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Abstract. In this paper, we look into the adaptive bitprobe model that
stores subsets of size at most four from a universe of size m, and an-
swers membership queries using two bitprobes. We propose a scheme
that stores arbitrary subsets of size four using O(m5/6) amount of space.
This improves upon the non-explicit scheme proposed by Garg and Rad-
hakrishnan [4] which uses O(m16/17) amount of space, and the explicit
scheme proposed by Garg [3] which uses O(m14/15) amount of space.
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1 Introduction

Consider the following static membership problem – given a universe U contain-
ing m elements, we want to store an arbitrary subset S of U whose size is at
most n, such that we can answer membership queries of the form “Is x in S?”
Solutions to problems of this nature are called schemes in the literature. The
resources that are considered to evaluate the schemes are the size of the data
structure devised to store the subset S, and the number of bits read of the data
structure to answer the membership queries, called bitprobes. The notations for
the space used and the number of bitprobes required are s and t, respectively.
This model of the static membership problem is called the bitprobe model.

Schemes in the bitprobe model are classified as adaptive and non-adaptive.
If the location where the current bitprobe is going to be depends on the answers
obtained from the previous bitprobes, then such schemes are called adaptive
schemes. On the other hand, if the location of the current bitprobe is indepen-
dent of the answers obtained in the previous bitprobes, then such schemes are
called non-adaptive schemes. Radhakrishnan et al. [7] introduced the notation
(n,m, s, t)A and (n,m, s, t)N to denote the adaptive and non-adaptive schemes,
respectively. Sometimes the space requirement of the two classes of schemes will
also be denoted as sA(n,m, t) and sN (n,m, t), respectively.

1.1 The Bitprobe Model

The scheme presented in this paper is an adaptive scheme that uses two bitprobes
to answer membership queries. We now discuss in detail the bitprobe model in
the context of two adaptive bitprobes.

http://arxiv.org/abs/1812.04802v1
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Fig. 1: The decision tree of an element.

The data structure in this model consists of three tables – A,B, and C –
arranged as shown in Figure 1. Any element e in the universe U has a location
in each of these three tables, which are denoted by A(e),B(e), and C(e). By a
little abuse of notation, we will use the same symbols to denote the bits stored
in those locations.

Any bitprobe scheme has two components – the storage scheme, and the
query scheme. Given a subset S, the storage scheme sets the bits in the three
tables such that the membership queries can be answered correctly. The flow of
the query scheme is traditionally captured in a tree structure, called the decision
tree of the scheme (Figure 1). It works as follows. Given a query “Is x in S?”,
the first bitprobe is made in table A at location A(x). If the bit stored is 0, the
second query is made in table B, else it is made in table C. If the answer received
in the second query is 1, then we declare that the element x is a member of S,
otherwise we declare that it is not.

1.2 The Problem Statement

As alluded to earlier, we look into adaptive schemes with two bitprobes (t = 2).
When the subset size is one (n = 1), the problem is well understood – the space
required by the data structure is Ω(m1/2), and we have a scheme that matches
this bound [1,6].

For subsets of size two (n = 2), Radhakrishnan et al. [7] proposed a scheme
that takes O(m2/3) amount of space, and further conjectured that it is the
minimum amount of space required for any scheme. Though progress has been
made to prove the conjecture [7,8], it as yet remains unproven.

For subsets of size three (n = 3), Baig and Kesh [2] have recently proposed
a scheme that takes O(m2/3) amount of space. It has been subsequently proven
by Kesh [5] that Ω(m2/3) is the lower bound for this problem. So, the space
complexity question for n = 3 stands settled.

In this paper, we look into problem where the subset size is four (n = 4),
i.e. an adaptive bitprobe scheme that can store subsets of size atmost four, and
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answers membership queries using two bitprobes. Garg and Radhakrishnan [4]
have proposed a generalised scheme that can store arbitrary subsets of size n(<

logm), and uses O(m1− 1
4n+1 ) amount of space. For the particular case of n = 4,

the space requirement turns out to be O(m16/17). Garg [3] further improved the

bounds to O(m1− 1
4n−1 ), which improved the scheme for n = 4 to O(m14/15).

We propose a scheme for the problem whose space requirement is O(m5/6)
(Theorem 2), thus improving upon the existing schemes in the literature. Our
claim is the following:

sA(4,m, 2) = O(m5/6). (Theorem 2)

2 Our Data structure

In this section, we provide a detailed description of our data structure. To achieve
a space bound of o(m), more than one element must necessarily share the same
location in each of the three tables. We discuss how we arrange the elements
of the universe U , and which all elements share the same location in any given
table.

Along with the arrangement of elements, we will also talk about the size of
our data structure. The next few sections prove the following theorem.

Theorem 1. The size of our data structure is O(m5/6).

2.1 Table A

Given the universe U containing m elements, we partition the universe into sets
of size m1/6. Borrowing the terminology from Radhakrishnan et al. [7], we will
refer to these sets as blocks. It follows that the total number of blocks in our
universe is m5/6.

The elements within a block are numbered as 1, 2, 3, . . . ,m1/6. We refer to
these numbers as the index of an element within a block. So, an element of U
can be addressed by the number of the block to which it belongs, and its index
within that block.

In table A of our data structure, we will have one bit for every block in our
universe. As there are m5/6 blocks, the size of table A is m5/6.

2.2 Superblocks

The blocks in our universe are partitioned into sets of size m4/6. Radhakrishnan
et al. [7] used the term superblocks to refer to these sets of blocks, and we will do
the same in our discussion. As there are m5/6 blocks, the number of superblocks
thus formed is m1/6. These superblocks are numbered as 1, 2, 3, . . . ,m1/6.

For a given superblock, we arrange the m4/6 blocks that it contains into
a square grid, whose sides are of size m2/6. The blocks of the superblock are
placed on the integral points of the grid. The grid is placed at the origin of a
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two-dimensional coordinate space with its sides parallel to the coordinate axes.
This gives a unique coordinate to each of the integral points of the grid, and thus
to the blocks placed on those points. It follows that if (x, y) is the coordinate of
a point on the grid, then 0 ≤ x, y < m2/6.

We can now have a natural way of addressing the blocks of a given superblock
– we will use the x-coordinate and the y-coordinate of the point on which the
block lies. So, a given block can be uniquely identified by the number of the
superblock to which it belongs, and the x and y coordinates of the point on
which it lies. Henceforth, we will address any block by a three-tuple of the form
(s, x, y), where the s is its superblock number, and (x, y) are the coordinates of
the point on which it lies.

To address a particular element of the universe, apart from specifying the
block to which it belongs, we need to further state its index within that block.
So, an element will be addressed by a four-tuple such as (s, x, y, i), where the
first three components specify the block to which it belongs, and the fourth
component specifies its index.

2.3 Table C

Table C of our data structure has the space to store one block for every possible
point of the grid (described in the previous section). So, for the coordinate
(x, y) of the grid, table C has space to store one block; similarly for all other
coordinates. As every superblock has one block with coordinate (x, y), all of
these blocks share the same location in table C. So, we can imagine table C as a
square grid containing m4/6 points, where each point can store one block.

There are a total of m4/6 points in the grid, and the size of a block is m1/6,
so the space required by table C is m5/6.

2.4 Lines for Superblocks

Given a superblock whose number is i, we associate a certain number of lines
with this superblock each of whose slopes is 1/i. In the grid arrangement of the
superblock (Section 2.2), we draw enough of these lines of slope 1/i so that every
grid point falls on one of these lines. Figure 2 shows the grid and the lines.

So, all lines of a given superblock has the same slope, and lines from different
superblocks have different slopes. As there are m1/6 superblocks, and they are
numbered 1, 2, . . . ,m1/6, so, we have the slopes of the lines vary as

0 < i ≤ m1/6. (1)

There are two issues to consider – the number of lines needed to cover every
point of the grid, and the purpose of these lines. We address the issue of the
count of the lines in this section, and that of the purpose of the lines in the next.

We introduce the notation li(a, b) to denote the line that has slope 1/i, and
passes through the point (a, b). We now define the collection of all lines of slope
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(a, b)

(a+ 2, b+ 1)

Fig. 2: The figure shows the grid for superblock 2, and some of the lines with
slope 1/2. Note that the line passing through (a, b) intersects the y-axis at a
non-integral point.

1/i that we are going to draw for the superblock i.

Li =
{

li(a, 0) | a ∈ Z, −i(m2/6 − 1) ≤ a < m2/6
}

. (2)

In the following three lemmas, we show the properties of this set of lines.

Lemma 1. Every line of Li contains at least one point of the grid.

Proof. Consider an arbitrary line li(a, 0) of Li. If 0 ≤ a < m2/6, then (a, 0) itself
is a member of the grid, and li(a, 0) is non-empty.

Let us now consider the scenario where −i(m2/6−1) ≤ a < 0. Let −a = qi+r,
where 0 ≤ r < i.

If r = 0, we show that (0, q) is a point that falls on the line through (a, 0),
and it also belongs to the grid. First,

q − 0

0− a
=

q

qi+ 0
=

1

i
,

which shows that the point falls on the required line. Also,

−i(m1/2 − 1) ≤ a < 0
=⇒ −i(m1/2 − 1) ≤ −qi− 0 < 0

=⇒ m1/2 − 1 ≥ q > 0,

which shows that (0, q) belongs to the grid. Together they show that (0, q) ∈
li(a, 0).

On the other hand, if 0 < r < i, the point to consider is (i − r, q + 1). The
following equality shows that the point lies on the line through (a, 0) –

q + 1− 0

i − r − a
=

q + 1− 0

i− r + qi + r
=

1

i
.
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To show that the point belongs to the grid, the x-coordinate satisfies the follow-
ing 0 < i− r < m1/6 (Equation 1). As for the y-coordinate, we have

−i(m2/6 − 1) ≤ a < 0
=⇒ −i(m2/6 − 1) ≤ −qi− r < 0

=⇒ m2/6 − 1 ≥ q + r/i > 0

=⇒ m2/6 − 1 ≥ ⌈q + r/i⌉ > 0
=⇒ m2/6 − 1 ≥ q + 1 > 0

This shows that even when r in non-zero, li(a, 0) is non-empty.

Lemma 2. Every point of the grid belongs to some line of Li.

Proof. Let (a, b) be an arbitrary element of the grid. By construction, a and b
are both integers, and 0 ≤ a, b < m2/6. If b = 0, then (a, 0) ∈ li(a, 0).

If b 6= 0, consider the point (a− bi, 0). As

a− bi− a

0− b
=

1

i
,

(a, b) falls on the line through (a−bi, 0). And using arguments similar to the one
employed in the previous lemma, one can show that i(m2/6−1) ≤ a−bi < m2/6.
So, (a, b) falls on the line li(a− bi, 0).

Lemma 3. | Li | = (i+ 1)(m2/6 − 1) + 1.

Proof. The equality is a direct consequence of the definition of Li (Equation 2).

2.5 Table B

In table B, we have space to store one block for every line of every superblock.
That means that for a superblock, say i, all of its blocks that fall on the line
li(a, b) share the same block in table B; and the same is true for all lines of every
superblock.

The ith superblock contains | Li |= (i + 1)(m2/6 − 1) + 1 lines (Lemma 3),
so the total number of lines from all of the superblocks is

| L1 | + | L2 | + · · ·+ | Lm1/6 |

=
m1/6
∑

i=1

(

(i+ 1)(m2/6 − 1) + 1
)

=
(

(m1/6)(m1/6+1)
2 +m1/6

)

(m2/6 − 1) +m1/6

= O(m4/6).

As mentioned earlier, we reserve space for one block for each of these lines.
Combined with the fact that the size of a block is m1/6, we have

|C| = O(m5/6).
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2.6 Notations

As described in Section 2.2, any element of the universe U can be addressed by
a four-tuple, such as (s, x, y, i), where s is the superblock to which it belongs,
(x, y) are the coordinates of its block within that superblock, and i is its index
within the block.

Table A has one bit for each block, so all elements of a block will query the
same location. As the block number of the element (s, x, y, i) is (s, x, y), so the
bit corresponding to the element is A(s, x, y); or in other words, the element
(s, x, y, i) will query the location A(s, x, y) in table A.

In table C, there is space for one block for every possible coordinates of the
grid. The coordinates of the element (s, x, y, i) is (x, y), and C has space to store
an entire block for this coordinate. So, there is one bit for every element of a
block, or, in other words, every index of a block. So, the bit corresponding to
the element (s, x, y, i) is C(x, y, i).

Table B has a block reserved for every line of every superblock. The element
(s, x, y, i) belongs to the line ls(x, y), and thus table B has space to store one
block corresponding to this line. As the index of the element is i, so the bit
corresponding to the element in table B is B(ls(x, y), i).

3 Query Scheme

The query scheme is easy enough to describe once the data structure has been
finalised; it follows the decision tree as discussed earlier (Figure 1). Suppose we
want to answer the following membership query – “Is (s, x, y, i) in S?” We would
make the first query in table A at location A(s, x, y). If the bit stored at that
location is 0, we query in table B at B(ls(x, y), i), otherwise we query table C at
C(x, y, i). If the answer from the second query is 1, then we declare the element
to be a member of S, else we declare that it is not a member of S.

4 The Storage Scheme

The essence of any bitprobe scheme is the storage scheme, i.e. given a subset S
of the universe U , how the bits of the data structure are set such that the query
scheme answers membership questions correctly. We start the description of the
storage scheme by giving an intuition for its construction.

4.1 Intuition

The basic unit of storage in the tables B and C of our data structure, in some
sense, is a block – table B can store one block of any line of any superblock, and
table C can store one block of a given coordinate from any superblock. We show
next that our storage scheme must ensure that a empty and non-empty block
cannot be stored together in a table.
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Suppose, the block (s, x, y) of table A is non-empty, and it contains the
member (s, x, y, i) of subset S. If we decide to store this member in table B,
then we have to store the block (s, x, y) in table B. So, we have to set in table A
the following – A(s, x, y) = 0. Thus, (s, x, y, i) upon first query will get a 0 and
go to table B. In table B, we store the block (s, x, y) at the storage reserved for
the line ls(x, y). Particularly, we have to set B(ls(x, y), i) = 1.

If (s, x′, y′) is a block that is empty, i.e. it does not contain any member of S,
and it falls on the aforementioned line, i.e. ls(x

′, y′) = ls(x, y), then we cannot
store this block in table B, and hence A(s, x′, y′) must be set to 1. If this is not
the case, and A(s, x′, y′) = 0, then the first query for the element (s, x′, y′, i)
will get a 0, go to table B and query the location B(ls(x

′, y′), i) which is same
as B(ls(x, y), i). We have set this bit to 1, and we would incorrectly deduce that
(s, x′, y′, i) is a member of S.

The same discussion holds true for table C. If we decide to store the block
(s, x, y) in table C, we have to set A(s, x, y) to 1. In table C, we have space
reserved for every possible coordinate for a block, and we would store the block
at the coordinate (x, y); particularly, we would set C(x, y, i) to 1. This implies
that all empty blocks from other superblocks having the same coordinate cannot
be stored in table C, and hence must necessarily be stored in table B. To take
an example, if (s′, x, y) is empty, then it must stored it table B, and hence
A(s′, x, y) = 0.

To summarise, for any configuration of the members of subset S, as long as
we are able to keep the empty and the non-empty blocks separate, our scheme
will work correctly. For the reasons discussed above, we note the following.

1. We have to keep the non-empty blocks and empty blocks separate.

2. We have to keep the non-empty blocks separate from each other; and

3. The empty blocks can be stored together.

Our entire description of the storage scheme would emphasize on how to achieve
the aforementioned objective.

4.2 Description

Let the four members of subset S be

S =
{

(s1, x1, y1, i1), (s2, x2, y2, i2), (s3, x3, y3, i3), (s4, x4, y4, i4)
}

.

So, the relevant blocks are

{

(s1, x1, y1), (s2, x2, y2), (s3, x3, y3), (s4, x4, y4)
}

,

and the relevant lines are
{

ls1(x1, y1), ls2(x2, y2), ls3(x3, y3), ls4(x4, y4)
}

.
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In the discussion below, we assume that no two members of S belong to
the same block. This implies that there are exactly four non-empty blocks. The
scenario where a block contains multiple members of S is handled in Section 4.3.

The lines for the members of S need not be distinct, say when two elements
belong to the same superblock and fall on the same line. We divide the descrip-
tion of our storage scheme into several cases based on the number of distinct
lines we have due to the members of S, and for each of those cases, we provide
the proof of correctness alongside it.

Case I Suppose we have four distinct lines for the four
members of S. The slopes of some of these lines could be
same, or they could all be different. We know that all lines
of a given superblock have the same slope, and lines from
different superblocks have different slopes (Section 2.4).
We also know that if two of these lines, say ls1(x1, y1) and
ls2(x2, y2), have the same slope, then the corresponding
members of S belong to the same superblock, i.e. s1 = s2.
On the other hand, if their slopes are distinct, then they
belong to different superblocks, and consequently, s1 6= s2.

Table B has space to store one block for every line in every superblock. As
the lines for the four members of S are distinct, the space reserved for the lines
are also distinct. So we can store the four non-empty blocks in table B, and all
of the empty blocks in table C.

To achieve the objective, we set A(sj , xj , yj) = 0 for 1 ≤ j ≤ 4, and set
the bits in table A for every other block to 1. In table B, we set the bits
B(lsj (xj , yj), ij) = 1, for 1 ≤ j ≤ 4, and all the rest of the bits to 0. In ta-
ble C, all the bits are set to 0.

So, if e is an element that belongs to an empty block, it would, according to
the assignment above, get a 1 upon its first query in table A. Its second query
will be in table C, and as all the bits of table C are set to 0, we would conclude
that the element e is not a member of S.

Suppose, (s, x, y, i) be an element that belongs to one of the non-empty
blocks. Then, its coordinates must correspond to one of the four members of
S. Without loss of generality let us assume that s = s1, x = x1, and y = y1.

It follows that A(s, x, y), which is same as A(s1, x1, y1), is 0, and hence the
second query for this element will be in table B. The line corresponding to the
element is ls(x, y), which is same as ls1(x1, y1), and hence the second query will
be at the location B(ls(x, y), i) = B(ls1(x1, y1), i). As the four lines for the four
members of S are distinct, so B(ls1(x1, y1), i) will be 1 if and only if i = i1. So,
we will get a Yes answer for your query if and only if the element (s, x, y, i) is
actually the element (s1, x1, y1, i1), a member of S.

Case II Let us consider the case when there is just one line for the four members
of S. As all of their lines are identical, and consequently, the slopes of the lines
are the same, all the elements must belong to the same superblock. So, we have
s1 = s2 = s3 = s4.
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As all the non-empty blocks belong to the same su-
perblock, all of their coordinates must be distinct. Table
C can store one block for each distinct coordinate of the
grid, and hence we can store the four non-empty blocks
there. All the empty blocks will be stored in table B.

To this end, we set A(sj , xj , yj) = 1 for 1 ≤ j ≤ 4,
and the rest of the bits of table A, which correspond to
the empty blocks, to 0. In table B, all bits are set to 0. In
table C, the bits corresponding to the four elements are
set to 1, i.e. C(xj , yj , ij) = 1 for 1 ≤ j ≤ 4. The rest of the bits of table C are set
to 0.

The proof of correctness follows directly from the assignment, and the rea-
soning follows along the lines of the previous case. If the element e belongs to
an empty block, it will get a 0 from table A upon its first query, consequently
go to table B for its second query, and get a 0, implying e is not a member of S.

If the element (s, x, y, i) belongs to a non-empty block, then its coordinates
must correspond to one of the members of S. Without loss of generality, let
s = s1, x = x1, and y = y1.

The first query of the element will be at the locationA(s, x, y) = A(s1, x1, y1),
and hence it will get a 1 from table A, and go to table C for its second query.
In this table, it will query the location C(x, y, i), which is same as C(x1, y1, i).
As the coordinates of the four members of S are distinct, C(x1, y1, i) will be 1
if and only if i = i1. So, we get a 1 in the second query if and only if we have
(s, x, y, i) = (s1, x1, y1, i1), a member of S.

Case III The next case that we consider is when there are two distinct lines
corresponding to the four members of subset S. The members can be distributed
in one of two ways – one line contains three elements and the other line one,
or the elements might be divided equally among the two lines. We consider the
cases separately below.

Case III(A) Consider the case when one line contains three elements, and the
other line contains one. Without loss of generality, let the first three members of
S belong to one line, and the fourth one to another one. So, we have ls1(x1, y1) =
ls2(x2, y2) = ls3(x3, y3), and the line ls4(x4, y4) is different from the others. As
lines with same slopes belong to the same superblock, we have s1 = s2 = s3.
Whether the fourth member belongs to the aforementioned superblock, or to a
different superblock depends on whether the slope of ls4(x4, y4) is same as the
other line or it is distinct.

As the first three elements belong to the same superblock, all will have coor-
dinates distinct from one another. The coordinates of the fourth element could
be distinct, or it could overlap with one of the first three.

The case of the coordinates of the four members of S being distinct is one
we have seen in Case II, where the elements too had distinct coordinates. The
assignment for this scenario will be identical to that case, and consequently, the
correctness proof follows.
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1

2

3

4

Let us say that the coordinates of the fourth element
coincides with one of the other three members. Without
loss of generality, let us assume that the third and the
fourth elements have identical coordinates, that is to say
x3 = x4 and y3 = y4. As two blocks of a superblock can-
not have the same coordinates, we must have s3 6= s4.
Moreover, different superblocks have different slopes for
its lines, implying ls1(x1, y1) = ls2(x2, y2) = ls3(x3, y3) 6=
ls4(x4, y4).

The assignment in this case will be as follows – we will store the blocks
corresponding to the first two elements in table C, and the blocks corresponding
to the last two elements in table B. The empty blocks accordingly will have to
be distributed among the two tables.

Accordingly, we set A(s1, x1, y1) and A(s2, x2, y2) to 1, and set A(s3, x3, y3)
and A(s4, x4, y4) to 0. The bits corresponding to the remaining blocks in the two
lines, which are ls1(x1, y1) and ls4(x4, y4), are set to 1. The bits of the blocks of
all the other lines in all of the superblocks are set to 0.

In table B, the bits corresponding to the third and the fourth element is set
to 1, i.e. B(ls3(x3, y3), i3) = B(ls4(x4, y4), i4) = 1, and all the remaining bits are
set to 0. In table C, only the bits corresponding to the first two elements are set
to 1, i.e. C(x1, y1, i1) = C(x2, y2, i2) = 1; the rest of the bits of this table are set
to 0.

We now prove that the assignment above is correct. If an element e belongs
to a line other than the lines ls1(x1, y1) and ls4(x4, y4), then the bit for its block
has been set to 0. Consequently, it will query table B. Table B has separate space
for each line, and only certain bits of the non-empty lines have been set to 1. As
e falls on a line different from ls1(x1, y1) and ls4(x4, y4), so the second query for
e will also return a 0.

Suppose e belongs to an empty block falling on one the lines ls1(x1, y1) and
ls4(x4, y4). According to our assignment, the bits of the empty blocks from the
lines are set to 1, and hence the second query for e will go to table C. All blocks
falling on a line have distinct coordinates, so the coordinates of the block of e
will be distinct from the coordinates of the non-empty blocks of the two lines.
As table C has space to store one block for each distinct coordinate, the space
for the empty blocks of the two lines will be different from the non-empty ones.
As we have set certain bits of the only the non-empty blocks of table C to 1, all
the bits of the block of e must be 0, and hence the answer to second query for e
will be 0.

It remains to verify whether the queries corresponding to the elements of
the four non-empty blocks give correct answers. We have argued above that
the empty blocks are stored in locations distinct from the non-empty blocks.
The assignment tells us that we have stored the non-empty blocks in its entirety.
These two facts together imply that queries for elements in the non-empty blocks
will also give correct answers.
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Case III(B) We now consider the case when the four members of S are divided
equally among the two lines. Without loss of generality, let us assume that the
first two members belong to one line, and the other two members belong to
the other line. So, we have ls1(x1, y1) = ls2(x2, y2) and ls3(x3, y3) = ls4(x4, y4).
Consequently, we have s1 = s2 and s3 = s4.

In this scenario, we may have the four non-empty blocks occupying four
distinct coordinates of the grid. This situation is familiar to us, and we will
handle it as we have done in Case II.

1
3

2

4

The other scenario is when coordinates of non-empty
blocks overlap. As the lines are distinct, they can have an
intersection point if and only if they have different slopes.
It implies that the lines belong to different superblocks,
and hence s1 = s2 6= s3 = s4. Further, as there is only
one common point between the two lines, only one pair of
non-empty blocks from the two lines can overlap, i.e. have
the same coordinates. Without loss of generality, let it be
the second and fourth member of S. So, we have x2 = x4

and y2 = y4.
For all blocks which do not fall on any of the two aforementioned lines, and

hence implying that they are empty, we set their bits in table A to 0. So, the
second query for the elements of these blocks will be in table B. As we already
know, table B has seperate space reserved for all lines, and we set all the bits of
all of those empty lines to 0.

An important thing to note so far is we have not stored anything in table C
yet. We now look into the assignment of the blocks that fall on the two non-empty
lines. The blocks that fall on a line have distinct coordinates, so the blocks on
the line ls1(x1, y1) have distinct spaces in table C, and we store all these blocks
in table C. We accordingly set the corresponding bits in table A and C.

We now look into the assignment of the blocks on the other line, namely
ls3(x3, y3). There is only one block on this line whose coordinate is same as a
point on the other line – the block corresponding to the fourth member of S
has the same coordinate as the second member of S. Then, we cannot store the
block (s4, x4, y4) in table C as it is already occupied by the block (s2, x2, y2) from
the other line. We store this block in table B at the space reserved for the line
ls3(x3, y3). All other blocks of this line can then be stored in table C without
any conflict.

The assignment tells us how the empty and the non-empty blocks have been
kept separate. An explicit proof of correctness follows along the lines of the
previous cases.

Case IV The final case to consider is when the number of distinct lines due
to the non-empty blocks is three. Without loss of generality, let us assume that
the blocks corresponding to the third and fourth elements fall on the same line,
i.e. ls3(x3, y3) = ls4(x4, y4). This also means that these two blocks belong to the
same superblock, and hence, s3 = s4. It further implies that the coordinates of
the two blocks are distinct.
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As seen in the previous cases, those lines of the superblocks which do not
contain any non-empty block is easy to handle – we simply store them in table
B at the space reserved for the respective lines. A point to note is that it also
leaves table C untouched. In the discussion below, we will then concentrate on
how we handle the blocks from the three lines which are non-empty.

The discussion will be divided into three parts based on how many of those
points coincide. As the blocks corresponding to the third and the fourth members
have distinct coordinates, it follows that at most three of the non-empty blocks
can coincide.

4

2

3
1

Case IV(A) Let us consider the scenario when three of
the non-empty blocks coincide. Without loss of generality,
let it be the first three blocks, i.e. x1 = x2 = x3 and
y1 = y2 = y3.

We store all the blocks on the line ls3(x3, y3) in ta-
ble C. There is only one point in each of the other two
lines, namely ls1(x1, y1) and ls2(x2, y2), that is common
with this line – we store the blocks corresponding to those
points in table B, and the rest of the blocks of the other
lines in table C. So, the blocks (s1, x1, y1) and (s2, x2, y2) are stored in the loca-
tion reserved in table B for the lines ls1(x1, y1) and ls2(x2, y2), and the rest of
the blocks of these lines are stored in table C.

This assignment keeps the empty blocks and the non-empty blocks separate
from each other, and the correctness follows.

1
3

2

4

Case IV(B) Let us consider the case where two pairs of
non-empty blocks coincide. Without loss of generality, let
the first block coincide with the third and the second block
coincide with the fourth.

The assignment that we devised for the previous case
works in this scenario as well – we store the blocks of the
line ls3(x3, y3) in table C, and the blocks (s1, x1, y1) of
line ls1(x1, y1) and (s2, x2, y2) of line ls2(x2, y2) in table
B. The other blocks of the lines ls1(x1, y1) and ls2(x2, y2)
are stored in table C.

The correctness proof of the previous case holds in this scenario as well.

Case IV(C) Let us next consider the scenario where only one pair of non-empty
blocks coincide. Without loss of generality, let the first block coincide with the
third. So, we have x1 = x3 and y1 = y3. As only one pair of non-empty blocks
coincide, the block of the second element do not lie on any of the other non-empty
blocks, and hence has coordinates distinct from the rest.

The assignment in this arrangement will depend on the coordinates of the
block of the second block – it lies on the line ls3(x3, y3), or it doesn’t. We address
each of these cases below.
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1
3

2

4

Case IV(C)(i) We store all of the blocks on the line
ls3(x3, y3) in table C. From the line ls1(x1, y1), only one
block lies in the previous line, the block containing the
first element. This block will be stored in table B at the
location reserved for the line ls1(x1, y1), and the rest of
the blocks can be stored in table C. From the last line, i.e.
ls2(x2, y2), only one block lies on this line, the block that
contains the second element. This blocks will be stored in
table B at the location for the line ls2(x2, y2), and the rest
of the blocks can be stored in table C without conflict.

1
3

2

4

Case IV(C)(ii) We next consider the case when the block
for the second element does not lie on the line ls3(x3, y3).
We, in this case, store the second block, i.e. (s2, x2, y2) in
table C, and the rest of the blocks on its line, i.e. ls2(x2, y2),
in table B at its alloted location. We do the same for the
block of the first element – store the non-empty block
(s1, x1, y1) in table C, the rest of the blocks on its line
ls1(x1, y1) in table B.

The only locations used up in table C are locations for
the first and second block, and the blocks left to be allocated space are those
falling on the line ls3(x3, y3). The second block do not lie on this line, and hence
would not affect the allocations of the line. The first block coincide with third
block falling on this line, so the third block, namely (s3, x3, y3) must necessarily
be stored in table B in the space alloted for the line ls3(x3, y3). The rest of the
blocks of the line ls3(x3, y3) can now be stored in table C without conflict.

Case IV(D) This is the final configuration to consider when there are three
distinct lines due to the non-empty blocks - no block coincide with any other
block. This implies that the four non-empty blocks have distinct coordinates,
and hence all of them can be stored in table C. All the empty blocks can then
be stored in table B, and we would have avoided all conflict.

4.3 Blocks with Multiple Members

In the discussion above, we had assumed that each block can contain at most
one member of the subset S, and we have shown for every configuration of
the members of S, the bits of the data structure can be so arranged that the
membership queries are answered correctly.

In general, a single block can contain upto four members of S, and we need
to propose a assignment for such a scenario. As has been noted in the previous
section, our basic unit of storage is a block and we differentiate between empty
and non-empty blocks. At a given location in table B or C, a block is stored in
its entirety, or it isn’t stored at all. This implies that the number of members of
S a non-empty block contains is of no consequence, as we always store an entire
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block. The scheme from the previous section would thus hold true for blocks
containing multiple members.

We now summarise the result in the theorem below.

Theorem 2. There is an explicit adaptive scheme that stores subsets of size at
most four and answers membership queries using two bitprobes such that

sA(4,m, 2) = O(m5/6).

5 Conclusion

In this paper, we have proposed an adaptive scheme for storing subsets of size
four and anwering membership queries with two bitprobes that improves upon
the existing schemes in the literature. The technique used is that of arranging
the blocks of a superblock in a two-dimenstional grid, and grouping them along
lines. We hope that this technique can be extended to store larger subsets by
extending the idea of an arrangement in a two-dimensional grid to arrangements
in three and higher dimensional grids.
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