Skip to main content

The Impact of the Robot’s Morphology in the Collective Transport

  • Conference paper
  • First Online:
Book cover Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11650))

Included in the following conference series:

  • 1883 Accesses

Abstract

The idea of this research is to evolve the shape of robots within a swarm, in order for them to work better as a whole. Small robots are not so powerful individually, but when cooperating with each other, by physically hooking together forming a larger organism for example, they may be able to solve more complex tasks. The shape each robot has influences the way they physically interact and, taking advantage of the morphological computation phenomenon, I show that evolving the robots’ morphology in a swarm makes it more efficient for the task of transporting objects, even in comparison to evolving the robot’s controller. In order to fulfill this objective, I have evolved the shape of arm-like structures for the robots’ bodies and their controller separately, and compared the results with control experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bongard, J.: Embodied cognition: the other morphology. Neuromorphic Eng. (2008). https://doi.org/10.2417/1200812.1420

  2. Bongard, J.: Taking a biologically inspired approach to the design of autonomous, adaptive machines. Commun. ACM 56(8), 74–83 (2013). https://doi.org/10.1145/2493883

    Article  Google Scholar 

  3. Chen, J., Gauci, M., Groß, R.: A strategy for transporting tall objects with a swarm of miniature mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 863–869 (2013). https://doi.org/10.1109/ICRA.2013.6630674

  4. Cyberbotics Ltd., Michel, O., Rohrer, F., Heiniger, N., Wikibooks Contributors: Cyberbotics’ Robot Curriculum. Wikibooks (2010)

    Google Scholar 

  5. Deneubourg, J., Goss, S., Sandini, G., Ferrari, F., Dario, P.: Self-organizing collection and transport of objects in unpredictable environments. In: Japan-USA Symposium on Flexible Automation, pp. 1093–1098 (1990)

    Google Scholar 

  6. Dodig-Crnkovic, G.: The info-computational nature of morphological computing. In: Müller, V. (ed.) Philosophy and Theory of Artificial Intelligence, vol. 5, pp. 59–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31674-6_5

    Chapter  Google Scholar 

  7. Groß, R., Dorigo, M.: Cooperative transport of objects of different shapes and sizes. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 106–117. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28646-2_10

    Chapter  Google Scholar 

  8. Groß, R., Dorigo, M.: Evolving a cooperative transport behavior for two simple robots. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 305–316. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24621-3_25

    Chapter  Google Scholar 

  9. Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-Inspired Comput. 1(1/2), 1–13 (2009). https://doi.org/10.1504/IJBIC.2009.022770

    Article  Google Scholar 

  10. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2

    Book  Google Scholar 

  11. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1, 61–70 (2006). https://doi.org/10.1016/j.swevo.2011.05.001

    Article  Google Scholar 

  12. Kube, C., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30, 85–101 (2000). https://doi.org/10.1016/S0921-8890(99)00066-4

    Article  Google Scholar 

  13. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability Evolution. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11692-6

    Book  MATH  Google Scholar 

  14. O’Dowd, P., Winfield, A., Studley, M.: The distributed co-evolution of an embodied simulator and controller for adaptive swarm behaviours. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4995–5000 (2011). https://doi.org/10.1109/IROS.2011.6094600

  15. O’Grady, R., Groß, R., Christensen, A.: Performance benefits of self-assembly in a swarm-bot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2381–2387 (2007). https://doi.org/10.1109/IROS.2007.4399424

  16. Paul, C.: Morphological computation - a basis for the analysis of morphology and control requirements. Robot. Auton. Syst. 54, 619–630 (2006). https://doi.org/10.1016/j.robot.2006.03.003

    Article  Google Scholar 

  17. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. The MIT Press (2006). https://doi.org/10.7551/mitpress/3585.001.0001

    Book  Google Scholar 

  18. Winfield, A.F.T., Blum, C., Liu, W.: Towards an ethical robot: internal models, consequences and ethical action selection. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS (LNAI), vol. 8717, pp. 85–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10401-0_8

    Chapter  Google Scholar 

  19. Zambrano, D., Cianchetti, M., Laschi, C.: The morphological computation principles as a new paradigm for robotic design. In: Opinions and Outlooks on Morphological Computation, Chap. 19, pp. 214–225 (2014). https://doi.org/10.13140/2.1.1059.4242

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, J. (2019). The Impact of the Robot’s Morphology in the Collective Transport. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham. https://doi.org/10.1007/978-3-030-25332-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25332-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25331-8

  • Online ISBN: 978-3-030-25332-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics