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Abstract. A vertex set U ⊆ V of an undirected graph G = (V,E) is a
resolving set for G if for every two distinct vertices u, v ∈ V there is a
vertex w ∈ U such that the distance between u and w and the distance
between v and w are different. A resolving set U is fault-tolerant if for
every vertex u ∈ U set U \{u} is still a resolving set. The (fault-tolerant)
Metric Dimension of G is the size of a smallest (fault-tolerant) resolving
set for G. The weighted (fault-tolerant) Metric Dimension for a given
cost function c : V −→ R+ is the minimum weight of all (fault-tolerant)
resolving sets. Deciding whether a given graph G has (fault-tolerant)
Metric Dimension at most k for some integer k is known to be NP-
complete. The weighted fault-tolerant Metric Dimension problem has not
been studied extensively so far. In this paper we show that the weighted
fault-tolerant metric dimension problem can be solved in linear time on
cographs.

Keywords: Graph algorithm, Complexity, Metric Dimension, Fault-
tolerant Metric Dimension, Resolving Set, Cograph

1 Introduction

An undirected graph G = (V,E) has metric dimension at most k if there is a
vertex set U ⊆ V such that |U | ≤ k and ∀u, v ∈ V , u 6= v, there is a vertex w ∈ U
such that dG(w, u) 6= dG(w, v), where dG(u, v) is the distance (the length of a
shortest path in an unweighted graph) between u and v. We call U a resolving
set. Graph G has fault-tolerant metric dimension at most k if for a resolving set
U with |U | ≤ k it holds that for every u ∈ U set U \ {u} is a resolving set for
G. The metric dimension of G is the smallest integer k such that G has metric
dimension at most k and the fault-tolerant metric dimension of G is the smallest
integer k such that G has fault-tolerant metric dimension at most k. The metric
dimension was independently introduced by Harary, Melter [12] and Slater [25].

If for three vertices u, v ∈ V , w ∈ U , we have dG(w, u) 6= dG(w, v), then we
say that u and v are resolved by vertex w. The metric dimension of G is the size
of a minimum resolving set and the fault-tolerant metric dimension is the size
of a minimum fault-tolerant resolving set. In certain applications, the vertices of
a (fault-tolerant) resolving set are also called resolving vertices, landmark nodes
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or anchor nodes. This is a common naming particularly in the theory of sensor
networks.

Determining the metric dimension of a graph is a problem that has an impact
on multiple research fields such as chemistry [3], robotics [20], combinatorial
optimization [24] and sensor networks [17]. Deciding whether a given graph G
has metric dimension at most k for a given integer k is known to be NP-complete
for general graphs [11], planar graphs [5], even for those with maximum degree 6
and Gabriel unit disk graphs [17]. Epstein et al. showed the NP-completeness for
split graphs, bipartite graphs, co-bipartite graphs and line graphs of bipartite
graphs [6] and Foucaud et al. for permutation and interval graphs [9][10].

There are several algorithms for computing the metric dimension in polyno-
mial time for special classes of graphs, as for example for trees [3,20], wheels
[16], grid graphs [21], k-regular bipartite graphs [23], amalgamation of cycles
[19], outerplanar graphs [5], cactus block graphs [18], chain graphs [8], graphs
with a bounded number of resolving vertices in every EBC [26]. The approx-
imability of the metric dimension has been studied for bounded degree, dense,
and general graphs in [14]. Upper and lower bounds on the metric dimension are
considered in [2,4] for further classes of graphs.

There are many variants of the Metric Dimension problem. The weighted
version was introduced by Epstein et al. in [6], where they gave a polynomial-time
algorithms on paths, trees and cographs. Hernando et al. investigated the fault-
tolerant Metric Dimension in [15], Estrada-Moreno et al. the k-metric Dimension
in [7] and Oellermann et al. the strong metric Dimension in [22].

The parameterized complexity was investigated by Hartung and Nichterlein.
They showed that for the standard parameter the problem is W [2]-complete on
general graphs, even for those with maximum degree at most three [13]. Foucaud
et al. showed that for interval graphs the problem is FPT for the standard
parameter [9][10]. Afterwards Belmonte et al. extended this result to the class
of graphs with bounded treelength, which is a superclass of interval graphs and
also includes chordal, permutation and AT-free graphs [1].

In this paper we show that the weighted fault-tolerant metric dimension
problem can be solved in linear time on cographs and give an algorithm that
computes a minimum weight fault-tolerant resolving set.

2 Definitions and Basic Terminology

We consider graphs G = (V,E), where V is the set of vertices and E is the
set of edges. We distinguish between undirected graphs with edge sets E ⊆
{{u, v} | u, v ∈ V, u 6= v} and directed graphs with edge sets E ⊆ V × V.
Graph G′ = (V ′, E′) is a subgraph of G = (V,E), if V ′ ⊆ V and E′ ⊆ E. It
is an induced subgraph of G, denoted by G|V ′ , if E′ = E ∩ {{u, v} | u, v ∈ V ′}
or E′ = E ∩ (V ′ × V ′), respectively. Vertex u ∈ V is called a neighbour of
vertex v ∈ V , if {u, v} ∈ E in an undirected graph or (u, v) ∈ E ((v, u) ∈ E) in a
directed graph. With N(u) = {v | {u, v} ∈ E} we denote the open neighbourhood
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of a vertex u in an undirected graph and with N [u] = N(u)∪{u} we denote the
closed neighbourhood of a vertex u.

A sequence of k+1 vertices (u1, . . . , uk+1), k ≥ 0, ui ∈ V for i = 1, . . . , k+1,
is an undirected path of length k, if {ui, ui+1} ∈ E for i = 1, . . . , k. The vertices u1

and uk+1 are the end vertices of undirected path p. The sequence (u1, . . . , uk+1)
is a directed path of length k, if (ui, ui+1) ∈ E for i = 1, . . . , k. Vertex u1 is the
start vertex and vertex uk+1 is the end vertex of the directed path p. A path p
is a simple path if all vertices are mutually distinct.

An undirected graph G is connected if there is a path between every pair
of vertices. An undirected graph G is disconnected if it is not connected. A
connected component of an undirected graph G is a connected induced subgraph
G′ = (V ′, E′) of G such that there is no connected induced subgraph G′′ =
(V ′′, E′′) of G with V ′ ⊆ V ′′ and |V ′| < |V ′′|. A vertex u ∈ V is a separation
vertex of an undirected graph G if G|V \{u} (the subgraph of G induced by
V \ {u}) has more connected components than G. Two paths p1 = (u1, . . . , uk)
and p2 = (v1, . . . , vl) are vertex-disjoint if {u2, . . . , uk−1} ∩ {v2 . . . , vl−1} = ∅. A
graph G = (V,E) with at least three vertices is biconnected, if for every vertex
pair u, v ∈ V , u 6= v, there are at least two vertex-disjoint paths between u and v.
A biconnected component G′ = (V ′, E′) of G is an induced biconnected subgraph
of G such that there is no biconnected induced subgraph G′′ = (V ′′, E′′) of G
with V ′ ⊆ V ′′ and |V ′| < |V ′′|. The distance dG(u, v) between two vertices u, v in
a connected undirected graph G is the smallest integer k such that there is a path
of length k between u and v. The distance dG(u, v) between two vertices u, v such
that there is no path between u and v in G is∞. The complement of an undirected
graph G = (V,E) is the graph Ḡ = (V, {{u, v} | u, v ∈ V, {u, v} /∈ E}).

Definition 1 (Cograph). An undirected Graph G is a cograph, if

– G = ({u}, ∅) or
– G = (V1 ∪V2, E1 ∪E2) for two cographs G1 = (V1, E1) and G2 = (V2, E2) or
– G = H for a cograph H.

A cograph contains no induced P4, therefore the diameter of a connected
cograph G is at most 2. That is, the distance between two arbitrary verices u, v
in G is either 0 or 1 or 2.

Definition 2 (Resolving set, metric dimension). Let G = (V,E) be an
undirected graph and let c : V −→ R+ be a function that assigns to every vertex
a non-negative weight. A vertex set R ⊆ V is a resolving set for G if for every
vertex pair u, v ∈ V, u 6= v, there is a vertex w ∈ R such that dG(u,w) 6=
dG(v, w). A resolving set R ⊆ V has weight k ∈ N, if

∑
v∈R c(v) = k. The set R

is a minimum resolving set for G, if there is no resolving set R′ ⊆ V for G with
|R′| < |R|. The set R is a minimum weight resolving set for G, if there is no
resolving set R′ ⊆ V for G with

∑
v∈R′ c(v) <

∑
v∈R c(v). An undirected graph

G = (V,E) has metric dimension k ∈ N, if k is the smallest positive integer such
that there is a resolving set for G of size k. An undirected graph G = (V,E) has
weighted metric dimension k ∈ N if k is the smallest positive integer such that
there is a resolving set for G of weight k.
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Definition 3 (Fault-tolerant resolving set, fault-tolerant metric dimen-
sion). Let G = (V,E) be an undirected graph and let c : V −→ R+ be a function
that assigns to every vertex a non-negative weight. A vertex set R ⊆ V is a
fault-tolerant resolving set for G if for an arbitrary vertex r ∈ R set R \ {r}
is a resolving set. A fault-tolerant resolving set R ⊆ V has weight k ∈ N, if∑

v∈R c(v) = k. The set R is a minimum fault-tolerant resolving set for G, if
there is no fault-tolerant resolving set R′ ⊆ V for G with |R′| < |R|. The set R is
a minimum weight fault-tolerant resolving set for G, if there is no fault-tolerant
resolving set R′ ⊆ V for G with

∑
v∈R′ c(v) <

∑
v∈R c(v). An undirected graph

G = (V,E) has fault-tolerant metric dimension k ∈ N, if k is the smallest pos-
itive integer such that there is a fault-tolerant resolving set for G of size k. An
undirected graph G = (V,E) has weighted fault-tolerant metric dimension k ∈ N,
if k is the smallest positive integer such that there is a fault-tolerant resolving
set for G of weight k.

Equivalent to this definition one can say that a vertex set is a fault-tolerant
resolving set if for every vertex pair there are two resolving vertices. Obviously
every fault-tolerant resolving set is also a resolving set.

The concept of fault-tolerance can be extended easily on an arbitrary number
of vertices, what is called the k-metric dimension in [7], k ∈ N. The k-metric
dimension is the size of a smallest k-resolving set. A k-resolving set resolves
every pair of vertices at least k times. For k = 1 a k-resolving set is a resolving
set and for k = 2 a k-resolving set is a fault-tolerant resolving set. One should
note that for all k > 2 there are graphs that does not have a k-resolving set (for
example graphs with twin vertices), whereas for k ≤ 2 the entire vertex set is a
k-resolving set.

Definition 4. Let G = (V,E) be an undirected graph and u, v ∈ V , u 6= v. For
two vertices u, v ∈ V we call N(u)4N(v) = (N(u) ∪N(v)) \ (N(u) ∩N(v)) the
symmetric difference of u and v. For a set R ⊆ V , we define the function

hR : V × V −→ N, hR(u, v) = |(N(u)4N(v) ∪ {u, v}) ∩R|

hR(u, v) is the number of vertices in R that are u or v or a neighbour of u,
but not of v or a neighbour of v, but not of u.

Definition 5 (neighbourhood-resolving).
Let G = (V,E) be an undirected graph and u, v ∈ V , u 6= v, and R ⊆ V . Set

R is called neighbourhood-resolving for G, if for every pair u, v ∈ V , u 6= v, we
have hR(u, v) ≥ 1.

A set R is neighbourhood-resolving for G, if for every two vertices u, v /∈ R
there is a vertex w ∈ R that is neighbour of exactly one of the vertices u and v.
If u ∈ R or v ∈ R the value hR(u, v) is always at least 1. Obviously, every set
that is neighbourhood-resolving for G is also a resolving set for G.

Definition 6 (2-neighbourhood-resolving). Let G = (V,E) be an undi-
rected graph and u, v ∈ V , u 6= v, and R ⊆ V . Set R is called 2-neighbourhood-
resolving for G if for every pair u, v ∈ V , u 6= v, we have hR(u, v) ≥ 2.
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A set R is 2-neighbourhood-resolving for G if

– for two vertices u, v ∈ V \ R there are at least two vertices in R that are
neighbour of exactly one of the vertices u and v and

– for two vertices u, v such that u ∈ R and v /∈ R there is at least one vertex
in R that is neighbour of exactly one of the vertices u and v.

For u, v ∈ R the value hR(u, v) is always at least two. Obviously, every set
that is 2-neighbourhood-resolving for G is also a fault-tolerant resolving set for
G.

Lemma 1. Let G = (V,E) be a connected cograph and R ⊆ V . Vertex set R is
a fault-tolerant resolving set for G if and only if R is 2-neighbourhood-resolving
for G.

Proof. ”⇒”: Assume that R is a fault-tolerant resolving set for G. We have to
show that R is 2-neighbourhood-resolving for G, so let u, v ∈ V and r1, r2 ∈ R
be the vertices that resolve u and v.

1. If u, v ∈ R, then obviously hR(u, v) ≥ 2.
2. If u ∈ R and v /∈ R, then either dG(u, r1) 6= 0 or dG(u, r2) 6= 0. Without loss

of generality let dG(u, r1) 6= 0. Vertex v /∈ R, so dG(v, r1) 6= 0. Since vertex
r1 resolves u, v and G is a connected cograph (and therefore the diameter is
at most 2), r1 has to be adjacent to exactly one of the vertices u, v. Thus,
r1 ∈ u4v ∩R and u ∈ {u, v} ∩R and therefore hR(u, v) ≥ 2.

3. If u, v /∈ R, then the distance between u and any vertex in R and the distance
between v and any vertex in R is not 0. Since r1 and r2 resolve u and v both
are adjacent to exactly one of the vertices u and v. Thus r1, r2 ∈ N(u)4N(v)
and therefore hR(u, v) ≥ 2.

”⇐”: Assume that R is 2-neighbourhood-resolving for G. We have to show
that R is a fault-tolerant resolving set for G. We do this by giving two resolving
vertices for every vertex pair u, v ∈ V .

1. If u, v ∈ R, there are obviously two vertices in R, which resolve u and v.
2. If u ∈ R and v ∈ V \ R, then u resolves u, v. Since hR(u, v) ≥ 2 and
|{u, v} ∩ R| = 1, we have |N(u)4N(v) ∩ R| ≥ 1. Thus, there is a vertex
r ∈ R, that is adjacent to exactly one of the vertices u, v, so r resolves u, v.

3. If u, v ∈ V \ R, then |{u, v} ∩ R| = 0. Since hR(u, v) ≥ 2, it follows
|N(u)4N(v) ∩ R| ≥ 2. Thus, there are two vertices r1, r2 ∈ R, that are
both adjacent to exactly one of the vertices u, v and so r1, r2 resolve u, v.

Note that this equivalence does not apply to disconnected cographs, see Fig-
ure 1.

Thus, we state that 2-neighbourhood-resolving implies fault-tolerance in a
cograph, fault-tolerance implies 2-neighbourhood-resolving in a connected co-
graph, but not in a disconnected cograph.

Lemma 2. Let G = (V,E) be a cograph and R ⊆ V . If R is 2-neighbourhood-
resolving for G, then R is also 2-neighbourhood-resolving for Ḡ.
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Fig. 1. The figure shows the disconnected cograph G = G′ ∪ G′′, build by the union
of the two connected cographs G′ and G′′. Let R = R′∪R′′ with R′ = {r′1, . . . , r′4} and
R′′ = {r′′1 , . . . , r′′4 }. R′ is 2-neighbourhood-resolving and a fault-tolerant resolving set
for G′ and R′′ is 2-neighbourhood-resolving and a fault-tolerant resolving set for G′′.
R is a fault-tolerant resolving set, but not 2NR for G, since hR(u′, u′′) = 0. R is not
a fault-tolerant resolving set for Ḡ, since u′ and u′′ are neighbour of every resolving
vertex in R in graph Ḡ and therefore cannot be resolved.

Proof. Let R ⊆ V be 2-neighbourhood-resolving for G, i.e. for u, v ∈ V we have
hR(u, v) = |(N(u)4N(v)∪{u, v})∩R| ≥ 2. We distinguish between the following
cases:

1. u, v ∈ (N(u)4N(v)∪{u, v})∩R: Obviously, u, v ∈ (N(u)4N(v)∪{u, v})∩R
in graph Ḡ and so hR(u, v) ≥ 2 in Ḡ.

2. u ∈ (N(u)4N(v) ∪ {u, v}) ∩ R and v /∈ (N(u)4N(v) ∪ {u, v}) ∩ R: Since
hR(u, v) ≥ 2 there has to be a vertex w ∈ N(u)4N(v) ∩ R, what implies
that w is neighbour of either u or v. Without loss of generality let w be a
neighbour of u. In graph Ḡ vertex w is not a neighbour of u, but a neighbour
of v. So, we still have two vertices u,w ∈ (N(u)4N(v)∪{u, v})∩R in graph
Ḡ.

3. u, v /∈ (N(u)4N(v) ∪ {u, v}) ∩ R: Since hR(u, v) ≥ 2 there has to be two
vertices w1, w2 ∈ N(u)4N(v) ∩R, what implies that both are neighbour of
exactly one of the vertices u, v. Therefore in graph Ḡ they are also neighbour
of exactly one of the vertices u, v. So, we still have two vertices w1, w2 ∈
(N(u)4N(v) ∪ {u, v}) ∩R in graph Ḡ.

Since 2-neighbourhood-resolving is equivalent to fault-tolerance in connected
cographs, we get the following observation:
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Observation 1 Let G = (V,E) be a connected cograph and R ⊆ V . If R is a
fault-tolerant resolving set for G, then R is also a fault-tolerant resolving set for
the disconnected cograph Ḡ.

Note that a fault-tolerant resolving set R for a disconnected cograph G is
not necessarily a fault-tolerant resolving set for Ḡ, see Figure 1.

Lemma 3. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two connected cographs
and G = (V,E) with V = V ′ ∪ V ′′ and E = E′ ∪E′′ be the disjoint union of G′

and G′′. Let R′ be a fault-tolerant resolving set for G′ and R′′ be a fault-tolerant
resolving set for G′′. Then R = R′ ∪R′′ is a fault-tolerant resolving set for G.

Proof. We show that every pair u, v ∈ V is resolved by two vertices in R. If
u, v ∈ V1 or u, v ∈ V2 the pair is obviously resolved twice by vertices in R1 ⊆ R
or R2 ⊆ R. If u ∈ V1 and v ∈ V2 the pair is resolved by any two resolving vertices
r1, r2 ∈ R, since either u or v will have distance ∞ to r1 and r2.

Note that R is not necessarily 2-neighbourhood-resolving for G (see Figure
1).

Definition 7. Let G = (V,E) be a cograph and R ⊆ V a fault-tolerant resolving
set for G. A vertex v ∈ V is called a k-vertex with respect to R, k ∈ N, if
|N [v] ∩R| = k.

A vertex v ∈ V is a k-vertex, if it has k vertices in its closed neighbourhood
that are in R.

Lemma 4. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two connected cographs
and G = (V,E) with V = V ′ ∪ V ′′ and E = E′ ∪E′′ be the disjoint union of G′

and G′′. Let R′ be 2-neighbourhood-resolving for G′ and R′′ be 2-neighbourhood-
resolving for G′′. Vertex set R = R′ ∪ R′′ is 2-neighbourhood-resolving for G if
and only if

1. there is at most one 0-vertex v ∈ V with respect to R, i.e. there is no 0-vertex
v ∈ V ′ with respect to R′ or there is no 0-vertex v ∈ V ′′ with respect to R′′

and
2. there is no 0-vertex v ∈ V ′ with respect to R′, if there is a 1-vertex in V ′′

with respect to R′′ and
3. there is no 1-vertex in V ′ with respect to R′, if there is a 0-vertex in V ′′ with

respect to R′′.

Proof. ”⇒”: Assume that R is 2-neighbourhood-resolving for G.

1. We show that there is at most one 0-vertex in V with respect to R. Assume
there are two 0-vertices u, v ∈ V with respect to R, i.e. |N [u] ∩ R| = 0 and
|N [v]∩R| = 0. Then we have hR(u, v) = 0, what contradicts the assumption
that R is 2-neighbourhood-resolving.
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2. We show that there is no 0-vertex in V ′ with respect to R′ if there is a
1-vertex in V ′′ with respect to R′′. Assume that there is a 0-vertex in u ∈ V ′

with respect to R′ and a 1-vertex in v ∈ V ′′ with respect to R′′. Then we have
hR(u, v) = 1, what contradicts the assumption that R is 2-neighbourhood-
resolving.

3. analogous to 2.

”⇐”: Assume that the conditions 1., 2. and 3. hold. We show that R is
2-neighbourhood-resolving for G, i.e. for u, v ∈ V we have hR(u, v) ≥ 2. For
u, v ∈ V ′ we have hR′(u, v) ≥ 2 and therefore also hR(u, v) ≥ 2. The same
holds for u, v ∈ V ′′. Now let u ∈ V ′ and v ∈ V ′′. hR(u, v) < 2 if and only if
|N [u] ∩R|+ |N [v] ∩R| < 2, i.e. if

1. |N [u] ∩R| = 0 and |N [v] ∩R| = 0 or
2. |N [u] ∩R| = 0 and |N [v] ∩R| = 1 or
3. |N [u] ∩R| = 1 and |N [v] ∩R| = 0

Conditions 1. - 3. guarantee that none of these three cases appear.

Theorem 2. Let G = (V,E) be a cograph. The weighted fault-tolerant metric
dimension of G can be computed in linear time.

Proof. We describe a linear time algorithm for computing the weighted fault-
tolerant metric dimension of a connected cograph. For disconnected cographs we
apply the algorithm for every connected component with at least two vertices.
If there are isolated vertices, then each of them has to be in every weighted
fault-tolerant resolving set, except for the case that there is exactly one isolated
vertex. To get the weighted fault-tolerant metric dimension of the disconnected
input graph, we build the sum of the weights of all isolated vertices if there are at
least two, and the weighted fault-tolerant metric dimension for each connected
component with at least two vertices.

To compute the weighted fault-tolerant metric dimension of a connected co-
graph G = (V,E) it suffices to compute a set that is 2-neighbourhood-resolving
for G and has minimal costs, since fault-tolerant resolving and 2-neighbourhood-
resolving sets are equivalent in connected cographs (Lemma 1). To compute a
2-neighbourhood-resolving set of minimum weight we use dynamic program-
ming along the cotree T = (VT , ET ). The cotree T of G is a tree that de-
scribes the union and complementation of cographs. The inner nodes are either
complementation-nodes or union-nodes. Every complementation-node has ex-
actly one child and every union-node has exactly two children. The leafs of T
are the vertices of G.

For every inner node of T we compute bottom up different types of mini-
mum weight 2-neighbourhood-resolving sets for the corresponding subgraph of
G. First we compute the 2-neighbourhood-resolving sets for the fathers of the
leafs. For every other inner node v ∈ VT we compute the 2-neighbourhood-
resolving sets from the 2-neighbourhood-resolving sets of all children of v. Fi-
nally the minimum weight of all 2-neighbourhood-resolving sets at root r of T
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will be the minimum weight fault-tolerant metric dimension of G. From Lemma
2 we know that, if a set is 2-neighbourhood-resolving for a cograph G′ then it is
also 2-neighbourhood-resolving for Ḡ′. The union of two fault-tolerant resolving
sets is also a fault-tolerant resolving set (Lemma 3), but the union of two 2-
neighbourhood-resolving sets is not necessarily a 2-neighbourhood-resolving set.
We have to guarantee that the union of two 2-neighbourhood-resolving sets is
also 2-neighbourhood-resolving, according to Lemma 4. For this, we have to keep
track of the existance of 0- and 1-vertices in the 2-neighbourhood-resolving sets
that we compute. Since a 0- or 1-vertex with respect to a set R becomes an |R|
or (|R| − 1)-vertex when complementing, we also have to keep track of |R|- and
(|R| − 1)-vertices.
For a cograph G = (V,E) we define 16 types of minimum weight 2-neighbourhood-
resolving sets Ra,b,c,d, a, b, c, d ∈ {0, 1}.
For

– a = 1 we compute a minimum weight 2-neighbourhood-resolving set R for
G such that there is a 0-vertex in G with respect to R and for a = 0 we
compute a minimum weight 2-neighbourhood-resolving set for G such that
there is no 0-vertex in G with respect to R.

– b = 1 we compute a minimum weight 2-neighbourhood-resolving set R for
G such that there is a 1-vertex in G with respect to R and for b = 0 we
compute a minimum weight 2-neighbourhood-resolving set for G such that
there is no 1-vertex in G with respect to R.

– c = 1 we compute a minimum weight 2-neighbourhood-resolving set R for G
such that there is a (|R| − 1)-vertex in G with respect to R and for c = 0 we
compute a minimum weight 2-neighbourhood-resolving set for G such that
there is no (|R| − 1)-vertex in G with respect to R.

– d = 1 we compute a minimum weight 2-neighbourhood-resolving set R for
G such that there is a |R|-vertex in G with respect to R and for d = 0 we
compute a minimum weight 2-neighbourhood-resolving set for G such that
there is no |R|-vertex in G with respect to R.

Let ra,b,c,d be the weight of the corresponding minimum weight 2-neighbourhood-
resolving sets Ra,b,c,d, i.e. the sum of the weights of all vertices in Ra,b,c,d. If there
is no such 2-neighbourhood-resolving set for a certain a, b, c, d, we set ra,b,c,d =∞
and Ra,b,c,d = undefined.

Now we will analyze the 16 2-neighbourhood-resolving sets more detailed and
describe, how they can be computed efficiently bottom up along the cotree. First
one should note that r1,1,c,d = ∞, ∀c, d, and R1,1,c,d = undefined, since it is
not possible to have a 0- and 1-vertex with respect to R in a 2-neighbourhood-
resolving set (their symmetric difference would contain less than two resolving
vertices), so it suffices to focus on the remaining 12 sets.

When complementing a graph G, the role of a 0-vertex and |R|-vertex with
respect to R and the role of a 1-vertex and a (|R| − 1)-vertex with respect to R
changes, that is Ra,b,c,d for G is Rd,c,b,a for Ḡ. When unifying two cographs G1

and G2 we distinguish between the follwing three cases:
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1. G1 and G2 both consist of a single vertex
2. G1 consists of a single vertex and G2 of at least two vertices
3. G1 and G2 both consist of at least 2 vertices

We will describe now how to compute Ra,b,c,d for the three cases.

1. Let G1 = ({v1}, ∅) and G2 = ({v2}, ∅). Then there is exactly one valid 2-
neighbourhood-resolving set for G = G1∪G2, namely R = {v1, v2}. In G we
have no 0-vertex, two 1- and two (|R| − 1)-vertices and no |R|-vertex with
respect to R. Therefore R0,1,1,0 = {v1, v2}, r0,1,1,0 = c(v1) + c(v2) and all
other sets are infeasible, that is ra,b,c,d = ∞ and Ra,b,c,d = undefined for
a 6= 0 ∨ b 6= 1 ∨ c 6= 1 ∨ d 6= 0.

2. Let G1 = ({v1}, ∅) and G2 = (V2, E2) with |V2| ≥ 2. For some a, b, c, d ∈
{0, 1} let R′′a,b,c,d be the minimum weight 2-neighbourhood-resolving sets
for G2 and r′′a,b,c,d be their weights. Let G = G1 ∪ G2. r0,0,c,d = ∞ and
R0,0,c,d = undefined, because vertex v1 is either a 0-vertex (if it is not in the
2-neighbourhood-resolving set) or a 1-vertex (if it is in the 2-neighbourhood-
resolving set) with respect to R0,0,c,d, ∀c, d. r0,1,c,1 = ∞ and R0,1,c,1 =
undefined, because it is crucial to put v1 in the 2-neighbourhood-resolving
set, if there should be no 0-vertex in G with respect to R0,1,c,1, ∀c. If v1 is in
the 2-neighbourhood-resolving set, it is not possible to have a vertex that is
neighbour of all resolving vertices, because v1 has no neighbours. For R0,1,0,0

and R0,1,1,0 we have to put v1 in the 2-neighbourhood-resolving set, so that
there is no 0-vertex with respect to R0,1,0,0 or R0,1,1,0, what makes v1 become
a 1-vertex in G with respect to R0,1,0,0 or R0,1,1,0. We get r0,1,0,0 = c(v1) +
min{r′′0,0,0,0, r′′0,0,1,0, r′′0,1,0,0, r′′0,1,1,0} and thus R0,1,0,0 = {v1} ∪ Rm, whereas
Rm is the set with smallest weight out of {R′′0,0,0,0, R′′0,0,1,0, R′′0,1,0,0, R′′0,1,1,0}.
For R0,1,1,0 there has to be an |R0,1,1,0|-vertex in G2 with respect to R0,1,1,0,
so we get r0,1,1,0 = c(v1) + min{r′′0,0,0,1, r′′0,0,1,1, r′′0,1,0,1, r′′0,1,1,1} and thus
R0,1,1,0 = {v1} ∪ Rm, whereas Rm is the set with smallest weight out of
{R′′0,0,0,1, R′′0,0,1,1, R′′0,1,0,1, R′′0,1,1,1}. For R1,0,c,d it is not possible to put v1
in the 2-neighbourhood-resolving set, because it would become a 1-vertex
with respect to R1,0,c,d, ∀c, d. Therefore we get r1,0,0,0 = r′′0,0,0,0 and thus
R1,0,0,0 = R′′0,0,0,0, r1,0,0,1 = r′′0,0,0,1 and thus R1,0,0,1 = R′′0,0,0,1, r1,0,1,0 =
r′′0,0,1,0 and thus R1,0,1,0 = R′′0,0,1,0, r1,0,1,1 = r′′0,0,1,1 and thus R1,0,1,1 =
R′′0,0,1,1.

3. Let G1 = (V1, E1) and G2 = (V2, E2) with |V1| ≥ 2 and |V2| ≥ 2 and
G = G1 ∪ G2. For some a, b, c, d ∈ {0, 1} let R′a,b,c,d be the minimum
weight 2-neighbourhood-resolving sets for G1 and R′′a,b,c,d be the minimum
weight 2-neighbourhood-resolving sets for G2 and r′a,b,c,d and r′′a,b,c,d be their
weights. ra,b,c,1 = ∞ and ra,b,1,d = ∞ and thus Ra,b,c,1 = undefined and
Ra,b,1,d = undefined, ∀a, b, c, d, because G1 and G2 contain at least two
resolving vertices in every 2-neighbourhood-resolving set. Therefore it is not
possible to have a vertex that is neighbour of all or of all except one of
them. The three remaining sets are R0,0,0,0, R0,1,0,0, R1,0,0,0. We get r0,0,0,0 =
min{r′0,0,c,d|c, d ∈ {0, 1}} + min{r′′0,0,c,d|c, d ∈ {0, 1}} and thus R0,0,0,0 =
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R′m ∪R′′m, whereas R′m is the set with smallest weight out of {R′0,0,c,d|c, d ∈
{0, 1}} and R′′m is the set with smallest weight out of {R′′0,0,c,d|c, d ∈ {0, 1}}.
We get r0,1,0,0 = min{r′0,0,c,d+r′′0,1,c′,d′ , r′0,1,c,d+r′′0,0,c′,d′ , r′0,1,c,d+r′′0,1,c′,d′ |c, d,
c′, d′ ∈ {0, 1}} and thus R0,1,0,0 = min{R′m0

∪R′′m1
, R′m1

∪R′′m0
, R′m1

∪R′′m1
},

whereas R′m0
is the set with smallest weight out of {R′0,0,c,d|c, d ∈ {0, 1}},

R′m1
is the set with smallest weight out of {R′0,1,c,d|c, d ∈ {0, 1}}, R′′m0

is
the set with smallest weight out of {R′′0,0,c,d|c, d ∈ {0, 1}} and R′′m1

is the
set with smallest weight out of {R′′0,1,c,d|c, d ∈ {0, 1}}. We get r1,0,0,0 =
min{r′1,0,c,d+r′′0,0,c′,d′ , r′0,0,c,d+r′′1,0,c′,d′ |c, d, c′, d′ ∈ {0, 1}} and thus R1,0,0,0 =
min{R′m1

∪ R′′m0
, R′m0

∪ R′′m1
}, whereas R′m0

is the set with smallest weight
out of {R′0,0,c,d|c, d ∈ {0, 1}}, R′m1

is the set with smallest weight out of
{R′1,0,c,d|c, d ∈ {0, 1}}, R′′m0

is the set with smallest weight out of {R′′0,0,c,d|c,
d ∈ {0, 1}} and R′′m1

is the set with smallest weight out of {R′′1,0,c,d|c, d ∈
{0, 1}}.

For every node of the cotree T the computation of the 12 minimum weight
2-neighbourhood-resolving sets for the corresponding subgraph of G can be done
in a constant number of steps. Since T has O(n) nodes, the overall runtime of
our algorithm is linear to the size of the cotree.

3 Conclusion

We showed that the weighted fault-tolerant metric dimension problem can be
solved in linear time on cographs. Our algorithm computes the costs of a fault-
tolerant resolving set with minimum weight as well as the set itself.

The complexity of computing the (weighted) fault-tolerant metric dimen-
sion is still unknown even for graph classes like wheels and sun graphs. This is
something that we will investigate in further work.
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