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Abstract

What makes a computational problem easy (e.g., in P, that is, solvable
in polynomial time) or hard (e.g., NP-hard)? This fundamental question
now has a satisfactory answer for a quite broad class of computational
problems, so called fixed-template constraint satisfaction problems (CSPs)
– it has turned out that their complexity is captured by a certain specific
form of symmetry. This paper explains an extension of this theory to a
much broader class of computational problems, the promise CSPs, which
includes relaxed versions of CSPs such as the problem of finding a 137-
coloring of a 3-colorable graph.

1 Introduction

In Computational Complexity we often try to place a given computational prob-
lem into some familiar complexity class, such as P, NP-complete, etc. In other
words, we try to determine the image of a computational problem under the
following mapping Φ.

Φ : computational problems → complexity classes

problem 7→ its complexity class

When we try to achieve this goal for a whole class of computational problems,
say S , it is a natural idea to look for some intermediate collection I of “invari-
ants” and a decomposition of Φ through I:

S
Ψ
→ I → complexity classes

∗Libor Barto has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreement No
771005)

1

http://arxiv.org/abs/1909.04871v1


Members of I are then objects that exactly capture the computational complex-
ity of problems in S . The larger S is and the more objects Ψ glues together,
the better such a decomposition is.

This idea proved greatly useful for an interesting class of problems, so called
fixed-template constraint satisfaction problems (CSPs), and eventually led to a
full complexity classification result [17, 30]. In a decomposition, suggested in [20]
and proved in [24], Ψ assigns to a CSP a certain algebraic object that describes,
informally, the high dimensional symmetries of the CSP. This basic insight of
the so called algebraic approach to CSPs was later twice improved [16, 7], giving
us a chain

CSPs
Ψ
→ I1→I2→I3 → complexity classes.

The basics of the algebraic theory can be adapted and applied in various
generalizations and variants of the fixed-template CSPs, see surveys in [26]. One
particularly exciting direction is a recently proposed significant generalization of
CSPs, so called promise CPSs (PCSPs) [3, 14]. This framework is substantially
richer, both on the algorithmic and the hardness side, and a full complexity
classification is wide open even in very restricted subclasses. On the other hand,
the algebraic basics can be generalized from CSP to PCSP and, moreover, one
of the results in [18] not only gives such a generalization but also provides an
additional insight and simplifies the algebraic theory of CSPs.

The aim of this paper is to explain this result (here Theorem 3.8) and the
development in CSPs leading to it (Theorems 2.10, 2.15, 2.18). The most recent
material comes from the conference papers [18] and [4], which will be merged and
expanded in [5]. Very little preliminary knowledge is assumed but an interested
reader may find an in depth introduction to the fixed-template CSP and its
variants in [26].

2 CSP

Fur the purposes of this paper, we define a finite relational structure as a tuple
A = (A;R1, . . . , Rn), where A is a finite set, called the domain of A, and each
Ri is a relation on A of some arity, that is, Ri ⊆ Aar(Ri) where ar(Ri) is a
natural number.

A primitive positive formula (pp-formula) over A is a formula that uses only
existential quantification, conjunction, relations in A, and the equality relation.
We will work only with formulas in a prenex normal form.

Definition 2.1. Fix a finite relational structure A. The CSP over A, written
CSP(A), is the problem of deciding whether a given pp-sentence over A is true.

In this context, A is called the template for CSP(A).

For example, if A = (A;R,S) and both R and S are binary, then an input
to CSP(A) is, e.g.,

(∃x1∃x2 . . . ∃x5) R(x1, x3) ∧ S(x5, x2) ∧R(x3, x3).
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This sentence is true if there exists a satisfying assignment, that is, a mapping
f : {x1, . . . , x5} → A such that (f(x1), f(x3)) ∈ R, (f(x5), f(x2)) ∈ S, and
(f(x3), f(x3)) ∈ R. Each conjunct thus can be thought of as a constraint
limiting f and the goal is to decide whether there is an assignment satisfying
each constraint.

Clearly, CSP(A) is always in NP.
The CSP over A can be also defined as a search problem where the goal is

to find a satisfying assignment when it exists. It has turned out that the search
problem is no harder then the decision problem presented in Definition 2.1 [16].

2.1 Examples

Typical problems covered by the fixed-template CSP framework are satisfiability
problems, (hyper)graph coloring problems, and equation solvability problems.
Let us look at several examples. We use here the notation

Ek = {0, 1, . . . , k − 1}.

Example 2.2. Let 3SAT = (E2;R000, R001, . . . , R111), where

Rabc = E3
2 \ {(a, b, c)} for all a, b, c ∈ {0, 1}.

An input to CSP(3SAT) is, e.g.,

(∃x1∃x2 . . . ) S001(x1, x4, x2) ∧ S110(x2, x5, x5) ∧ S000(x2, x1, x3) ∧ . . . .

Observe that this sentence is true if and only if the propositional formula

(x1 ∨ x4 ∨ ¬x2) ∧ (¬x2 ∨ ¬x5 ∨ x5) ∧ (x2 ∨ x1 ∨ x3) ∧ . . .

is satisfiable. Therefore CSP(3SAT) is essentially the same as the 3SAT prob-
lem, a well known NP-complete problem.

On the other hand, recall that the 2SAT problem, which is the CSP over
2SAT = (E2;R00, R01, R10, R11), where Rab = E2

2 \ {(a, b)}, is in P.

Example 2.3. Let K3 = (E3;N3), where N3 is the binary inequality relation,
i.e.,

N3 = {(a, b) ∈ E2
3 : a 6= b}.

An input to CSP(K3) is, e.g.,

(∃x1 . . .∃x5) N3(x1, x2) ∧N3(x1, x3) ∧N3(x1, x4) ∧N3(x2, x3) ∧N3(x2, x4).

Here an input can be drawn as a graph – its vertices are the variables and
vertices x, y are declared adjacent iff the input contains a conjunct N3(x, y)
or N3(y, x). For example, the graph associated to the input above is the five
vertex graph obtained by merging two triangles along an edge. Clearly, an input
sentence is true if and only if the vertices of the associated graph can be colored
by colors 0, 1, and 2 so that adjacent vertices receive different colors. Therefore
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CSP(K3) is essentially the same as the 3-coloring problem for graphs, another
well known NP-complete problem.

More generally, CSP(Kk) = (Ek, Nk), where Nk is the inequality relation on
Ek, is NP-complete for k ≥ 3 and in P for k = 2.

Example 2.4. Let 3NAEk = (Ek; 3NAEk), where 3NAEk is the ternary not-
all-equal relation, i.e.,

3NAEk = E3
k \ {(a, a, a) : a ∈ Ek}.

Taking the viewpoint of Example 2.2, the CSP over 3NAE2 is the positive not-
all-equal 3SAT, where one is given a 3SAT formula without negations and the
aim is to decide whether there is an assignment such that, in every clause, not
all variables get the same value. This problem is NP-complete [29].

From the graph theoretical viewpoint, CSP(3NAEk) is the problem of de-
ciding whether a given 3-uniform hypergraph1 admits a coloring by k colors so
that no hyperedge is monochromatic.

Example 2.5. Let 1IN3 = (E2; 1IN3), where

1IN3 = {(1, 0, 0), (0, 1, 0), (1, 0, 0)}.

The CSP over 1IN3 is the positive one-in-three SAT problem or, in other words,
the problem of deciding whether a given 3-uniform hypergraph admits a coloring
by colors 0 and 1 so that exactly one vertex in each hyperedge receives the color
1. This problem is, again, NP-complete [29].

Example 2.6. Let 3LIN5 = (E5;L0000, L0001, . . . , L4444), where

Labcd = {(x, y, z) ∈ E3
5 : ax+ by + cz = d (mod 5)}.

An input, such as

(∃x1∃x2 . . . ) L1234(x3, x4, x2) ∧ L4321(x5, x1, x3) ∧ . . .

can be written as a system of linear equations over the 5-element field Z5, such
as

1x3 + 2x4 + 3x2 = 4, 4x5 + 3x1 + 2x3 = 1, . . . ,

therefore CSP(3LIN5) is essentially the same problem as deciding whether a
system of linear equations over Z5 (with each equation containing 3 variables)
has a solution. This problem is in P.

1Here we should rather say a hypergraph whose hyperedges have size at most 3 because of
conjuncts of the form 3NAEk(x, x, y) or 3NAEk(x, x, x). Let us ignore this minor technical
imprecision.
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2.2 1st step: polymorphisms

The crucial concept for the algebraic approach to the CSP is a polymorphism,
which is a homomorphism from a cartesian power of a structure to the structure:

Definition 2.7. Let A = (A;R1, . . . , Rn) be a relational structure. A k-ary
(total) function f : Ak → A is a polymorphism of A if it is compatible with
every relation Ri, that is, for all tuples r1, . . . , rk ∈ Ri, the tuple f(r1, . . . , rk)
(where f is applied component-wise) is in Ri.

By Pol(A) we denote the set of all polymorphisms of A.

The compatibility condition is often stated as follows: for any (ar(Ri)× k)-
matrix whose column vectors are in Ri, the vector obtained by applying f to
its rows is in Ri as well.

Note that the unary polymorphisms of A are exactly the endomorphisms of
A. One often thinks of endomorphisms (or just automorphisms) as symmetries
of the structure. In this sense, polymorphisms can be thought of as higher
dimensional symmetries.

For any domain A and any i ≤ k, the k-ary projection to the i-th coordinate,
that is, the function πk

i : Ak → A defined by

πk
i (x1, . . . , xn) = xi,

is a polymorphism of every structure with domain A. These are the trivial
polymorphisms. The following examples show some nontrivial polymorphisms.

Example 2.8. Consider the template 2SAT from Example 2.2. It is easy to
verify that the ternary majority function maj : E3

2 → E2 given by

maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x for all x, y ∈ E2

is a polymorphism of 2SAT.
In fact, whenever a relation R ⊆ Em

2 is compatible with maj, it can be pp-
defined (that is, defined by a pp-formula) from relations in 2SAT (see e.g. [25]).
Now for any template A = (E2;R1, . . . , Rn) with polymorphism maj, an input
of CSP(A) can be easily rewritten to an equivalent input of CSP(2SAT) and
therefore CSP(A) is in P.

Example 2.9. Consider the template 3LIN5 from Example 2.6. Each relation
in this structure is an affine subspace of Z3

5. Every affine subspace is closed
under affine combinations, therefore, for every k and every t1, . . . , tk ∈ E5 such
that t1+ · · ·+ tk = 1 (mod 5), the k-ary function ft1,...,tk : Ek

5 → E5 defined by

ft1,...,tk(x1, . . . , xk) = t1x1 + . . . , tkxk (mod 5)

is a polymorphism of 3LIN5.
Conversely, every subset of Am closed under affine combinations is an affine

subspace of Zm
5 . It follows that if every ft1,...,tk is a polymorphism of A =

(E5;R1, . . . , Rn), then inputs to CSP(A) can be rewritten to systems of linear
equations over Z5 and thus CSP(A) is in P.
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The above examples also illustrate that polymorphisms influence the com-
putational complexity. The first step of the algebraic approach was to realize
that this is by no means a coincidence.

Theorem 2.10 ([24]). The complexity of CSP(A) depends only on Pol(A).
More precisely, if A and B are finite relational structures and Pol(A) ⊆

Pol(B), then CSP(B) is (log-space) reducible to CSP(A). In particular, if Pol(A) =
Pol(B), then CSP(A) and CSP(B) have the same complexity.

sketch. If Pol(A) ⊆ Pol(B), then relations in B can be pp-defined from relations
in A by a classical result in Universal Algebra [21, 10, 11]. This gives a reduction
from CSP(B) to CSP(A).

Theorem 2.10 can be used as a tool for proving NP-hardness: when A has
only trivial polymorphism (and has domain of size at least two), any CSP on the
same domain can be reduced to CSP(A) and therefore CSP(A) is NP-complete.
This NP-hardness criterion is not perfect, e.g., CSP(3NAE2) has a nontrivial
endomorphism x 7→ 1− x.

2.3 2nd step: strong Maltsev conditions

Theorem 2.10 shows that the set of polymorphisms determines the complexity of
a CSP. What information do we really need to know about the polymorphisms to
determine the complexity? It has turned out that it is sufficient to know which
functional equations they solve. In the following definition we use a standard
universal algebraic term for a functional equation, a strong Maltsev condition.

Definition 2.11. A strong Maltsev condition over a set of function symbols Σ
is a finite set of equations of the form t = s, where t and s are terms built from
variables and symbols in Σ.

Let M be a set of functions on a common domain. A strong Maltsev con-
dition S is satisfied in M if the function symbols of Σ can be interpreted in M
so that each equation in S is satisfied for every choice of variables.

Example 2.12. A strong Maltsev condition over Σ = {f, g, h} (where f and g
are binary symbols and h is ternary) is, e.g.,

f(g(f(x, y), y), z) = g(x, h(y, y, z))

f(x, y) = g(g(x, y), x).

This condition is satisfied in the set of all projections (on any domain) since, by
interpreting f and g as π2

1 and h as π3
1 , both equations are satisfied for every

x, y, z in the domain – they are equal to x.

The strong Maltsev condition in the above example is not interesting for us
since it is satisfied in every Pol(A). Such conditions are called trivial:

Definition 2.13. A strong Maltsev condition is called trivial if it is satisfied
in the set of all projections on a two-element set (equivalently, it is satisfied in
Pol(A) for every A).
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Two nontrivial Maltsev condition are shown in the following example.

Example 2.14. The strong Maltsev condition (over a single ternary symbol
m)

m(x, x, y) = x

m(x, y, x) = x

m(y, x, x) = x

is nontrivial since each of the possible interpretations π3
1 , π

3
2 , π

3
3 of m falsifies

one of the equations. This condition is satisfied in Pol(2SAT) by interpreting
m as the majority function, see Example 2.8.

The strong Maltsev condition

p(x, x, y) = y

p(y, x, x) = y

is also nontrivial. It is satisfied in Pol(3LIN5) by interpreting p as x + 4y + z
(mod 5).

In fact, if Pol(A) satisfies one of the strong Maltsev conditions in this exam-
ple, then CSP(A) is in P (see e.g. [6]).

The following theorem is (a restatement of) the second crucial step of the
algebraic approach.

Theorem 2.15 ([16], see also [9]). The complexity of CSP(A) depends only on
strong Maltsev conditions satisfied by Pol(A).

More precisely, if A and B are finite relational structures and each strong
Maltsev condition satisfied in Pol(A) is satisfied in Pol(B), then CSP(B) is (log-
space) reducible to CSP(A). In particular, if Pol(A) and Pol(B) satisfy the same
strong Maltsev conditions, then CSP(A) and CSP(B) have the same complexity.

sketch. The proof can be done in a similar way as for Theorem 2.10. Instead
of pp-definitions one uses more general constructions called pp-interpretations
and, on the algebraic side, the Birkhoff HSP theorem [8].

Theorem 2.15 gives us an improved tool for proving NP-hardness: if Pol(A)
satisfies only trivial strong Maltsev conditions, then CSP(A) is NP-hard. This
criterion is better, e.g., it can be applied to CSP(3NAE2), but still not perfect,
e.g., it cannot be applied to the CSP over the disjoint union of two copies of
K3.

2.4 3rd step: minor conditions

Strong Maltsev conditions that appear naturally in the CSP theory or in Uni-
versal Algebra are often of an especially simple form, they involve no nesting of
function symbols. The third step in the basics of the algebraic theory was to
realize that this is also not a coincidence.
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Definition 2.16. A strong Maltsev condition is called a minor condition if each
side of every equation contains exactly one occurrence of a function symbol.

In other words, each equation in a strong Maltsev condition is of the form
“symbol(variables) = symbol(variables)”.

Example 2.17. The condition in Example 2.12 is not a minor condition since,
e.g., the left-hand side of the first equation involves three occurrences of function
symbols.

The conditions in Example 2.14 are not minor conditions either since the
right-hand sides do not contain any function symbol. However, these conditions
have close friends which are minor conditions. For instance, the friend of the
second system is the minor condition

p(x, x, y) = p(y, y, y)

p(y, x, x) = p(y, y, y).

Note that this system is also satisfied in Pol(3LIN5) by the same interpretation
as in Example 2.14, that is, x+ 4y + z (mod 5).

The following theorem is a strengthening of Theorem 2.15. We give only the
informal part of the statement, the precise formulation is analogous to Theo-
rem 2.15.

Theorem 2.18 ([7]). The complexity of CSP(A) (for finite A) depends only on
minor conditions satisfied by Pol(A).

sketch. The proof again follows the same pattern by further generalizing pp-
interpretations (to so called pp-constructions) and the Birkhoff HSP theorem.

2.5 Classification

Just like Theorems 2.10 and 2.15 give hardness criteria for CSPs, we get an
improved sufficient condition for NP-hardness as a corollary of Theorem 2.18.

Corollary 2.19. Let A be a finite relational structure which satisfies only trivial
minor conditions. Then CSP(A) is NP-complete.

Bulatov, Jeavons, and Krokhin have conjectured [16] that satisfying only
trivial minor conditions is actually the only reason for hardness2. Intensive
efforts to prove this conjecture, called the tractability conjecture or the algebraic
dichotomy conjecture, have recently culminated in two independent proofs by
Bulatov and Zhuk:

Theorem 2.20 ([17],[30]). If a finite relational structure A satisfies a nontrivial
minor condition, then CSP(A) is in P.

2Their conjecture is equivalent but was, of course, originally stated in a different language
– the significance of minor conditions in CSPs was identified much later.
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Thus we now have a complete classification result: every finite structure
either satisfies a nontrivial minor condition and then its CSP is in P, or it does
not and its CSP is NP-complete. The proofs of Bulatov and Zhuk are very
complicated and it should be stressed out that the basic steps presented in this
paper form only a tiny (but important) part of the theory.

In fact, the third step did not impact on the resolution of the tractability
conjecture for CSP over finite domains at all. However, it turned out to be
significant for some generalizations of the CSP, including the generalization
that we discuss in the next section, the Promise CSP.

3 PCSP

Many fixed-template CSPs, such as finding a 3-coloring of a graph or finding
a satisfying assignment to a 3SAT formula, are hard computational problems.
There are two ways how to relax the requirement on the assignment in order to
get a potentially simpler problem. The first one is to require a specified fraction
of the constraints to be satisfied. For example, given a satisfiable 3SAT input, is
it easier to find an assignment satisfying at least 90% of clauses? A celebrated
result of H̊astad [22], which strengthens the famous PCP Theorem [1, 2], proves
that the answer is negative – it is still an NP-complete problem. (Actually,
any fraction greater than 7/8 gives rise to an NP-complete problem while the
fraction 7/8 is achievable in polynomial time.)

The second type of relaxation, the one we consider in this paper, is to require
that a specified weaker version of every constraint is satisfied. For example, we
want to find a 100-coloring of a 3-colorable graph, or we want to find a valid
CSP(3NAE2) assignment to a true input of CSP(1IN3). This idea is formalized
in the following definition.

Definition 3.1. Let A = (A;RA
1 , R

A
2 , . . . , R

A
n) and B = (B;RB

1 , R
B
2 , . . . , R

B
n) be

two similar finite relational structures (that is, RA and RB have the same arity
for each i), and assume that there exists a homomorphism A → B. Such a pair
(A,B) is refered to as a PCSP template.

The PCSP over (A,B), denoted PCSP(A,B), is the problem to distinguish,
given a pp-sentence φ over the relational symbols R1, . . . , Rn, between the cases
that φ is true in A (answer “Yes”) and φ is not true in B (answer “No”).

For example, consider A = (A;RA, SA) and B = (B;RB, SB), where all the
relations are binary. An input to PCSP(A,B) is, e.g.,

(∃x1∃x2 . . . ∃x5) R(x1, x3) ∧ S(x5, x2) ∧R(x3, x3).

The algorithm should answer “Yes” if the sentence is true in A, i.e., the following
sentence is true

(∃x1∃x2 . . . ∃x5) R
A(x1, x3) ∧ SA(x5, x2) ∧RA(x3, x3),

and the algorithm should answer “No” if the sentence is not true in B. In case
that neither of the cases takes place, we do not have any requirements on the
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algorithm. Alternatively, we can say that the algorithm is promised that the
input satisfies either “Yes” or “No” and it is required to decide which of these
two cases takes place.

Note that the assumption that A → B is necessary for the problem to make
sense, otherwise, the “Yes” and “No” cases would not be disjoint. Also observe
that CSP(A) is the same problem as PCSP(A,A).

The search version of PCSP(A,B) is perhaps a bit more natural problem:
the goal is to find a B-satisfying assignment given an A-satisfiable input. Unlike
in the CSP, it is not known whether the search version can be harder than the
decision version presented in Definition 3.1.

3.1 Examples

The examples below show that PCSPs are richer than CSP, both on the algo-
rithmic and the hardness side.

Example 3.2. Recall the structure Kk from Example 2.3 consisting of the
inequality relation on a k-element set. For k ≤ l, the PCSP over (Kk,Kl) is
the problem to distinguish between k-colorable graphs and graphs that are not
even l-colorable (or, in the search version, the problem to find an l-coloring of
a k-colorable graph).

Unlike for the case k = l, the complexity of this problem for 3 ≤ k < l
is a notorious open question. It is conjectured that PCSP(Kk,Kl) is NP-hard
for every k < l, but this conjecture was confirmed only in special cases: for
l ≤ 2k−2 [12] (e.g., 4-coloring a 3-colorable graph) and for a large enough k and

l ≤ 2Ω(k1/3) [23]. The algebraic development discussed in the next subsection
helped in improving the former result to l ≤ 2k − 1 [18] (e.g., 5-coloring a
3-colorable graph).

Example 3.3. Recall the structure 3NAEk from Example 2.4 consisting of the
ternary not-all-equal relation on a k-element set. For k ≤ l, the PCSP over
(3NAEk, 3NAEl) is essentially the problem to distinguish between k-colorable
3-uniform hypergraphs and 3-uniform hypergraphs that are not even l-colorable.

This problem is NP-hard for every 2 ≤ k ≤ l [19], the proof uses strong tools,
the PCP theorem and Lovász’s theorem on the chromatic number of Kneser’s
graphs [27].

Example 3.4. Recall from Example 2.5 that 1IN3 denotes the structure on
the domain E2 with the ternary “one-in-three” relation 1IN3. The PCSP over
(1IN3, 3NAE2) is the problem to distinguish between 3-uniform hypergraphs,
which admit a coloring by colors 0 and 1 so that exactly one vertex in each
hyperedge receives the color 1, and 3-uniform hypergraphs that are not even
2-colorable.

This problem, even its search version, admits elegant polynomial time al-
gorithms [14, 15] – one is based on solving linear equations over the integers,
another one on linear programming. For this specific template, the algorithm
can be further simplified as follows.

10



We are given a 3-uniform hypergraph, which admits a coloring by colors 0
and 1 so that (x, y, z) ∈ 1IN3 for every hyperedge {x, y, z}, and we want to
find a 2-coloring. We create a system of linear equations over the rationals as
follows: for each hyperedge {x, y, z} we introduce the equation x+y+z = 1. By
the assumption on the input hypergraph, this system is solvable in {0, 1} ⊆ Q

(in fact, {0, 1}-solutions are the same as valid 1IN3-assignements). Solving
equations in {0, 1} is hard, but it is possible to solve the system in Q \ {1/3}
in polynomial time by a simple adjustment of Gaussian elimination. Now we
assign 1 to a vertex x if x > 1/3 in our rational solution, and 0 otherwise. It is
simple to see that we get a valid 2-coloring.

Interestingly, to solve PCSP(1IN3, 3NAE2), the presented algorithm uses a
CSP over an infinite structure, namely (Q \ {1/3};R), where R = {(x, y, z) ∈
(Q \ {1/3})3 : x + y + z = 1}. In fact, the infinity is necessary for this PCSP,
see [4] for a formal statement and a proof.

3.2 4th step: minor conditions!

After the introduction of the PCSP framework, it has quickly turned out that
both the notion of a polymorphism and Theorem 2.10 have straightforward
generalizations.

Definition 3.5. Let A = (A;RA
1 , . . . ) and B = (B;RB

1 , . . . ) be two similar
relational structures. A k-ary (total) function f : Ak → B is a polymorphism
of (A,B) if it is compatible with every pair (RA

i , R
B

i ), that is, for all tuples
r1, . . . , rk ∈ RA

i , the tuple f(r1, . . . , rk) is in RB

i .
By Pol(A,B) we denote the set of all polymorphisms of (A,B).

Example 3.6. For every k which is not disible by 3, the k-ary “1/3-threshold”
function f : Ek

2 → E2 defined by

f(x1, . . . , xk) =

{

1 if
∑

xi/k > 1/3
0 else

is a polymorphism of the PCSP template (1IN3, 3NAE2) from Example 3.4.
Any PCSP whose template (over the domains E2 and E2) admits all these
polymorphisms is in P [14, 15].

Theorem 3.7 ([13]). The complexity of PCSP(A,B) depends only on Pol(A,B).

sketch. Proof is similar to Theorem 2.10 using [28] instead of [21, 10, 11].

Note that, in general, composition of polymorphisms is not even well-defined.
Therefore the second step, considering strong Maltsev conditions satisfied by
polymorphisms, does not make sense for PCSPs. However, minor conditions
make perfect sense and they do capture the complexity of PCSPs, as proved
in [18]. Furthermore, the paper [18] also provides an alternative proof by directly
relating a PCSP to a computational problem concerning minor conditions!
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Theorem 3.8 ([18]). Let (A,B) be a PCSP template and M = Pol(A,B). The
following computational problems are equivalent for every sufficiently large N .

• PCSP(A,B).

• Distinguish, given a minor condition C whose function symbols have arity
at most N , between the cases that C is trivial and C is not satisfied in
M.

sketch. The reduction from PCSP(A,B) to the second problem works as follows.
Given an input to the PCSP we introduce one |A|-ary function symbol ga for
each variable a and one |RA|-ary function symbol fC for each conjunct R(. . . ).
The way to build a minor condition is quite natural, for example, the input

(∃a∃b∃c∃d) R(c, a, b) ∧R(a, d, c) ∧ . . .

to PCSP(1IN3, 3NAE2) is transformed to the minor condition

f1(x1, x0, x0) = gc(x0, x1)

f1(x0, x1, x0) = ga(x0, x1)

f1(x0, x0, x1) = gb(x0, x1)

f2(x1, x0, x0) = ga(x0, x1)

f2(x0, x1, x0) = gd(x0, x1)

f2(x0, x0, x1) = gc(x0, x1)

. . .

It is easy to see that a sentence that is true in A is transformed to a trivial
minor condition. On the other hand, if the minor condition is satisfied in M,
say by the functions denoted f ′

1, f
′

2, g
′

a, . . . , then the mapping a 7→ g′a(0, 1),
b 7→ g′b(0, 1), . . . gives a B-satisfying assignment of the sentence – this can be
deduced from the fact that f ′s and g′ are polymorphisms.

The reduction in the other direction is based on the idea that the question
“Is this minor condition satisfied by polymorphisms of A?” can be interpreted
as an input to CSP(A). The main ingredient is to look at functions as tuples
(their tables); then “f is a polymorphism” translates to a conjunction, and
equations can be simulated by merging variables.

Theorem 3.8 implies Theorem 2.18 (and its generalization to PCSPs) since
the computational problem in the second item clearly only depends on minor
conditions satisfied in M. The proof sketched above

• is simple and does not (explicitly) use any other results, such as the
correspondence between polymorphisms and pp-definitions used in Theo-
rem 2.10 or the Birkhoff HSP theorem used in Theorem 2.15, and
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• is based on constructions which have already appeared, in some form, in
several contexts; in particular, the second item is related to important
problems in approximation, versions of the Label Cover problem (see [18,
5]).

The theorem and its proof are simple, nevertheless, very useful. For exam-
ple, the hardness of PCSP(Kk,K2k−1) mentioned in Example 3.2 was proved
in [18] by showing that every minor condition satisfied in Pol(Kk,K2k−1) is sat-
isfied in Pol(3NAE2, 3NAEl) (for some l) and then using the NP-hardness of
PCSP(3NAE2, 3NAEl) proved in [19] (see Example 3.3).

4 Conclusion

The PCSP framework is much richer than the CSP framework; on the other
hand, the basics of the algebraic theory generalize from CSP to PCSP, as shown
in Theorem 3.8. Strikingly, the computational problems in Theorem 3.8 are
(promise and restricted versions) of two “similar” problems:

(i) Given a structure A and a first-order sentence φ over the same signature,
decide whether A satisfies φ.

(ii) Given a structure A and a first-order sentence φ in a different signature,
decide whether symbols in φ can be interpreted in A so that A satisfies φ.

Indeed, CSP(A) is the problem (i) with A a fixed relational structure and φ a
pp-sentence (and PCSP is a promise version of this problem), whereas a promise
version of the problem (ii) restricted to a fixed A of purely functional signature
and universally quantified conjunctive first-order sentences φ is the second item
in Theorem 3.8. Variants of problem (i) appear in many contexts throughout
Computer Science. What about problem (ii)?
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[26] Andrei Krokhin and Stanislav Živný, editors. The Constraint Satisfaction
Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-
Ups. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[27] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Com-
bin. Theory Ser. A, 25(3):319–324, 1978.

[28] Nicholas Pippenger. Galois theory for minors of finite functions. Discrete
Mathematics, 254(1):405–419, 2002.

[29] Thomas J. Schaefer. The complexity of satisfiability problems. In Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of Computing,
STOC ’78, pages 216–226, New York, NY, USA, 1978. ACM.

15



[30] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages
331–342, Oct 2017.

16


	1 Introduction
	2 CSP
	2.1 Examples
	2.2 1st step: polymorphisms
	2.3 2nd step: strong Maltsev conditions
	2.4 3rd step: minor conditions
	2.5 Classification

	3 PCSP
	3.1 Examples
	3.2 4th step: minor conditions!

	4 Conclusion

