Skip to main content

Efficiency of Transformations of Proximity Measures for Graph Clustering

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11631))

Included in the following conference series:

Abstract

Choice of proximity measure for the nodes greatly affects the results of graph clustering. In this paper, we consider several proximity measures transformed with a number of functions including the logarithmic function, the power function, and a family of activation functions. Transformations are tested in experiments in which several classical datasets are clustered using the k-Means, Ward, and the spectral method. The analysis of experimental results with statistical methods shows that a number of transformed proximity measures outperform their non-transformed versions. The top-performing transformed measures are the Heat measure transformed with the power function, the Forest measure transformed with the power function, and the Forest measure transformed with the logarithmic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereinafter, a clustering algorithm is denoted by such a triplet. The first element in a triplet is a clustering method, the second is a proximity measure, and the third is a transformation.

  2. 2.

    Recall that an algorithm here refers to a triplet: a clustering method, a proximity measure, and a transformation.

References

  1. Avrachenkov, K., Chebotarev, P., Rubanov, D.: Kernels on graphs as proximity measures. In: Bonato, A., Chung Graham, F., Prałat, P. (eds.) WAW 2017. LNCS, vol. 10519, pp. 27–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67810-8_3

    Chapter  Google Scholar 

  2. Chebotarev, P.: The walk distances in graphs. Discrete Appl. Math. 160, 1484–1500 (2012)

    Article  MathSciNet  Google Scholar 

  3. Chebotarev, P.: Studying new classes of graph metrics. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 207–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40020-9_21

    Chapter  MATH  Google Scholar 

  4. Chebotarev, P., Shamis, E.: On the proximity measure for graph vertices provided by the inverse Laplacian characteristic matrix. In: Abstracts of the Conference “Linear Algebra and its Application”, 10–12 June 1995, pp. 6–7 (1995)

    Google Scholar 

  5. Chebotarev, P., Shamis, E.: On a duality between metrics and \(\varSigma \)-proximities. Autom. Remote Control. 59, 608–612 (1998)

    MATH  Google Scholar 

  6. Chebotarev, P., Shamis, E.: On proximity measures for graph vertices. Autom. Remote Control. 59, 1443–1459 (1998)

    MATH  Google Scholar 

  7. Chebotarev, P., Shamis, E.: The forest metrics for graph vertices. Electron. Notes Discret. Math. 11, 98–107 (2002)

    Article  MathSciNet  Google Scholar 

  8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-52844-0

    Book  MATH  Google Scholar 

  10. Estrada, E.: The communicability distance in graphs. Linear Algebr. Its Appl. 436, 4317–4328 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fouss, F., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of graph kernels on a collaborative recommendation task. In: Proceedings of the Sixth International Conference on Data Mining (ICDM 2006), pp. 863–868 (2006)

    Google Scholar 

  12. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

    Article  Google Scholar 

  13. Goddard, W., Oellermann, O.R.: Distance in graphs. In: Dehmer, M. (ed.) Structural Analysis of Complex Networks, pp. 49–72. Birkhäuser, Boston (2010). https://doi.org/10.1007/978-0-8176-4789-6_3

    Chapter  Google Scholar 

  14. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a \(k\)-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  15. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  16. Ivashkin, V., Chebotarev, P.: Do logarithmic proximity measures outperform plain ones in graph clustering? In: Kalyagin, V., Nikolaev, A., Pardalos, P., Prokopyev, O. (eds.) NET 2016. PROMS, vol. 197, pp. 87–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56829-4_8

    Chapter  Google Scholar 

  17. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silvermank, R., Wu, A.Y.: A local search approximation algorithm for \(k\)-means clustering. Comput. Geom. 28(2–3), 89–112 (2004)

    Article  MathSciNet  Google Scholar 

  18. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  19. Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of ICML, pp. 315–322 (2002)

    Google Scholar 

  20. Milligan, G., Cooper, M.: A study of the comparability of external criteria for hierarchical cluster-analysis. Multivar. Behav. Res. 21, 441–458 (1986)

    Article  Google Scholar 

  21. Nemenyi, P.: Distribution-free multiple comparisons. Biometrics 18(2), 263 (1962)

    Google Scholar 

  22. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  23. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007)

    Article  Google Scholar 

  24. Schenker, A., Last, M., Bunke, H., Kandel, A.: Comparison of distance measures for graph-based clustering of documents. In: Hancock, E., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 202–213. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45028-9_18

    Chapter  MATH  Google Scholar 

  25. Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on clustering tasks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 192–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_23

    Chapter  Google Scholar 

  26. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  27. Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes clustering based on the commute-time kernel. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1037–1045. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71701-0_117

    Chapter  Google Scholar 

  28. Yen, L., Vanvyve, D., Wouters, F.: Clustering using a random walk based distance measure. In: Proceedings of the 13th European Symposium on Artificial Neural Networks, ESAAN-2005, pp. 317–324 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinat Aynulin .

Editor information

Editors and Affiliations

Appendices

Appendix A

CD-diagrams

Fig. 5.
figure 5

The CD-diagrams for the algorithms based on the k-Means method

Fig. 6.
figure 6

The CD-diagrams for the algorithms based on the spectral method

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aynulin, R. (2019). Efficiency of Transformations of Proximity Measures for Graph Clustering. In: Avrachenkov, K., Prałat, P., Ye, N. (eds) Algorithms and Models for the Web Graph. WAW 2019. Lecture Notes in Computer Science(), vol 11631. Springer, Cham. https://doi.org/10.1007/978-3-030-25070-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25070-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25069-0

  • Online ISBN: 978-3-030-25070-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics