not intersect with any portion of ∂(P ) except pipi+1.

D3 Every point on pipi+1 should be visible from every point on arc(u, π, pi+1), where u ∈ pipi+1 with d(u, pi+1) =
d.

When these conditions are satisfied, the robot will change its state to s2. Clearly, pi+1 is its virtual vertex. Let
y be a point on the line through pi+1 and perpendicular to pipi+1, with d(y, pi+1) = d(x′′, pi+1) = d. The robot
will then move to the point y along arc(x′′, y, pi+1). It implies from condition D2 that as r traverses along this
arc (where it can be stopped several times by the adversary), pi+1 will remain its virtual vertex. Upon reaching
the point y, pi+1pi+2 \ {pi+1} may still be completely invisible. In that case, r will have to move further along
a circular arc and place itself on the extension of the segment pipi+1. But if r revolves with the same radius, its
virtual vertex may change. Therefore it has to first reduce its distance from pi+1. But recall that its distance from
pi+1 is encoding its memory and hence, the data will be lost if this distance is changed. Therefore, before changing
its distance from pi+1, it will encode the data ‘somewhere’ else, such that it is preserved while it moves towards
pi+1. Notice that although moving around pi+1 with the same radius can change its virtual vertex, it can still move
by a small enough angle without changing its virtual vertex. From its view from y, it can compute a point y′′, such
that the following conditions are satisfied.

E1 d(pi+1, y
′′) = d(pi+1, y) = d.

E2 D(y′′, d) ∩ ∂(P ) = {pi+1}.
E3 ∠y′′pi+1y < π

2 encodes the same data encoded by d both expressed in the coordinate system (pi, pi+1).

Now r will first move to y′′ along a circular arc and then change its state to s4. Then it will reduce its distance
from pi+1 to d′, so that d′ satisfies the following conditions.

F1 d′ encodes the same data encoded by ∠y′′pi+1y both expressed in the coordinate system defined by (pipi+1).
F2 Let z be the point on the extension of the segment pipi+1 with d(z, pi+1) = d′. Then D(z, d′)∩ ∂(P ) = {pi+1}.

When these conditions are satisfied, it will change its state to s2. Now r will move to z by moving around pi+1

in counterclockwise direction maintaining the distance d′ from it. Upon reaching z, it can see at least some portion
of pi+1pi+2 \ {pi+1}. Suppose that it still can not see pi+2. But since it can see some portion of pi+1pi+2 \ {pi+1}, it
can compute the point z′ on the extension of the segment pi+2pi+1 with d(z′, pi+1) = d′. Now r will move around
pi+1 in clockwise direction towards z′, but not touching it (say by choosing the middle of arc(z′, z, pi+1) as its
destination and so on). Eventually, it will be able to see pi+2. In fact, it can see both pi+1pi+2 and pipi+1 entirely.
Now r has to encode a new snapshot (merged with the old ones) in its distance from pi+1. Before that it will encode
its memory in the angle that it makes with the extension of pi+2pi+1 at pi+1 by revolving further towards z′, and
then will change its state to s5. Then it will move towards pi+1 so that conditions C1, C2 are satisfied. When they
are achieved, r will change its state to s1.

4.1.3 Taking a Second Tour of a Connected Component of the Boundary

From the techniques discussed in the Sections 4.1.1 and 4.1.2, it is clear how a robot can ‘visit’ all the vertices of
a previously unexplored connected component C of ∂(P ). Also, whenever r encodes a new snapshot, it marks the
position of its current virtual vertex with a ‘visited once’ flag. Upon completing its first tour of C, it will start a
second tour of C in the same direction. In the second tour, the points from where the snapshots are taken, should
constitute an ‘approximation’ of C, say C, such that the closed polygonal curve C 1) does not self-intersect, 2)
does not intersect ∂(P ), and 3) does not intersect any other previous approximations.

Suppose that C is composed of m vertices p1, . . . , pm. Assume that r has started exploring C from (close to) p1.
As described earlier, it will sequentially visit all the vertices and eventually arrive at a point close to pm, from where
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Fig. 5: The robot moving around pi+1 to discover the succeeding Vertex and encode a new snapshot. The trail of
the robot is shown in blue.

p1 is visible. It can clearly identify p1 to be a previously visited vertex and will decide to start the second tour. Now
clearly r has a full picture of C. So it can compute a distance d implicitly and include it in its memory, so that d
has the following property. Let C̃(d) = {p′1, . . . , p

′
m} denote the approximation of C = {p1, . . . , pm} such that each

p′ip
′
i+1 is parallel to pipi+1 (pm+1 is to be understood as p1) and the separation between them is d (See Fig. 6). Then

d should be small enough, so that the approximation C̃(d) satisfies all the three requirements. The points from
where the robot will take snapshots during its second tour, will constitute an approximation C = {p11, p

2
1, . . . p

1
m, p2m}

consisting of 2m points, with C lying in the region between C and C̃(d). We shall now discuss the procedure in
detail. The robot will approach p1 (with state s3) in the same manner as described previously, but with an extra
requirement that the path it follows should be lying in the region between C and C̃(d2 ). Note that although d is
computed in the implicit form, r can get an approximation of d in explicit form that is smaller than the actual
value. Now there are two cases to consider.

First consider the case where ∠pmp1p2 is not reflex. Similar to the first tour, r goes to a point x so that the
conditions C1 and C2 are satisfied (with pi = pm, pi+1 = p1, pi+2 = p2). We can refer to this in short by simply
saying that ‘r takes a snapshot at x’. The extra requirement in this case would be that d(x, p1) <

d
2 . After this, r

will change its state to s1. Note that from the encoded data, the robot understands that it is currently taking a
second tour of C. Now r will move around p1 to reach a point x′ so that the condition B2 (with pi = p1, pi+1 = p2)
is satisfied, plus ∠x′p1p2 should encode the view from x′ merged with the older snapshots (encoded by d(x′, p1))
expressed in the coordinate system (p1, p2). Again using similar phrasing, we shall refer to this by saying ‘r takes
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a snapshot at x′’. Let us denote the points x and x′ by p11 and p21. Note that our constructions ensure that the line

segment p11p
2
1 is inside the region C and C̃(d).

Now consider the case where ∠pmp1p2 is reflex. The robot will go to a point x that is close enough to p1, such
that the following conditions are satisfied.

G1 d(x, p1) encodes the old snapshots (encoded in ∠xp1pm) expressed in the coordinate system defined by (pm, p1).
G2 d(x, p1) <

d
2 .

After reaching such a point x, r will change its state to s2. Let
−−→
p1A and

−−→
p1B be the extensions of the segments

p2p1 and pmp1 respectively. Let
−−→
p1O be the angular bisector of the angle ∠Ap1B. Now r can move around p1 to

place itself at a point p11 between the lines
−−→
p1A and

−−→
p1O such that the angle ∠p11p1O encodes the view from p11

merged with the older snapshots all expressed in the coordinate system defined by (pm, p1). In other words, r takes
a snapshot at p11. Then r will change its state to s6, move towards p1 to encode the data in its distance from p1,

again change its state to s2 and move around p1 to take a snapshot at a point p21 between the lines
−−→
p1O and

−−→
p1B

encoding the snapshot (merged with the old ones) in the angle ∠p21p1O expressed in the coordinate system defined
by (pm, p1). Then r will again change its state to s6 and move towards p1 to encode the data in its distance from
p1, this time expressed in the coordinate system (p1, p2). After this, it will change its state to s1. Continuing in
this manner, the robot will revisit all the vertices of the component, and take snapshots at p1i and p2i , near each
vertex pi. The polygonal chain C clearly satisfies all three desired properties.

p1

p21

p11

(a)

p1

p21
p11

A

O

B

(b)

Fig. 6: The robot taking a second tour. The trail of the robot is shown in blue. The approximations C̃(d) and C̃(d2 )
are shown in pink and grey dotted lines respectively.

4.1.4 Moving from One Connected Component to Another

A robot will move from a virtual vertex pi to a vertex pj belonging to a different connected component of ∂(P ) only
if pipj ⊂ PV orP (pi)∪PV orP (pj). The robot r with state s3 will approach pi and encode its memory in its distance
from pi expressed in the coordinate system defined by (pi−1, pi). The robot will then change its state to s2. Note
that pj may not even be visible from its current position if ∠pi−1pipi+1 is reflex. If ∠pi−1pipi+1 is reflex and pj
lies in the open half-plane delimited by ←−−→pi−1pi containing pi+1, it will have to encode its memory in the coordinate
system (pi, pi+1) by previously discussed techniques. It will then change its state to s1. From its memory, it knows
that the plan is to move to pj. It will then move around pi to move to a point x so that the following conditions
are satisfied.

H1 The ray −→pix intersects the interior of the Voronoi edge V orS(x)(pi) ∩ V orS(x)(pj), where S(x) denotes the
polygon vertices visible from x. Suppose that the ray intersects the Voronoi edge V orS(x)(pi) ∩ V orS(x)(pj) at
point A.
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H2 The angle α = ∠xpipj encodes its memory. All coordinates of the snapshots are expressed in the coordinate
system defined by (pi, pj). The encoding will also contain a rational approximation of 1

2 (pi − pj) expressed in
the local coordinate system of r.

The robot will then change its state to s7, move along P(pi, pj, α)

pi

pj

A

Fig. 7: pi and pj are vertices belonging to dif-
ferent connected components of ∂(P ). The
robot will move along the path P(pi, pj, α)
drawn in green.

towards pj, i.e., it will first move to A and then to a point properly
close to pj . Consider the situation when r stops at a point z on
the path P(pi, pj , α). When r was at x, it verified H1 by check-
ing from its snapshot that the disc D(A, d) contains no polygon
vertex other than pi, pj , where d = d(A, pi) = d(A, pj). It implies
from this that P(pi, pj , α) ⊂ PV orP (pi) ∪ PV orP (pj). Hence, at
z, its closest visible vertex, and hence its virtual vertex, is either
pi or pj. It computes intersections between the ray from its virtual
vertex, passing through it, and the perpendicular bisectors of the
lines joining its virtual vertex and other visible vertices; and then
checks if the intersection point is on the corresponding Voronoi
edge. It will find that the ray intersects the Voronoi edge defined
by pi and pj first. However, r does not immediately know whether
it is moving from pi to pj , or from pj to pi. However, it knows
that its memory is encoded in the angle it makes with pipj at its
virtual vertex ∈ {pi, pj}. But r does not to know if it is encoded
with the coordinate system (pi, pj) or (pj , pi). However, recall that
the memory contains a rational approximation of 1

2 (pi − pj), call
it w, expressed in its local coordinate system. Now r computes w+ 1

2 (pi + pj), which gives an approximation of pi.
from which r determines that it is moving away from pi, and also the fact that its encoded memory is expressed in
(pi, pj). So, eventually it will move to a point properly close to pj so that its distance from pj encodes its memory
expressed in either (pj , pj+1) or (pj−1, pj), and then change its state to s1 or s2 accordingly.

4.2 The Main Result

We shall assume that at the beginning, either the robot is at a polygon vertex with any arbitrary internal state,
or the robot is anywhere inside the polygon, but its internal state is set to a special value s0. In the later case, the
robot can move to the closest polygon vertex. Therefore, we can assume that the starting position of the robot r
is at a polygon vertex p0, and its internal state is arbitrary.

When r is first activated, it will take a snapshot and compute a path P(p0, p1, α) such that P(p0, p1, α) is inside
LV orE(P )(p0p1), and α encodes the snapshot in the coordinate system (p0, p1). Then it will change its state to s3
and start moving along the path. Then it will explore the connected component of ∂(P ) containing p0 twice as
discussed in Section 4.1.1, 4.1.2 and 4.1.3.

Then r will have to go to an unvisited vertex of a different connected component. Note that a robot moves from
a vertex pi to a vertex pj belonging to a different connected component only if pipj ⊂ PV orP (pi)∪PV orP (pj). We
show that there will be always possible to reach an unvisited vertex (of a different connected component) respecting
this rule. Let V and U be respectively the set of visited and unvisited vertices of P till now. Let (pi, pj) ∈ V ×U be
the closest pair of mutually visible vertices from the two sets. Let d(pi, pj) = d. Then the interior ofD(pi, d) contains
no vertex of U , other than pj, visible from pi. Similarly, the interior of D(pj , d) contains no vertex of V , other than
pi, visible from pj . It is not difficult to see that if D(pi, d) ∩D(pj , d) contains some vertex p other than pi and pj ,
then there is a boundary edge that intersects the boundary of D(pi, d)∩D(pj , d) at two points and separates p from
pi and pj . Take any point z ∈ pipj , and let d′ = min{d(z, pi), d(z, pj)}. Since D(z, d′) ⊂ D(pi, d) ∩D(pj , d), there
is no polygon vertex in D(z, d′) that is visibile from z other than pi or pj or both. So, z ∈ PV orP (pi)∪PV orP (pj).
Therefore, we have pipj ⊂ PV orP (pi) ∪ PV orP (pj). Since pi is a visited vertex, there must be a legal path to pi
from the current position of the robot. Therefore, there exists a legal path to pj from the current position of the
robot.

As mentioned earlier, whenever the robot goes to a previously unexplored connected component of ∂(P ), it will
visit all its vertices twice. It will repeat this process until there are no unvisited vertices left in its memory. We show
that eventually all vertices of P are indeed visited. The arguements are similar to [18]. The procedure ends when
there are no vertices of P left in the encoded memory of r that are marked ‘unvisited’. Hence, any vertex of P is
either undiscovered or ‘visited’. Let U ⊂ V (P ) be the set of vertices that are undiscovered. We have to show that
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U = ∅. When the procedure ends, r has touched all the vertices of some approximation C of P , which are mutually
disjoint simple closed polygonal chains Cj which approximate the components Cj of ∂(P ). Let us construct a new
polygon P ′ by removing every Cj from the boundary of P and replacing it with Cj . P

′ is a polygon because of the
way the Cj ’s have been constructed. Therefore, the visibility graph of V (P ′) is connected. Notice that the vertices
in U are also vertices of P ′, i.e., U ⊂ P ′. Suppose that U 6= ∅. Now consider the visibility graph G of P ′. Since
G is connected, there is a non-empty cut-set of U and V (P ′) \ U in G. Take any edge e = (u, v) from the cut-set,
where u ∈ U and v ∈ V (P ′) \U . Then u is visibile from v. Recall that r has touched every vertex of V (P ′) \U and
taken snapshots from there. Hence, r has taken a snapshot exactly from the point v, and therefore, must have seen
u. This contradicts the fact that u ∈ U .

Therefore, we can conclude the main result the paper as the following.

Theorem 1. In FState, a robot inside a polygon P with non-rigid movements can correctly construct and encode

a map of the polygon in finite time.

5 Conclusion

In this work, we have shown how a finite state robot with non-rigid movements can construct the map of a polygon
by a positional encoding strategy. The techniques developed here, give a general movement strategy for finite
state robots with non-rigid movements, to move about in the polygon, without losing its encoded memory. The
map construction algorithm can be used as a subroutine to solve distributed algorithms for mobile robot systems
under this model, where the knowledge of the polygon may be required. For instance, consider the Gathering

problem, where a set of autonomous, anonymous, asynchronous finite state mobile robots with no agreement in
coordinate system and no communication capabilities, have to meet at some point in the polygon. Assume that
the polygon is asymmetric. Then each robot will first construct and encode the map of the polygon. Since the
polygon is asymmetric, the robots can deterministically pick a polygon vertex as their meeting point. Then using
our techniques, the robots can move to that vertex. However, when the polygon is not asymmetric, Gathering

appears to challenging even for robots with unlimited memory. For symmetric polygons, we can consider the relaxed
version of Gathering, called Meeting, where any two of the robots have to become mutually aware by seeing
each other at their LOOK phases. Using our techniques, a patrolling strategy similar to [18] can be adapted to our
setting to solve Meeting.

It would be very interesting to investigate whether map construction or Meeting can be solved by fully
oblivious robots with non-rigid movements. Another direction would be to study the problems for oblivious robots
with limited visibility. Also, our movement model allows the robots to make circular moves, as opposed to [18],
where the robots can move only along a straight line. The ability to make circular moves is crucial to our algorithm.
Although the standard model for mobile robots in the plane assumes rectilinear robot movement, it is not completely
uncommon to allow the robots to move along circular trajectories (e.g., [7,17]). It would be interesting to see if the
same result can be achieved without the ability to make circular moves.
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