
Fault-tolerant parallel scheduling of arbitrary length jobs
on a shared channel

Marek Klonowski∗ Dariusz R. Kowalski† Jarosław Mirek†

Prudence W.H. Wong†

Abstract

We study the problem of scheduling jobs on fault-prone machines communicating
via a shared channel without collision detection, also known as a multiple-access
channel. We have n arbitrary length jobs to be scheduled onm identical machines, f
of which are prone to crashes by an adversary. A machine can inform other machines
when a job is completed via the channel. Performance is measured by the total
number of available machine steps during the whole execution. Our goal is to study
the impact of preemption (i.e., interrupting the execution of a job and resuming
later in the same or different machine) and failures on the work performance of job
processing. The novelty is the ability to identify the features that determine the
complexity (difficulty) of the problem. We show that the problem becomes difficult
when preemption is not allowed, by showing corresponding lower and upper bounds,
the latter with algorithms reaching them. We also prove that randomization helps
even more, but only against a non-adaptive adversary; in the presence of more
severe adaptive adversary, randomization does not help in any setting. Our work
has extended from previous work that focused on settings including: scheduling
on multiple-access channel without machine failures, complete information about
failures, or incomplete information about failures (like in this work) but with unit
length jobs and, hence, without considering preemption.

∗Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże
Wyspiańskiego 27, 50-370 Wrocław, Poland. Email: Marek.Klonowski@pwr.edu.pl.
†Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool

L69 3BX, UK. Email: {d.kowalski,j.mirek,pwong}@liverpool.ac.uk. The work is partly supported
by the initiative Networks and Sciences Techologies (NeST), School of EEE&CS, University of Liverpool.

ar
X

iv
:1

71
0.

07
38

0v
4

 [
cs

.D
C

]
 2

4
Ju

l 2
01

8

1 Introduction

We examine the problem of performing n jobs by m machines reliably on a multiple-
accessed shared channel (MAC). This problem in such model, originated by Chlebus,
Kowalski and Lingas [6], has already been studied for unit length jobs, whereas this paper
extends it by considering jobs with arbitrary lengths, studying the impact of features
including preemption, randomization, and severity of failures on the work performance.

The notion of preemption may be understood as the possibility of not performing a
particular job in one attempt. This means that a single job may be interrupted part-
way through performing it and then be resumed later by the same machine or even by
another machine. Intuitively, the model without preemption is a more general configu-
ration, yet both have subtleties that distinguish them noticeably. In general, algorithms
exploiting randomization may improve the performance and we aim to investigate when
randomization actually helps.

The communication takes place on a shared channel, also known as multiple access
channel, without collision detection. A message is transmitted successfully only when
one machine transmits, and when more than one message is transmitted then it is no
different from background noise (i.e., no transmission on the channel). Therefore, we say
that a job completion is confirmed only when the corresponding machine transmits such
message successfully (before any failure it may suffer). We consider the impact of the
severity of adversaries (measuring the severity of machine failures) on the performance.
In particular, we distinguish between adaptive and non-adaptive adversaries. An adaptive
f -bounded adversary may decide to crash up to f machines at any time of the execution.
A non-adaptive adversary has to additionally decide in the beginning of the execution
which, up to f , machines and when to crash. We use work as the effectiveness measure,
i.e., the total number of machine steps available for computations. This measure is related
(after division by m) to the average time performance of available machines. Work may
also correspond to energy consumption, as an operational machine generates (consumes)
a unit of work (energy) in every time step.

1.1 Previous and related results

Our work can be seen as an extension of the Do-All problem defined in the seminal work
by Dwork, Halpern and Waarts [8]. This line of research was followed up by several
other papers [3, 4, 5, 7, 9] which considered the message-passing model with point-to-
point communication. In all these papers the authors assumed that the performance of
a single job contributes a unit to the work complexity. Paper [7] introduced a model,
wherein the measure of work for the Do-All solutions is the available machine steps (i.e.,
including idle rounds). They developed an algorithm which has work O(n + (f + 1)m)
and message complexity O((f + 1)m). We also adopt this work measurement in our
paper.

In [9] the authors improved the message complexity to O(fmε+min{f+1, logm}m),
for any ε > 0 keeping the same work complexity. Do-All problem with failures controlled
by a weakly-adaptive linearly-bounded adversary was studied in [5], wherein the authors

1

demonstrated a randomized algorithm with expected work O(m log∗m).
The authors of [4] developed a deterministic algorithm with effort (i.e. sum of work

and messages sent during the execution) O(n + ma), for a specific constant 1 < a < 2,
against the unbounded adversary which may crash all but one machine. They pre-
sented the first algorithm for this type of adversary with both work and communication
o(n+m2), where communication is understood as the total number of point-to-point mes-
sages sent during the execution. They also gave an algorithm achieving both work and
communication O(n+m log2m) against a strongly-adaptive linearly-bounded adversary.

In [11] an algorithm based on gossiping protocol with work O(n + m1+ε), for any
fixed constant ε, is demonstrated. In [17] Do-All is studied for an asynchronous message-
passing mode when executions are restricted such that every message delay is at most d.
The authors proved Ω(n + md logdm) on the expected work. They developed several
algorithms, among them a deterministic one with work O((n + md) logm). Further
developments and a more comprehensive related literature can be found in the book by
Georgiou and Shvartsman [12].

The work closest to ours is the Do-All problem of unit length jobs on a multiple
access channel with no collision detection, which was first studied in [6]. The authors
have showed a lower bound of Ω(n+m

√
n) on the work when there is no crash, and Ω(n+

m
√
n+mmin{f, n}) in the presence of crashes against an adaptive f -bounded adversary.

They also proposed an algorithm, called Two-Lists, with optimal performance Θ(n +
m
√
n+mmin{f, n}). A recent paper [15] discusses different models of adversaries on a

multiple access channel in the context of performing unit length jobs.
Extending the study of unit length jobs to arbitrary length jobs has taken place

in other context, c.f., [18] for recent results and references to such extension in the
context of fault-tolerant centralized scheduling. There has been a long history of studying
preemption vs non-preemption, e.g., [20, 19, 14], to which our work also contributes.

The problem we study also finds application in other areas, e.g., in window scheduling.
It is common in applications (like broadcast systems [1, 13]) that requests need to be
served periodically in the form of windows. Our problem could be applied to help selecting
a window length based on controlling work (aka the number of available machine steps).

1.2 Our results

In this paper, we consider fault-tolerant scheduling of n arbitrary length jobs on m
identical machines reliably over a multiple accessed channel. Our contributions are
threefold, on: deterministic preemptive setting, deterministic non-preemptive setting,
and randomized preemptive setting. In the setting with job preemption, we prove
a lower bound L + Ω(m

√
L + mmin{f, L} + mα) on work, where L is the sum of

lengths of all jobs and α is the maximum length, which holds for both determinis-
tic and randomized algorithms against an adaptive f -bounded adversary. We design
a corresponding deterministic distributed algorithm, called ScaTri, achieving work
L+O(m

√
L+mmin{f, L}+mα), which matches the lower bound asymptotically with

respect to the overhead. In the model without job preemption, we show slightly higher
lower bound L + Ω

(
L
nm
√
n+ L

nmmin{f, n}+mα
)
on work, implying a separation be-

2

L+O(m
√
L+mmin{f, L}+mα)

Rand, Preemp, Adapt

L+O(m
√
L+ αmmin{f, L})

Rand, Non-Preemp, Adapt *

L+O(m
√
L+mmin{f, L}+mα)

Det, Preemp, Adapt

L+O(m
√
L+ αmmin{f, L})

Det, Non-Preemp, Adapt *

L+O(m
√
L+mmin{f, L}+mα)

Det, Preemp, Non-Adapt

L+O(m
√
L+mα)

Rand, Preemp, Non-Adapt

open question

Rand, Non-Preemp, Non-Adapt

L+O(m
√
L+ αmmin{f, L})

Det, Non-Preemp, Non-Adapt *

preemptiveness

randomization/determinism

adaptiveness

Figure 1: Illustration of the complexity of scheduling on MAC. Legend: Rand - random-
ized algorithm, Det - deterministic algorithm, Preemp - preemptive setting, Non-Preemp
- non-preemptive setting, Adapt - adaptive adversary, Non-Adapt - non-adaptive adver-
sary. We are considering three different features depending on whether they are present
or not: preemptiveness feature changes along the X-axis, adaptiveness of the adversary
changes along the Y-axis, and randomization/determinism changes along the Z-axis. The
features written in bold denote an easier configuration - for instance (Rand, Non-Preemp,
Non-Adapt) denotes a configuration with randomization, against a Non-Adaptive ad-
versary, yet tasks are without preemption. Boxes with * indicate that the presented
solution for such configuration has a gap when confronted with the lower bounds that
we present. “Open” stands for an open question. The results on the front facet (lighter
boxes) are for non-adaptive adversary indicating that (i) preemption improves deter-
ministic algorithms and (ii) randomization improves preemptive algorithms. The results
on the rear facet (darker boxes) are for adaptive adversary indicating that preemption
improves both deterministic and randomized algorithms.

tween the two settings with and without preemption. Similarly as in the previous setting,
it holds for both deterministic and randomized algorithms against an adaptive f -bounded
adversary, thus showing that randomization does not help against adaptive adversary
regardless of (non-)preemption setting. We develop a corresponding deterministic dis-
tributed algorithm, called DefTri, achieving work L+O(Lnm

√
n+ αmmin{f, n}). We

then investigate the scenario with randomization and derive a randomized distributed
preemptive algorithm, called RanScaTri, against non-adaptive adversaries. This is a
Las Vegas algorithm that achieves expected work O(L + m

√
L + mα), and thus shows

that randomization helps against the non-adaptive adversary, lowering the performance
to the lower bound L + Ω(m

√
L + mα) (see Lemma 2). The results are discussed and

compared in details in Section 6. Figure 1 illustrates the complexity for different variants
of the considered problem.

3

1.3 Paper structure

Section 2 describes the model and technical preliminaries. In Section 3 we prove a lower
bound and provide an algorithm matching its performance formula (asymptotically with
respect to an overhead) in the model with preemption. Section 4 provides similar study
for the model without preemption. Section 5 is dedicated to a randomized algorithm
solving the problem with minimal work complexity. The results in various settings are
discussed and compared in Section 6, and final conclusions given in Section 7.

2 Technical preliminaries

In this section we describe the formal model, i.e.: machine capabilities, communication
model, failure model and the concept of adversary, the complexity measure used for
benchmarking our algorithms and a high-level specification of a black-box procedure
TaPeBB that we will be using while designing our algorithms. Additionally we present
definitions of performing jobs and the technicalities regarding preemption.

2.1 Machines

In our model we assume havingm identical machines, with unique identifiers from the set
{1, . . . ,m}. The distributed system of those machines is synchronized with a global clock,
and time is divided into synchronous time slots, called rounds. All the machines start
simultaneously at a certain moment. Furthermore every machine may halt voluntarily.
A halted machine does not contribute to work, in contrast to an operational machine
that contributes to the work performance measure. Precisely, every operational machine
generates a unit of work per round (even when it is idle), that has to be included while
computing the complexity of an algorithm. In this paper by M we denote the number
of operational, i.e., not crashed, machines. M may change during the execution.

2.2 Communication model

The communication channel for machines is the, widely considered in literature, multiple-
access channel [2, 10], also called a shared channel, where a broadcasted message reaches
every operational machine. We do not allow simultaneous successful transmissions of
several messages. In what follows our solutions work on a channel without collision
detection, hence when more than one message is transmitted at a certain round, then
the machines hear a signal indifferent from the background noise. A job is said to be
confirmed if a machine completing the job successfully communicates this information
via the shared channel.

2.3 Adversarial model

Machines may fail by crashing, which happens because of an adversary. One of the
factors that describes an adversary is the power f , that is, the total number of failures

4

that may be enforced. We assume that 0 ≤ f ≤ m−1, thus at least one machine remains
operational until an algorithm terminates. Machines that were crashed neither restart
nor contribute to work.

We consider two adversarial models. An adaptive f -bounded adversary can observe
the execution and make decisions about up to f crashes online. A non-adaptive f -bounded
adversary, in addition to choosing the faulty subset of f machines, the adversary has to
declare in the beginning of the execution in which rounds those crashes will occur, i.e.,
for every machine declared as faulty, there must be a corresponding round number in
which the fault will take place. It is worth noticing that in the context of deterministic
algorithms such an adversary is consistent with the adaptive adversary that may decide
online which machines will be crashed at any time, as the algorithm may be simulated
by the adversary before its execution, providing knowledge about the best decisions to
be taken. Finally, an (m− 1)-bounded adversary is also called an unbounded adversary.

2.4 Complexity measure

The complexity measure to be used in our analysis is, as mentioned before, work, also
called available machine steps. It is the number of available machine steps for computa-
tions. This means that each operational machine that did not halt contributes a unit of
work in each round even if it is idling.

Precisely, assume that an execution starts when all the machines begin simultaneously
in some fixed round r0. Let rv be the round when machine v halts (or is crashed). Then
its work contribution is equal to rv − r0. Consequently the algorithm complexity is the
sum of such expressions over all machines i.e.:

∑
1≤v≤m(rv − r0).

2.5 Jobs and reliability

We assume that the list of jobs is known to all the machines and we expect that machines
perform all n jobs as a result of executing an algorithm. We assume that jobs have
arbitrary lengths, are independent (may be performed in any order) and idempotent (may
be performed many times, even concurrently by different machines).

Furthermore a reliable algorithm satisfies the following conditions in any execution:

1. All the jobs are eventually performed, if at least one machine remains non-faulty.

2. Each machine eventually halts, unless it has crashed.

We assume that jobs have some minimal (atomic or unit) length. For simplicity, we
can also think that all the lengths are a multiple of the minimal length. As the model that
we consider is synchronous, this minimal length may be justified by the round duration
required for local computations for each machine. By `a we denote the length of job a.
We also use L to denote the sum of the lengths of all jobs, i.e., L =

∑
i `i. Finally, by α

we denote the length of the longest job.

5

2.6 Preemptive vs Non-Preemptive Model

By the means of preemption we define the possibility of performing jobs in several pieces.
Precisely, consider a job a, of length `a (for simplicity we assume that `a is even) and
machine v is scheduled to perform job a at some time of the algorithm execution. Assume
that v performs `a/2 units of job a and then reports such progress. When preemption is
available the remaining `a/2 units of job a may be performed by some machine w where
w 6= v.

A job a of length `a means that job a consists of `a time units needed to perform it
fully. Such view allows to think that the job is a chain of `a tasks, and hence all jobs
form a set of chains of unit length tasks.

We further denote by ak task k of job a. However, when we refer to a single job,
disregarding its tasks, we refer it simply to job a.
We define two types of jobs regarding how intermediate progress is handled:

• Oblivious job — it is sufficient to have the knowledge that previous tasks were
done, in order to perform remaining tasks from the same job. In other words, any
information from the in between progress does not have to be announced.

• Non-Oblivious job — any intermediate progress needs to be reported through
the channel when interrupting the job to resume later, and possibly pass the job
to another machine.

In the preemptive oblivious model a job may be abandoned by machine v on some
task k without confirming progress up to this point on the channel and then continued
from the same task k by any machine w.

As an example of preemptive oblivious model, consider a scenario that there is a job
that a shared array of length x needs to be erased. If a machine stopped performing this
job at some point, another one may reclaim that job without the necessity of repetition
by simply reading to which point it has been erased.

For the preemptive non-oblivious model, consider that a machine executes Dijkstra’s
algorithm for finding the shortest path. If it becomes interrupted, then another machine
cannot reclaim this job otherwise than by performing the job from the beginning, unless
intermediate computations have been shared. In other words preemption is available
with respect to maintaining information about tasks.

On the contrary to the preemptive model, we also consider the model without pre-
emption i.e. where each job can be performed by a machine only in one piece - when a
machine is crashed while performing such job, the whole progress is lost, even if it was
reported on the channel before the crash took place.

2.7 The Task-Performing Black Box (TaPeBB)

The algorithms we design in this paper employ a black-box procedure for arbitrary length
jobs that is able to perform reliably a subset of input (in the form of jobs consisting of
chains of consecutive tasks) or report that something went wrong. In what follows, we

6

specify this procedure, called Task-Performing Black Box (TaPeBB for short), and argue
that it can be implemented.

We use the procedure in both deterministic and randomized solutions. Precisely all
our algorithms use TaPeBB and despite of that they achieve different performances in
the sense of complexity. In what follows the most important ideas of our results lie within
how to preprocess the input rather than how to actually perform the jobs, so we believe
that employing such a black-box improves the clarity of presentation.

General properties of TaPeBB. A synchronous system is characterized by time
being divided into synchronous slots, that we already called rounds. In what follows, each
round is a possibility for machines to transmit. The nature of arbitrary length jobs leads
however to a concept that the time between consecutive broadcasts needs to be adjusted.
Especially when a job is long, for some configurations it may be better to broadcast the
fact of performing the job fully, rather than broadcasting semi-progress multiple times.
Therefore, we assume that TaPeBB has a feature of changing the duration between
consecutive broadcasts and we will call this parameter a phase. Denote the length of a
phase by φ. Unless stated otherwise, we assume that φ = 1, i.e., the duration of a phase
and a round is consistent, thus machines may transmit in any round.

Input: TaPeBB(v, d, JOBS, MACHINES, φ)

• v represents the id of a machine executing TaPeBB.

• TaPeBB takes a list of machines MACHINES and a list of jobs JOBS as the input,
yet from the task perspective, i.e., the jobs are provided as a chain of tasks and are
performed according to their ids. It may happen that a job is not done fully and
only some initial segment of tasks forming that job could be performed.

• Additionally, the procedure takes an integer value d. It specifies the number of
machines that will be used in the procedure for performing the provided pieces of
jobs, which is related to the amount of work accrued during a single execution.
The procedure works in such a way that each working machine is responsible for
performing a number of jobs. For clarity we assume that TaPeBB always uses the
initial d machines from the list of machines.

• We call a single execution an epoch and the parameter d is called the length of an
epoch (i.e., the number of phases that form an epoch).

• φ is the length of a phase i.e. the duration between consecutive broadcasts.

Output: what jobs/tasks have been done and which machines have crashed.

• Having explained what the length of an epoch is in TaPeBB we then describe
the capability of performing tasks in a single epoch, which is understood as the
maximal number of jobs that may be confirmed in an epoch, when it is executed

7

fully without any adversarial distractions. Let us first note, that TaPeBB allows to
confirm j tasks in some round j. This comes from the fact that if a station worked
for j rounds and was able to perform one task per round, then it can confirm at
most j tasks when it comes to broadcasting in round j. Therefore, the capability of
performing tasks in an epoch is at least

∑d
j=1 j which is the sum of an arithmetic

series with common difference equal 1 over all rounds of an epoch. We refer to this
capability as a triangle, as if we take a geometric approach and draw lines or boxes
of increasing lengths, then drawing this sequence would form a triangle.

• As a result of running a single epoch we have an output information about which
tasks were actually done and whether there were any machines identified as crashed,
when machines were communicating progress (machines identify which jobs were
done after an epoch by comparing information about performed tasks).

A candidate algorithm to serve as TaPeBB is the Two-Lists algorithm from [6]
and we refer readers to the details therein. Nevertheless, we assume that it may be
substituted with an arbitrary algorithm fulfilling the requirements that we stated above.

Fact 1. TaPeBB performs at most
∑d

j=1 j tasks while generating mdφ work in each
execution.

Proof. We have at most m machines working for d phases, and the length of each phase
is set to φ rounds, hence this gives mdφ units of work in total.

3 Preemptive model

In this section we consider the scheduling problem in the model with preemption, which
is intuitively an easier model to tackle. As mentioned before, the multiple-access channel
has no collision detection. We first show a lower bound for oblivious jobs (Section 3.1) and
then present and analyze our algorithm for non-oblivious jobs with matching performance
(Section 3.2). Notice that a lower bound for oblivious jobs is a stronger lower bound as
it also applies for non-oblivious jobs and similarly an upper bound for non-oblivious
jobs is a stronger upper bound. The matching bounds imply that with preemption, the
distinction between oblivious jobs and non-oblivious jobs does not matter.

3.1 Lower bound

We first recall the minimal work complexity introduced in [6].

Lemma 1 ([6], Lemma 2). A reliable, distributed algorithm, possibly randomized, per-
forms work Ω(n+m

√
n) in an execution in which no failures occur.

Recall that L denote the total length of jobs and α denote the length of the longest
job. As jobs are built from unit length tasks, we can look at this result from the task
perspective. Precisely, L can be considered to represent the number of tasks needed to

8

be performed by the system, then the lower bound for our model translates in a straight-
forward way. In addition, because component n appeared in the formula above with
factor 1 in front of it, then we may take it out of the asymptotic notation. Furthermore
in our model there is a certain bottleneck dictated by the longest job. After all there
may be an execution with one long job, in comparison to others being short. This gives
the magnitude of work in the complexity formula.

Lemma 2. A reliable, distributed algorithm, possibly randomized, performs work L +
Ω(m
√
L + mα) in an execution in which no failures occur on any set of oblivious jobs

with arbitrary lengths with preemption.

Proof. L+ Ω(m
√
L) follows from Lemma 1. It suffices to concentrate on the remaining

part. If m machines are operational for α rounds and the adversary does not distract
their work, then they generate mα units of work, what is consistent with performing the
longest job.

In the presence of failures, we extend the following result.

Lemma 3 ([6], Theorem 2). The f -bounded adversary, for 0 ≤ f < m, can force any
reliable, possibly randomized, algorithm to perform work Ω(n+m

√
n+mmin{f, n}).

Combining all the results above, we conclude with the following theorem, setting the
lower bound for the considered problem.

Theorem 1. The adaptive f-bounded adversary, for 0 ≤ f < m, can force any reliable,
possibly randomized and centralized algorithm and a set of oblivious jobs of arbitrary
lengths with preemption, to perform work L+ Ω(m

√
L+mmin{f, L}+mα).

Proof. The result follows explicitly by combining Lemma 2 and Lemma 3 applied for
n = L, as in the preemptive model tasks may be treated as independent jobs.

3.2 Algorithm ScaTri

In this section we present our algorithm Scaling-Triangle MAC Scheduling (ScaTri for
short). Intuitively, we use TaPeBB which treats the capability of performing jobs as a
triangle (see Section 2.7). This capability may vary through the execution (because of
machine crashes and job completion), and effectively this is like rescaling the triangle.
The most important assumption for ScaTri is that machines have access to all the jobs
and the corresponding tasks that build those jobs. This means that they know all the
jobs (and tasks) and their id’s as well as their lengths.

In what follows we assume that each machine maintains three lists: MACHINES, TASKS
and JOBS. The first list is a list of operational machines and is updated according to
the information broadcasted through the communication channel. If there is information
that some machine was recognized as crashed, then this machine is removed from the
list. In the context of the TaPeBB procedure, recall that this is realized as the output
information. TaPeBB returns the list of crashed machines so that operational machines
may update their lists.

9

(a) (b) (c)

Figure 2: A very general idea about how ScaTri works. The vertical stripes represent
jobs and the dotted-line triangle is the capability of the algorithm to perform jobs in
a single epoch (or parts of them i.e. some consecutive tasks). Consequently, if there
are enough jobs to pack into an epoch, then it is executed (a). Otherwise, if there are
not enough jobs for the current length of an epoch (b), then the length of the epoch is
reduced (c). This helps preventing excessive idle work.

List TASKS represents all the tasks that are initially computed from the list of jobs.
Every task has its unique identifier, what allows to discover to which job it belongs and
its position in that job. This allows to preserve consistency and coherency: task k cannot
be performed before task k−1. If some tasks are performed then this fact is also updated
on the list.

List JOBS represents the set of jobs — it is a convenient way to know what the
consecutive parts of input are for the TaPeBB procedure. Pieces of information on
list JOBS may be updated strictly from the ones from list TASKS. TaPeBB also returns
information about which jobs were actually done. To ease the discussion, we denote by
|XYZ| the length of the list XYZ and M = |MACHINES| the actual number of operational
machines.

Jobs are assigned to each machine at the beginning of an epoch (TaPeBB execution).
We assume that machines have instant access to the lengths of jobs. While introducing
the TaPeBB procedure we already mentioned the triangle-shaped capacity of the pro-
cedure to perform jobs in a single execution. Hence, providing a subset of jobs as the
input is consistent with packing them into such a triangle, cf., Figure 2.

We assume d is a parameter describing the actual length of an epoch. Initially it is
set to m, but it may be reduced while the algorithm is running, cf., Figure 2 (b), (c).
In what follows assuming that the length of the epoch d is set to m/2i for some i, and

we need to fill in a triangle of size
∑m

2i

j=1 j, initially we need to provide m/2i jobs, that
will form the base of the triangle. Jobs are provided as the input in such a way that the
shortest ones are preferred and if there are several jobs with the same length, then those
with lower id’s are preferred, cf.,. Figure 3. After having the base filled, it is necessary

10

to look whether there are any gaps in the triangle, see Figure 3 (b). If so, another layer
of jobs is placed on top of the base layer, and the procedure is repeated, see Figure 3 (c),
(d). Otherwise, we are done and ready to execute TaPeBB.

(a) (b) (c) (d)

Figure 3: An illustration of job input. (a) Initially there is a certain capability of
TaPeBB (triangle size) for performing jobs. (b) The initial layer is filled with jobs
(white blocks), yet there are still some gaps. (c) An additional layer (gray blocks) is
placed to fill in the triangle entirely. (d) In fact those additional jobs will only be done
partially.

Such an approach allows to “trim” longer jobs preferably — these will have more
tasks completed after executing TaPeBB than shorter ones. One should observe that
performing a transmission is an opportunity to confirm on the channel that the tasks that
were assigned to a machine are done. Additionally this confirms that a certain machine
is still operational. In what follows these two types of aggregated pieces of information:
which jobs were done, and which machines were crashed, are eventually provided as the
output of TaPeBB.

When d = m/2i for some i = 1, . . . , logm it may happen that there are not enough
tasks (jobs) to fill in a maximal triangle. If this happens we will, in some cases, reduce
the job-schedule triangle (and simultaneously the length of the epoch) to m/2i+1 and try
to fill in a smaller triangle, cf., Figure 2 (b), (c).

Finally, we use TaPeBB(v, d, JOBS, MACHINES, φ) to denote which machine executes
the procedure, the size of the schedule and the length of the epoch, the list of jobs
from which the input will be provided, the list of operational machines, and the phase
duration. We emphasize that we described the process of assigning jobs to machines from
the algorithm perspective, i.e., we illustrated that the system needs to provide input to
TaPeBB. Nevertheless, for the sake of clarity we assume that TaPeBB collects the
appropriate input by itself according to the rules described above, after having lists JOBS
and MACHINES provided as the input. Figures 2 and 3 illustrate the idea of ScaTri.

The following theorem summarizes the work performance of ScaTri:

11

Algorithm 1: ScaTri; code for machine v
1 - initialize MACHINES to a sorted list of all m names of machines;
2 - initialize JOBS to a sorted list of all n names of jobs;
3 - initialize TASKS to a sorted list of all tasks according to the information from

JOBS;
4 - initialize variable d representing the length of an epoch;
5 - initialize variable φ := 1 representing the length of a phase;
6 - initialize i := 0;
7 repeat
8 d := m/2i;
9 if |JOBS| ≥ d(d+ 1)/2 then

10 execute TaPeBB(v, d, JOBS, MACHINES, φ);
11 update JOBS, MACHINES, TASKS according to the output information from

TaPeBB;
12 end
13 else
14 i := i+ 1;
15 end
16 until |JOBS| > 0;

Theorem 2. ScaTri performs work L + O(m
√
L + mmin{f, L} + mα) against the

adaptive adversary and a set of non-oblivious, arbitrary length jobs with preemption.

Proof. The main part of ScaTri is designed as a repeat loop. Therefore, the total
contribution to work of ScaTri is divided between three types of iterations of that loop,
which we analyze separately:

• Case 1: iterations in which |JOBS| ≥ d and |TASKS| ≥ d(d+ 1)/2

If the algorithm reaches such a condition, it means that there is a significant number
of jobs and tasks, thus we may assure that there is neither redundant nor idle work.
That is why work accrued in phases with successful transmissions accounts to L
and work in phases with failing transmissions can be computed as mmin{f, L}.
Precisely, there are clearly f crashes that may occur resulting from the adversary
and because the longest length of an epoch is m, then the amount of wasted work
for each crash is at most m. On the other hand the number of crashes cannot
exceed the overall number of tasks, hence the minimum factor.

• Case 2: iterations in which |JOBS| < d and |TASKS| ≥ d(d+ 1)/2

If we fall into such case, there is a significant number of tasks, but they all form
few long jobs. This means that the size of an epoch has to be reduced significantly
and those jobs need to be trimmed by few initial machines in a certain number of
epochs. Thus the magnitude of work for such case is O(mα).

12

• Case 3: iterations in which |TASKS| < d(d+ 1)/2

The algorithm begins with the length of the epoch set as m. When the number
of tasks is relatively small (no matter what their distribution over jobs is) this
means that the algorithm should reduce the size of the schedule triangle to m/2
in order to reduce the number of idling rounds of machines that do not have their
jobs assigned. Of course the productive part of work after rescaling the triangle,
generated by machines that transmitted successfully is accounted to L and the
wasted part produces mmin{f, L} work.
We now compute the idling work of the remaining machines. The ratio between
the initial triangle size and the reduced one is

m
2
(m
2
+1)

2
m(m+1)

2

=
1

4

m+ 2

m+ 1
≥ 1

4
,

hence we conclude that O(1) epochs is enough for a single case.

Having in mind that we are computing the overall work in the considered case as a
union bound, we examine the inequality m(m+ 1)/2 > L. It states that there are
not enough jobs to fill in the initial triangle — the size of the triangle is therefore
reduced to m/2. But because its size is reduced to m/2 it means that now the
number of idling phases within this case is bounded by m/2 = O(

√
L). Together

with the fact that the number of operational machines is at most m and that the
number of epochs sufficing to perform all the jobs within a single case is constant
we compute the total work as follows. Following Fact 1 we have that O(1) epochs
× m machines idling at most for O(

√
L) phases of an epoch is the idling work

accrued in a single case.

Because there is a logarithmic number of such cases and the reasoning for each of
them is consistent with the abovementioned (there are not enough jobs to fill in
the triangle of size m/2i, hence the size is reduced to m/2i+1), basing once again
on Fact 1 we compute the total idle work as a union bound of all the cases, having
the following:

cm
∑
i

√
L

2i
= O(m

√
L) ,

where c is the constant number of epochs required to perform everything within a
single case.

Note that we consider four types of work: idling, wasted, the one following from a
bottleneck scenario (when there are few very long jobs) and productive. Idling work has
been bounded by the union of several cases when the length of an epoch is reduced, yet
there are still some operational machines that may generate idle work.

Wasted work is a result of adversary and is clearly related to crashes that may occur.
However, if some task k is scheduled to be done in an epoch by machine v, then no other

13

machine apart from v has task k scheduled in this particular epoch. In what follows there
are two possibilities: either task k is done by v, and the generated productive work is
accounted to L (only once for task k in the entire execution), or machine v is crashed and
the work accrued by v is categorized as wasted (factor mmin{f, L}) and k is scheduled
once again in the following epoch.

Consequently, considering all the cases we have that ScaTri has L + O(m
√
L +

mmin{f, L}+mα) work complexity against an adaptive adversary.

As mentioned in the beginning of Section 3, the lower bound here is proved for
oblivious jobs in the preemptive model, while the algorithm works reliably for non-
oblivious jobs in the same model, because TaPeBB procedure provides any intermediate
job performing progress as the output information and all the information is updated
sequentially after each epoch. This implies that the distinction between oblivious and
non-oblivious jobs in the preemptive model and against an adaptive adversary does not
matter, thus we finish this section with the following corollary:

Corollary 1. ScaTri is optimal in asymptotic work efficiency for jobs with arbitrary
lengths with preemption for both oblivious and non-oblivious jobs.

4 Non-preemptive model

In this section we consider a complementary problem of performing jobs when preemption
is not available, thus every job needs to be performed in one attempt by a single machine
in order to be confirmed. Again, we will begin with the lower bound and then proceed
to the algorithm and its analysis.

4.1 Lower bound

The non-preemptive model is characterized by the fact that each job can be performed
by a machine in one piece. This reflects an all-or-nothing policy, i.e., a machine cannot
make any intermediate progress while performing a job. If it starts working on a job then
either it must be done entirely or it is abandoned without any tasks actually performed.

In what follows any intermediate broadcasts while performing a job are not helpful for
the system. The only meaningful transmissions are those which allow to confirm certain
jobs being done. This is the key reason to consider the notion of a phase, introduced
in the model section — broadcasts regarding confirming jobs are worth doing only after
the entire jobs are done. We start the proof of the lower bound by estimating how many
jobs we may be able to confirm in a certain period based on the average length of a job.
Precisely, we will show that the number of jobs with length twice the average does not
exceed half of the total number of jobs.

Fact 2. Let n be the number of jobs, L be the sum of all the lengths of jobs and let L
n

represent the average length of a job. Then we have that
∣∣{a : `a > 2Ln

}∣∣ ≤ n
2 .

14

Proof. We have that L =
∑

i≤n `i, so

L =
∑
i≤n

`i ≥
∑

{a:`i>2L
n}
`i ≥ 2

L

n

∣∣∣∣{a : `a > 2
L

n

}∣∣∣∣ ,
hence n

2 ≥
∣∣{a : `a > 2Ln

}∣∣.
We now state a general lower bound for the model even if the adversary does not

distract the system.

Lemma 4. A reliable algorithm, possibly randomized, performs work L + Ω(Lnm
√
n) in

an execution in which no failures occur.

Proof. It is sufficient to consider the channel with collision detection in which machines
could possibly have more information. Let A be a reliable algorithm. We also assume
that A has the phase parameter set to the average length of the set of jobs. This is the
duration between two consecutive transmissions.

The part L of the bound follows from the fact that all the jobs are built from L tasks,
thus all the tasks need to be done at least once in any execution of A. In other words,
there are at least L units of work needed in order to perform them all.

Job a is confirmed at phase γ of an execution of algorithm A, if either a machine
broadcasts successfully and it has performed a by the end of phase γ, or at least two
machines broadcast simultaneously and all of them, with a possible exception of one
machine, have performed job a by the end of phase γ of the execution. All of the
machines broadcasting at phase γ and confirming job a have performed it by then, so at
most 2γ jobs can be confirmed at phase γ.

Let E1 be an execution of the algorithm when no failures occur. Let v be the machine
that comes to a halt at some phase γ′ in E1.

Claim. The jobs not confirmed by the end of phase γ′ were performed by v itself in E1.

Proof. Suppose, to the contrary, that this is not the case, and let b be such a job. Consider
an execution, say E2, obtained by running the algorithm and crashing any machine that
performed job j in E1 just before the machine finishes performing job b in E1, and all the
remaining machines, except for v, crashed at phase γ′. The broadcasts on the channel
are the same during the first γ′ phases in E1 and E2. Hence all the machines perform the
same jobs in E1 and E2 till the beginning of phase γ′. The definition of E2 is consistent
with the power of the unbounded adversary. The algorithm is not reliable because job b is
not performed in E2 and machine v is operational. We obtain contradiction that justifies
the claim.

We compute the contribution of the machine v to work. The total number of jobs
confirmed in E1 is at most

2(1 + 2 + . . .+ γ′) = O((γ′)2) .

15

Suppose some n′ jobs have been confirmed by the end of phase γ′. Each job contributes
L
n units of work because of the phase parameter. The remaining n − n′ jobs have been
performed by v and each of them required L

n units of work to be done as well. The work
of v is therefore

Ω

(
L

n

√
n′ +

L

n
(n− n′)

)
= Ω

(
L

n

√
n

)
,

which completes the proof.

Lemma 5. A reliable, distributed algorithm, possibly randomized, performs work L +
Ω
(
L
nm
√
n+ L

nmmin{f, n}+mα
)
in an execution with at most f failures against an

adaptive adversary.

Proof. We consider two cases, depending on which term dominates the bound. If it is
L+ Ω

(
L
nm
√
n+mα

)
, then the bound follows from combining Lemma 4 with Lemma 2

— if the longest job was a bottleneck in the preemptive model, then certainly it is a
bottleneck in the non-preemptive model.

Consider the case when Ω(Lnmmin{f, n}) determines the magnitude of the bound.
Denote g = min{f, n}. As for now, we may assume that the duration of a phase, i.e., the
duration between consecutive broadcasts, is set to some value φ and that it may even
change multiple times during any execution. Let E1 be an execution obtained by running
the algorithm and crashing any machine that wants to broadcast as a single one during
the first g/4 phases. Denote as A the set of machines failed in E1. The definition of E1
is consistent with the power of the f -bounded adversary, since |A| ≤ g/4 ≤ f .

Claim. No machine halts by phase g/4 in execution E1.

Proof. Suppose, to the contrary, that some machine v halts before phase g/4 in E1. We
show that the algorithm is not reliable. To this end we consider another execution, say,
E2 that can be made to happen by the unbounded adversary. Let a be a job which is
performed in E1 by at most

mg

4(n− g/4)
≤ mg

3n

machines, except for machine v, during the first g/4 phases. It exists because g ≤ n.
Let B be this set of machines. Size |B| of set B satisfies the inequality

|B| ≤ mg

3n
≤ m

3
.

We define operationally a set of machines, denoted C, as follows. Initially C equals A∪B.
Notice that the inequality |A ∪ B| ≤ 7m/12 holds. If there is any machine that wants
to broadcast during the first g/4 phases in E1 as the only machine not in the current
C, then it is added to C. At most one machine is added to C for each among the first
g/4 ≤ m/4 phases of E1, so |C| ≤ 10m/12 < m.

Let E2 be an execution obtained by failing all the machines in C at the start and then
running the algorithm. The definition of E2 is consistent with the power of the unbounded
adversary. There is no broadcast heard in E2 during the first g/4 phases. Therefore each

16

machine operational in E2 behaves in exactly the same way in both E1 and E2 during the
first g/4 phases. Job a is not performed in execution E2 by the end of phase g/4, because
the machines in B have been failed and the remaining ones behave as in E1.

Machine v is not failed in E2 and so it performs the same actions in both E1 and E2.
Consider a new execution, denoted E3. This execution is like E2 till the beginning of phase
g/4, then all the machines, except for v, are failed. The definition of E3 is consistent with
the power of the unbounded adversary. Machine v is operational but halted and job a is
still outstanding in E3 at the end of phase g/4. We conclude that the algorithm is not
reliable. This contradiction completes the proof of the claim.

Consider the original execution E1 again. It follows from the claim that there are at
least m− g/4 = Ω(m) machines still operational and non-halted by the end of phase g/4
in execution E1. The duration of a phase is dictated by lengths of jobs. Hence even if φ
was changed n times, phases lasted L/n on average. Thus we may bound the magnitude
of φ by the initial average length of jobs L/n and consequently machines have generated
work Ω

(
L
n ·m ·min{f, n}

)
by the end of phase g/4, what ends the proof.

Corollary 2. There are non-preemptive job inputs for which a reliable, distributed al-
gorithm, possibly randomized, performs work L + Ω

(
L
nm
√
n+ αmmin{f, n}

)
against

adaptive f -bounded adversary.

4.2 Algorithm DefTri

(a) (b) (c) (d)

Figure 4: Most important features of DefTri. Similarly to ScaTri we apply the method
of reducing idle work by reducing the input size (epoch length) for the task performing
procedure ((a), (b), (c)). Additionally we pump phases (the duration between consecutive
broadcasts) in order to be able to fill in jobs entirely - in the model without preemption
jobs cannot be done partially (d).

17

Algorithm 2: DefTri; code for machine v
1 - initialize MACHINES to a sorted list of all m names of machines;
2 - initialize JOBS to a sorted list of all n names of jobs;
3 - initialize TASKS to a sorted list of all tasks according to the information from

JOBS;
4 - initialize variable d representing the length of an epoch;
5 - initialize variable φ representing the length of a phase;
6 - initialize i := 0;
7 repeat
8 d := m/2i;
9 if |JOBS| ≥ d(d+ 1)/2 then

// set φ to the current average length of a job
10 φ := |TASKS|/|JOBS|;
11 execute TaPeBB(v, d, JOBS, MACHINES, φ);
12 update JOBS, MACHINES, TASKS according to the output information from

TaPeBB;
13 end
14 else
15 if |TASKS| < d(d+ 1)/2 then
16 i := i+ 1;
17 end
18 else
19 φ := 1;
20 execute TaPeBB(v,min{|JOBS|, |MACHINES|}, JOBS, MACHINES, φ);
21 update JOBS, MACHINES, TASKS according to the output information

from TaPeBB;
22 end
23 end
24 until |JOBS| > 0;

18

We now design a scheduling algorithm in the non-preemptive model of jobs. Its work
complexity is L+O(Lnm

√
n+αmmin{f, n}) against the adaptive f -bounded adversary.

At first glance, algorithm Deforming-Triangle MAC Scheduling (DefTri for short) is
similar to ScaTri introduced in the previous section and on the top of its design there
is the TaPeBB procedure for performing jobs. Roughly speaking, the algorithm, repet-
itively, tries to choose tasks that could be packed into a specific triangle (parameters of
which are controlled by the algorithm) and feed them to TaPeBB. Furthermore, once
again the main goal of the algorithm is to avoid redundant or idle work. Hence, the main
feature is to examine whether there is an appropriate number of jobs in order to fill in
an epoch of TaPeBB. However, as we are dealing with the non-preemptive model, jobs
cannot be done in small pieces (tasks).

Consequently, apart from checking the number of jobs (and possibly reducing the size
of an epoch) the algorithm also changes the phase parameter, i.e., the duration between
consecutive broadcasts — this is somehow convenient in order to know how the input
jobs should be fed into TaPeBB. It settles a “framework” (epoch) with “pumped rounds”
that should be filled in appropriately.

Using Fact 2 assures that if the size of an epoch is reduced accordingly to the number
of jobs and the phase parameter is set accordingly to the actual average length of the
current set of jobs (i.e., |TASKS|/JOBS| in the code of Algorithm 2), then we are able to

provide the input for TaPeBB appropriately and expect that at least
∑m

2i

j=1 j jobs will
be performed for some size parameter i as a result of executing TaPeBB, without yet
taking into account crashes.

Finally, there is a special and quite pessimistic case, that makes a difference between
ScaTri and DefTri. Specifically, if there are not many jobs left, but they are very long,
then the algorithm needs to switch to a slightly different TaPeBB phase parameter φ,
mainly φ = 1, so that transmissions are enabled in any given round. This is in order not
to waste too much idle work because of the jobs being significantly long for the considered
case. Figure 4 illustrates the idea of DefTri.

Theorem 3. DefTri performs work L+O(Lnm
√
n+αmmin{f, n}) against the adaptive

f -bounded adversary.

Proof. We analyze similar cases as in the proof of Theorem 2 w.r.t. ScaTri, using the
same methodology.

• Case 1: iterations in which |JOBS| ≥ d and |TASKS| ≥ d(d+ 1)/2.
For this case we have a great number of jobs to perform and the only subtlety is to
take care of the appropriate phase length, that is adjusted before each epoch. Sim-
ilarly as in Theorem 2, productive work resulting from successful job performance
accrues L units of work. If a machine crashes, its work in the epoch is at most φm,
which is equal to the maximal length of the epoch rescaled by φ that is the phase
parameter. Because we have f possible crashes and φ is always adjusted to the
current average, then we may upper bound this kind of work as L

nmmin{f, n}, tak-
ing into consideration that the number of jobs n may be less than the adversary’s
possibilities of crashes.

19

• Case 2: iterations in which |JOBS| < d and |TASKS| ≥ d(d+ 1)/2.

In this case there are not too many jobs, but they are long. Consequently, DefTri
changes the phase parameter of TaPeBB to 1 so that transmissions are available
at any given time, hence the schedule of transmissions is fixed according to list
MACHINES and JOBS. In this case each machine has barely one job to take care
of and machines with shorter jobs and/or lower job ID’s have the opportunity to
confirm their jobs before machines having longer jobs scheduled. Obviously the
only transmissions that make sense are those that confirm performing a particular
job.

The length of an epoch is now set to the number of jobs, unless the number of jobs
is greater than the number of currently operational machines — for such case the
length of the epoch is simply M ≤ m. In this case several epochs may be needed
to perform all the jobs.

The execution for such case is likely to be consistent with the scenario where ma-
chines will work silently for some time (long jobs) and then start communicating
progress one after another. Hence if now a machine performs a successful transmis-
sion, it means that it performed a job and the work accrued by this fact accounts
to factor L. Otherwise, if there was a crash caused by the adversary then the max-
imum number of wasted work units accrued is α. While there are as many as f
crash possibilities, we have that αf is upper bound on the amount of wasted work.

Finally, if there is a number of machines idling because some others are performing
few long jobs, then this process generates the amount of αf work multiplied by m.
We therefore conclude that the overall amount of work accrued for the considered
case is mαmin{f, n}, given the sub-case that the number of jobs is less than the
number of crashes.

• Case 3: iterations in which |TASKS| < d(d+ 1)/2.

When there are not enough jobs to provide the input to TaPeBB, then the size
of a single epoch of TaPeBB is reduced in order to prevent excessive idle or
redundant work. Obviously, the productive and wasted work is L and L

nmmin{f, n}
respectively, and it remains to bound the amount of idle work.

Likewise in the proof of Theorem 2, we use a union bound over a logarithmic
number of cases for the idle kind of work. Assume that the length of the epoch
is set to m

2i
, for some i, and there are not enough tasks to fully fill the input of

TaPeBB, hence the length of the epoch is reduced with parameter i+1. The ratio
between both of these cases is

m

2i+1 (
m

2i+1+1)

2
m

2i
(m
2i

+1)

2

=
1

4

m+ 2i+1

m+ 2i
≥ 1

4
,

thus we conclude that the reduced epoch is at most 4 times smaller than the initial
one. In what follows, the number of reduced length epochs sufficing to perform all

20

the tasks is constant. What is more, the phase parameter will be set appropriately
to the average length of the current set of tasks, hence, according to Fact 2, this
will be a correct setting to fill in the input for TaPeBB.

Taking these facts altogether and a similar reasoning as in Theorem 2 over the
logarithmic number of cases, we have that

cm
∑
i

√
n

2i
= O(m

√
n)

phases of work are needed, where c is the constant number of epochs required for
performing all the jobs. Once again: we have a sum over a logarithmic number of
cases characterized by the epoch length, where at mostm machines are operational,
and they are working for c executions of TaPeBB, hence the estimate above.

The final question is however how we can bound the duration of all the phases from
above for the idle work estimation.

Once again, we calculate a union bound over a logarithmic number of cases. We
use Li for denoting the number of outstanding jobs in consecutive cases. The
initial arithmetic average length of a job is L1/n, where L1 = L. It is set for the
time of performing at most n/2 jobs, because if we fell into the condition that
|TASKS| < d(d+ 1)/2, then at most two epochs suffice to perform all the jobs. And
because we change the average length of a phase after each epoch, hence we argued
that the initial average is set for n/2 jobs.

The next step is that we fall into the case when an average of L2/(n/2) is set for
at most n/4 jobs, and other cases follow similarly. The key observation is that the
consecutive average phase durations are set for monotonically decreasing periods,
where each one is set for at most half the “time” than the preceding one. Of course
L = L1 ≥ L2 ≥ · · · ≥ Llogn. In what follows we have that the initial average length
of a job dominates the weighted average of all the averages that occur over all the
cases:

L

n
≥ L/2 + L/4 + · · ·+ L/2logn

n
≥
L1/2 + L2/4 + · · ·+ Llogn/2

logn

n
.

We therefore showed that the idle work factor equals O
(
L
nm
√
n
)
.

As in Theorem 2, the analysis of DefTri consists of idle, wasted and productive
work. Likewise, if a job is performed and it has been confirmed, the work accounts
to L. Otherwise, it accounts to αmmin{f, L}. In what follows, factor L appears in the
complexity formula with constant 1, similarly as it was in ScaTri analysis. We conclude
that DefTri has L+O(Lnm

√
n+ αmmin{f, L}) work complexity.

21

5 Towards randomized solutions

We have already showed that preemption is helpful when considering arbitrary lengths of
jobs that need to be done by a distributed system. However, a natural question appears
whether we may perform even better when randomization is available for the considered
problem and its corresponding model. The answer seemed to be positive for the non-
adaptive adversary, hence we investigate this issue by adapting an algorithm from [15]
and analyzing it for the configuration focusing on jobs with preemption, providing an
improved algorithm, intuitions about it and a detailed analysis.

5.1 Algorithm RanScaTri

Algorithm 3: RanScaTri, code for machine v
1 if m2 ≤ L then
2 execute ScaTri;
3 end
4 else
5 initialize MACHINES to a sorted list of all m names of machines;
6 initialize variable φ := 1 representing the length of a phase;

7 if log2(m) > e
√
L

32 then
8 execute a L-phase epoch where every machine has all tasks assigned

(without transmissions);
9 execute Confirm-Work;

10 end
11 else
12 i = 0;
13 repeat
14 if (m

2i
≤
√
L) then

15 Execute ScaTri;
16 end
17 if Mix-And-Test(i, L,m) then
18 repeat
19 Execute TaPeBB(v,

√
T , TASKS, STATIONS, φ);

20 until less than 1
4

√
L broadcasts are heard ;

21 end
22 increment i by 1;
23 until i = dlog2(m)e;
24 end
25 end

The name of RanScaTri follows from ScaTri and that in fact the actual job per-

22

Algorithm 4: Mix-And-Test, code for machine v
Input: i, L,m

1 coin := m
2i
;

2 for
√
L+ logm times do

3 if v has not been moved to the front of list MACHINES yet then
4 toss a coin with the probability coin−1 of heads to come up
5 end
6 if heads came up in the previous step then
7 broadcast v via the channel and attempt to receive a message
8 end
9 if some machine w was heard then

10 move machine w to the front of list MACHINES;
11 decrement coin by 1;
12 end
13 end
14 if at least

√
L broadcasts were heard then

15 return true;
16 end
17 else
18 return false;
19 end

Algorithm 5: Confirm-Work, code for machine v
1 i := 0 ;
2 repeat
3 coin := m

2i
;

4 toss a coin with the probability coin−1 of heads to come up;
5 if heads came up in the previous step then
6 broadcast v via the channel and attempt to receive a message;
7 end
8 if some machine w was heard then
9 clear list JOBS;

10 break;
11 end
12 else
13 increment i by 1 ;
14 if i = dlog2(m)e+ 1 then
15 i := 0;
16 end
17 end
18 until a broadcast was heard ;

23

forming remains the same. What distinguishes both algorithms is the use of randomiza-
tion. Precisely, RanScaTri changes the order of machines on list MACHINES by moving
machines that performed a succesful broadcast to front of that list. This has dual sig-
nificance - on one hand it prevents flexible adversarial crashes but on the other it also
allows to predict to which interval n ∈ (m

2i
, m
2i−1] for i = 1, · · · , dlog2(m)e does the current

number of operational machines belong what helps us with the analysis.
Machines moved to front of list MACHINES are called leaders. Because they are chosen

randomly, we expect that they will be uniformly distributed in the adversary order of
crashes. This allows us to assume that a crash of a leader is likely to be preceeded by
several crashes of other machines.

Consider Mix-And-Test at first. If p is the previously predicted number of opera-
tional machines, then each of the machines tosses a coin with the probability of success
equal 1/p. When only one machine did successfully broadcast it is moved to front of list
MACHINES and the procedure starts again with a decreased parameter. Otherwise, when
none or more than one of the machines broadcasts then silence is heard on the channel,
as there is no collision detection. Machines that have already been moved to front do
not take part in the following iterations of the procedure.

TaPeBB together with ScaTri are used as subprocedures for RanScaTri. The
length parameter for TaPeBB is now set to

√
L, as this allows us to be sure that the

total work accrued in each epoch does not exceed m
√
Lφ and simultaneously it is enough

to perform all the tasks in a constant number of epochs.
Let us recall that before the execution the Non-Adaptive adversary has to choose f

machines prone to crashes and declare in which rounds they will be crashed what is in
fact consistent with declaring in what order those crashes may happen. As a result when
some of the leaders are crashed, we may be approaching the case when M ≤

√
L and it

is possible to execute ScaTri that complexity is L+mα for such parameters. Otherwise
the adversary spends the majority of his possible crashes and the machines may finish
all the jobs without being distracted.

The design of RanScaTri is quite simple: if some specific conditions are not satisfied
(see Algorithm 3 lines 1-10), then Mix-And-Text is executed which purpose is to select
a number of leaders. Because they are working for

√
L rounds then, if no crashes occur, all

the jobs will be done in a constant number of epochs (
√
Lmachines perform 1+· · ·+

√
L =

O(L) tasks in a single epoch). In case of crashes occurring we may need to repeat Mix-
And-Test and draw a new set of leaders. Whenever M <

√
L is satisfied, ScaTri is

executed that work complexity is O(L+mα) for such parameters.
We begin the analysis od RanScaTri with the fact stating that whenever m

2i
≤
√
L

holds, ScaTri is executed, with O(L+mα) work.

Fact 3. Letm be the number of operational machines, and L be the number of outstanding
tasks. Then for m ≤

√
L ScaTri work complexity is O(L+mα).

Proof. If m ≤
√
L, then the outstanding number of crashes is f < m, hence f <

√
L.

ScaTri has L + O(m
√
L + m min{f, L} + mα) work complexity. In what follows the

complexity is L+O(
√
L
√
L+
√
L min{

√
L,L}+mα) = O(L+mα).

24

Lemma 6. Assume that we have M operational machines at the beginning of an epoch,
where

√
L were chosen as leaders. If the adversary crashes M/2 machines, then the

probability that there were 3/4 of the overall number of leaders crashed in this group does
not exceed e−

1
8

√
L.

Proof. We have M machines, among which
√
L are leaders. The adversary crashes M/2

machines and the question is how many leaders were in this group.
The hypergeometric distribution function with parameters N - number of elements,

K - number of highlighted elements, l - number of trials, k - number of successes, is given
by:

P[X = k] =

(
K
k

)(
N−K
l−k

)(
N
l

) .

The following tail bound from [16] tells us, that for any t > 0 and p = K
N :

P[X ≥ (p+ t)l] ≤ e−2t2l .

Identifying this with our process we have that K = M/2, N = m, l =
√
L and conse-

quently p = 1/2. Placing t = 1/4 we have that

P
[
X ≥ 3

4

√
L

]
≤ e−

1
8

√
L .

Lemma 7. Assume that the number of operational machines is in (m
2i
, m
2i−1] interval.

Then procedure Mix-And-Test(i, L,m) will return true with probability 1−e−c (
√
L+log2(m)),

for some 0 < c < 1.

Proof.

Claim 1. Let the current number of operational machines be in (x2 , x]. Then the proba-
bility of an event that in a single iteration of Mix-And-Test exactly one machine will
broadcast is at least 1

2
√
e
(where the coin−1 parameter is 1

x).

Proof. Consider a scenario where the number of operational machines is in (x2 , x] for some
x. If every machine broadcasts with probability of success equal 1/x then the probability
of an event that exactly one machine will transmit is (1 − 1

x)x−1 ≥ 1/e. Estimating
the worst case, when there are x

2 operational machines (and the probability of success
remains 1/x) we have that

1

2

(
1− 1

x

)x·x−2
2

≥ 1

2
√
e
.

25

According to the Claim the probability of an event that in a single round of Mix-
And-Test exactly one machine will be heard is 1

2
√
e
.

We assume that M ∈ (m
2i
, m
2i−1]. We show that the algorithm confirms appropriate i

with probability 1 − e−c (
√
L+log2m). For this purpose we need

√
L transmissions to be

heard.
Let X be a random variable such that X = X1 + · · ·+X√L+log2(m),

where X1, · · · , X√L+log2(m) are Poisson trials and

Xk =

{
1 if machine broadcasted,
0 otherwise.

We know that

µ = EX = EX1 + · · ·+ EX√L+log2(m) ≥
√
L+ log2(m)

2
√
e

.

To estimate the probability that
√
L transmissions were heard we will use the Chernoff’s

inequality.
We want to have that (1− ε)µ =

√
L. Thus ε = µ−

√
L

µ =
√
L+log2(m)−2

√
e
√
L√

L+log2(m)
. In what

follows 0 < ε2 < 6 i.e. it is bounded. Hence

P[X <
√
L] ≤ e−

(√
L+log2(m)−2

√
e
√
L√

L+log2(m)

)2

2

√
L+log2(m)

2
√
e = e−c

√
L+log2(m) ,

for some bounded constant c. We conclude that with probability 1 − e−c
√
L+log2(m) we

confirm the correct i which describes and estimates the current number of operational
machines.

Lemma 8. Mix-And-Test(i, L,m) will not be executed if there are more than m
2i−1 op-

erational machines, with probability not less than 1−(log2(m))2 max{e−
1
8

√
L, e−c

√
L+log2(m)}.

Proof. Let Ai denote an event that at the beginning of and execution of the Mix-And-
Test(i, L,m) procedure there are no more than m

2i−1 operational machines.
The basic case when i = 0 is trivial, because initially we havem operational machines,

thus P(A0) = 1. Consider an arbitrary i. We know that

P(Ai) = P(Ai|Ai−1)P(Ai−1) + P(Ai|Aci−1)P(Aci−1) ≥ P(Ai|Ai−1)P(Ai−1) .

Let us estimate P(Ai|Ai−1). Conditioned on that event Ai−1 holds, we know that after
executing Mix-And-Test(i−1, L,m) we had m

2i−2 operational machines. In what follows
if we are now considering Mix-And-Test(i, L,m), then we have two options:

1. Mix-And-Test(i− 1, L,m) returned false,

26

2. Mix-And-Test(i− 1, L,m) returned true.

We examine what these cases mean:

Ad 1. If the procedure returned false then we know from Lemma 7 that with probability
1− e−c

√
L+log2(m) there had to be no more than m

2i−1 operational machines. If that
number would be in (m

2i−1 ,
m

2i−2] then the probability of returning false would be
less than e−c

√
L+log2(m).

Ad 2. If the procedure returned true, this means that when executing it with parameters
(i − 1, L,m) we had no more than m

2i−1 operational machines. Then the internal
loop of RanScaTri was broken, so according to Lemma 6 we conclude that the
overall number of operational machines had to reduce by half with probability at
least 1− e−

1
8

√
L.

Consequently, we deduce that P(Ai|Ai−1) ≥ (1 − max{e−
1
8

√
L, e−c

√
L+log2(m)}). Hence

P(Ai) ≥ (1 − max{e−
1
8

√
L, e−c

√
L+log2(m)})i. Together with the fact, that i ≤ log2(m)

and the Bernoulli inequality we have that

P(Ai) ≥ 1− log2(m) max{e−
1
8

√
L, e−c

√
L+log2(m)} .

We conclude that the probability that the conjunction of events A1, · · · , Alog2(m) will
hold is at least

P

log2(m)⋂
i=1

Ai

 ≥ 1− (log2(m))2 max{e−
1
8

√
L, e−c

√
L+log2(m)} .

Theorem 4. RanScaTri performs O(L+m
√
L+mα) expected work against the non-

adaptive adversary.

Proof. In the algorithm we are constantly controlling whether condition m
2i
>
√
L holds.

If not, then we execute ScaTri which complexity is O(L+mα) for such parameters.
If this condition does not hold initially then we check another one i.e. whether

log2(m) > e
√

L
32 holds. For such configuration we assign all the tasks to every machine.

The work accrued during such a procedure is O(mL). However when log2(m) > e
√
L

32

then together with the fact that ex < x we have that log2(m) > L and consequently the
total complexity is O(m log(m)).

Finally, the successful machines, that performed all the jobs have to confirm this fact
by executing Confirm-Work. We demand that only one machine will transmit and if
this happens the algorithm terminates. The expected value of a geometric random vari-
able lets us assume that this confirmation will happen in expected number of O(log(m))
rounds, generating O(m log(m)) work.

27

When none of the conditions mentioned above hold, we proceed to the main part
of the algorithm. The testing procedure by Mix-And-Test for each of disjoint cases,
whereM ∈ (m

2i
, m
2i−1] requires a certain amount of work that can be bounded byO(m

√
L+

m log(m)), as there are
√
L+log2(m) testing phases in each case and at most m

2i
machines

take part in a single testing phase for a certain case.
In the algorithm we run through disjoint cases where M ∈ (m

2i
, m
2i−1]. From Lemma 6

we know that when some of the leaders were crashed, then a proportional number of all
the machines had to be crashed with high probability. When leaders are crashed but
the number of operational machines still remains in the same interval, then the lowest
number of jobs will be confirmed if only the initial segment of machines will transmit. As
a result, when half of the leaders were crashed, then the system still confirms L

8 = Ω(L)
tasks. This means that even if so many crashes occurred, O(1) epochs still suffice to do
all the jobs. Summing work over all the cases may be estimated as O(m

√
L).

By Lemma 8 we conclude that the expected work complexity is bounded by:(
(log(m))2 max{e−

1
8

√
L, e−c (

√
L+log(m))}

)
O(mL+m

√
L log2(m))

+
(

1− (log(m))2 max{e−
1
8

√
L, e−c (

√
L+log(m))}

)
O(m

√
L+m log(m)) = O(m

√
L) ,

where the first expression comes from the fact, that if we entered the main loop of the
algorithm then we know that we are in a configuration where log2(m) ≤ e

√
L

32 . Thus we
have that

mL+m
√
L log2(m)

e
√
L
8

≤ mL+mL log2(m)

e
√
L

16 e
√
L

16

≤ m+m log2(m)

e
√

L
16

≤ m+m log(m) = O(m log(m)) .

The second expression follows from the fact that the algorithm was in a condition where√
L ≥ m, and because it also holds m ≥ log(m) then consequently

√
L ≥ log(m).

Altogether, we have O(L + mα) work, resulting from reaching condition m
2i
>
√
L

and O(m log(m)) work resulting from reaching log2(m) ≤ e
√
L

32 . Additionally, there
is O(L+m

√
L) work, because of the Mix-And-Test procedure and the corresponding

effort of the leaders, so overall the work complexity of RanScaTri is O(L+m
√
L+mα),

what ends the proof.

6 Comparison

In this section we carry out a brief comparison of the formulas that we proved in previous
sections, i.e., the upper bound for preemptive scheduling from Theorem 2 vs the lower
bound in the model of jobs without preemption from Corollary 2. This comparison
shows the range of dependencies between model parameters for which both models are
separated, i.e., the upper bound in the model with preemption is asymptotically smaller
than the lower bound in the model without preemption. We settle the scope on the,

28

intuitively greater, bound for the model without preemption and examine how the ranges
of the parameters influence the magnitude of the formulas. Let us recall both formulas:

Preemptive, upper bound: L+O(m
√
L+mmin{f, L}+mα);

Non-preemptive, lower bound: L+ Ω(Lnm
√
n+ αmmin{f, n}).

If L is the factor that dominates the bound in the non-preemptive model, then by
simple comparison to other factors we have that L also dominates the bound in the
preemptive model. In what follows both formulas are asymptotically equal when the
total number of tasks is appropriately large.

When L
nm
√
n dominates the non-preemptive formula, then by a simple observation

we have that 1 ≤
√

L
n , because the number of all tasks is not less than the number

of jobs, and applying a square root does not affect the inequality. Thus, multiplying
both sides of the inequality by m

√
L gives us that m

√
L ≤ L

nm
√
n. It is also easy to

see that αmmin{f, n} from the non-preemptive formula is asymptotically greater than
mmin{f, L}+mα from the preemptive one.

Consequently, if Lnm
√
n or αmmin{f, n} dominates the bound in the non-preemptive

formula then the non-preemptive formula is asymptotically greater than the preemptive
one.

On the other hand when L dominates the bound then they are asymptotically equal
as both formulas linearize for such magnitude. Such results are somehow compatible
with our suspicions about the two models as intuitively the non-preemptive model for
channel without collision detection is more demanding in most cases.

Note that the upper bound obtained for randomized algorithm RanScaTri against
non-adaptive adversary matches the absolute lower bound L + Ω(m

√
L + mα) in this

model, given in Lemma 2, and therefore beats both the compared formulas for determin-
istic solutions.

7 Conclusions

In this paper we addressed the problem of performing jobs of arbitrary lengths on a
multiple-access channel without collision detection. In particular, we investigated two
scenarios: with and without preemption.

The first one was the model with preemption, where jobs can be done partially, even
by different machines. Jobs with preemption are likely to be seen as chains of tasks,
that need to be done in a certain order. The natural bottleneck for such problem is
therefore the length of the longest job α. We showed a lower bound for the considered
problem that is Ω(L+m

√
L+mmin{f, L}+mα) and designed an algorithm that meets

the proved bound, hence settled the problem. Additionally we considered a distinction
between oblivious and non-oblivious jobs and showed that such a distinction does not
matter with respect to the adaptive adversary.

On the other hand we answered the question of how to deal with jobs without pre-
emption, that need to be done in one piece in order to confirm progress. Here, as well,

29

we showed a lower bound for the problem and developed a solution, basing on the one for
preemptive jobs, yet this turned out not to match the lower bound that we showed. The
formula for work is L+O(Lnm

√
n+αmmin{f, n}), while we proved the lower bound for

the problem to be L+ Ω(Lnm
√
n+ L

nmmin{f, n}+mα).
What is more, even though we may hide factor L in the asymptotic notation, it still

appears with constant 1 in both solutions and represent the amount of work, resulting
from the number of tasks needed to perform for the considered problem.

We also showed that randomization helps in case of the non-adaptive adversary,
lowering the cost of preemptive scheduling to the absolute lower bound L+Ω(m

√
L+mα),

while it does not help against more severe adaptive adversary.
Considering the open directions for the research considered in this paper, it is nat-

ural to address the question of channels with collision detection. It may happen that
the distinction between oblivious and non-oblivious jobs will matter when such feature
is available. Furthermore it is worth considering whether randomization could help im-
proving the results while considering non-preemptive setting or against adversaries of
intermediate power, as it took place in similar papers considering the Do-All problem on
a shared channel [15].

Finally, the primary goal of this work was to translate scheduling from classic models
to the model of a shared channel, in which it was not considered in depth; therefore,
a natural open direction is to extend the model by other features considered in the
scheduling literature.

References

[1] Amotz Bar-Noy, Joseph Naor, and Baruch Schieber. Pushing dependent data in
clients-providers-servers systems. Wireless Networks, 9(5):421–430, 2003.

[2] Bogdan S. Chlebus. Randomized communication in radio networks, a chapter. In:
Pardalos, P.M., Rajasekaran, S., Reif, J.H., Rolim, J.D.P. (eds.), Handbook on
Randomized Computing. Kluwer Academic Publisher, Drodrecht, 2001, vol. 1, 401–
456.

[3] Bogdan S. Chlebus, Roberto De Prisco, and Alex A. Shvartsman. Performing tasks
on synchronous restartable message-passing processors. Distrib. Comput., 14(1):49–
64, January 2001.

[4] Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski, and Alexander A.
Shvartsman. Bounding work and communication in robust cooperative computa-
tion. In Proceedings of the 16th International Conference on Distributed Computing,
DISC ’02, pages 295–310, London, UK, UK, 2002. Springer-Verlag.

[5] Bogdan S. Chlebus and Dariusz R. Kowalski. Randomization helps to perform
independent tasks reliably. Random Structures and Algorithms, 24(1):11–41, 2004.

30

[6] Bogdan S. Chlebus, Dariusz R. Kowalski, and Andrzej Lingas. Performing work in
broadcast networks. Distributed Computing, 18(6):435–451, 2006.

[7] Roberto De Prisco, Alain Mayer, and Moti Yung. Time-optimal message-efficient
work performance in the presence of faults. In Proceedings of the Thirteenth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’94, pages 161–
172, New York, NY, USA, 1994. ACM.

[8] Cynthia Dwork, Joseph Y. Halpern, and Orli Waarts. Performing work efficiently
in the presence of faults. SIAM J. Comput., 27(5):1457–1491, 1998.

[9] Z. Galil, A. Mayer, and Moti Yung. Resolving message complexity of byzantine
agreement and beyond. In Proceedings of the 36th Annual Symposium on Founda-
tions of Computer Science, FOCS ’95, page 724, Washington, DC, USA, 1995. IEEE
Computer Society.

[10] Robert G. Gallager. A perspective on multiaccess channels. IEEE Trans. Informa-
tion Theory, 31:124–142, 1985.

[11] Chryssis Georgiou, Dariusz R. Kowalski, and Alexander A. Shvartsman. Efficient
gossip and robust distributed computation. Theor. Comput. Sci., 347(1-2):130–166,
November 2005.

[12] Chryssis Georgiou and Alexander A. Shvartsman. Cooperative Task-Oriented Com-
puting: Algorithms and Complexity. Morgan & Claypool Publishers, 2011.

[13] Veena Gondhalekar, Ravi Jain, and John Werth. Scheduling on Airdisks: Efficient
access to personalized information services via periodic wireless data broadcast.
Technical Report TR-96-25, Department of Computer Science, University of Texas,
Austin, TX, 1996.

[14] Coffman,Jr., E. G. and Garey, M. R. Proof of the 4/3 Conjecture for Preemptive
vs. Nonpreemptive Two-processor Scheduling, In Proceedings of the Twenty-third
Annual ACM Symposium on Theory of Computing, STOC 1991, pages 241–248,
New Orleans, Louisiana USA, 1991. ACM.

[15] Marek Klonowski, Dariusz R. Kowalski, and Jarosław Mirek. Ordered and de-
layed adversaries and how to work against them on shared channel. CoRR,
abs/1706.08366, 2017.

[16] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
In Journal American Statistics Association, vol. 58, pages 13-30, 1963.

[17] Dariusz R. Kowalski and Alex A. Shvartsman. Performing work with asynchronous
processors: Message-delay-sensitive bounds. In Proceedings of the Twenty-second
Annual Symposium on Principles of Distributed Computing, PODC ’03, pages 265–
274, New York, NY, USA, 2003. ACM.

31

[18] Dariusz R. Kowalski, Prudence W.H. Wong, and Elli Zavou. Fault tolerant schedul-
ing of tasks of two sizes under resource augmentation. J. of Scheduling, 20(6):695-
711, December 2017.

[19] Giorgio Lucarelli, Abhinav Srivastav, and Denis Trystram. From preemptive to
non-preemptive scheduling using rejections. In Preceedings of the 22nd International
Conference on Computing and Combinatorics, COCOON 2016, pages 510–519, Ho
Chi Minh City, Vietnam, 2016.

[20] Robert McNaughton. Scheduling with deadlines and loss functions. Manage. Sci.,
6(1):1–12, October 1959.

32

	1 Introduction
	1.1 Previous and related results
	1.2 Our results
	1.3 Paper structure

	2 Technical preliminaries
	2.1 Machines
	2.2 Communication model
	2.3 Adversarial model
	2.4 Complexity measure
	2.5 Jobs and reliability
	2.6 Preemptive vs Non-Preemptive Model
	2.7 The Task-Performing Black Box (TaPeBB)

	3 Preemptive model
	3.1 Lower bound
	3.2 Algorithm ScaTri

	4 Non-preemptive model
	4.1 Lower bound
	4.2 Algorithm DefTri

	5 Towards randomized solutions
	5.1 Algorithm RanScaTri

	6 Comparison
	7 Conclusions

