Skip to main content

Modelling of a Soft Sensor for Exteroception and Proprioception in a Pneumatically Actuated Soft Robot

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11650))

Included in the following conference series:

Abstract

Soft sensors are crucial to enable feedback in soft robots. Soft capacitive sensing is a reliable technology that can be embedded into soft pneumatic robots for obtaining proprioceptive and exteroceptive feedback. In this paper, we model a soft capacitive sensor that measures both the actuated state as well as applied external forces. We develop a Finite Element Model using a multiphysics software (COMSOLĀ®). Using this model, we investigate the change in capacitance with the application of external force, for a range of different internal pressures and strains. We hope this study is helpful in understanding the coupling of internal inputs and external stimuli on the feedback obtained from the sensors and help us design better sensory systems for soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiva, A., et al.: Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Robot. Autom. Lett. 1, 632ā€“637 (2016)

    ArticleĀ  Google ScholarĀ 

  2. Godaba, H., Li, J., Wang, Y., Zhu, J.: A soft jellyfish robot driven by a dielectric elastomer actuator. IEEE Robot. Autom. Lett. 1, 624ā€“631 (2016)

    ArticleĀ  Google ScholarĀ 

  3. Lucarotti, C., Totaro, M., Sadeghi, A., Mazzolai, B., Beccai, L.: Revealing bending and force in a soft body through a plant root inspired approach. Sci. Rep. 5, 8788 (2015)

    ArticleĀ  Google ScholarĀ 

  4. Stilli, A., Wurdemann, H.A., Althoefer, K.: A novel concept for safe, stiffness-controllable robot links. Soft Robot. 4, 16ā€“22 (2017)

    ArticleĀ  Google ScholarĀ 

  5. Althoefer, K.: Neuro-fuzzy path planning for robotic manipulators (1996)

    Google ScholarĀ 

  6. Cianchetti, M., et al.: Soft robotics technologies to address shortcomings in todayā€™s minimally invasive surgery: the STIFF-FLOP approach. Soft Robot. 1, 122ā€“131 (2014)

    ArticleĀ  Google ScholarĀ 

  7. Wurdemann, H.A., et al.: Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2015)

    Google ScholarĀ 

  8. Popa, G.T., et al.: A stretchable, conductive rubber sensor to detect muscle contraction for prosthetic hand control. In: The 6th IEEE International Conference on E-Health and Bioengineering-EHB (2017)

    Google ScholarĀ 

  9. White, E.L., Case, J.C., Kramer, R.K.: Multi-element strain gauge modules for soft sensory skins. IEEE Sens. J. 16, 2607ā€“2616 (2016)

    ArticleĀ  Google ScholarĀ 

  10. White, E.L., Case, J.C., Kramer, R.K.: Multi-mode strain and curvature sensors for soft robotic applications. Sens. Actuators A Phys. 253, 188ā€“197 (2017)

    ArticleĀ  Google ScholarĀ 

  11. Giffney, T., Bejanin, E., Kurian, A.S., Travas-Sejdic, J., Aw, K.: Highly stretchable printed strain sensors using multi-walled carbon nanotube/silicone rubber composites. Sens. Actuators A Phys. 259, 44ā€“49 (2017)

    ArticleĀ  Google ScholarĀ 

  12. Christ, J.F., Aliheidari, N., Ameli, A., Pƶtschke, P.: 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 131, 394ā€“401 (2017)

    ArticleĀ  Google ScholarĀ 

  13. Koivikko, A., Raei, E.S., Mosallaei, M., MƤntysalo, M., Sariola, V.: Screen-printed curvature sensors for soft robots. IEEE Sens. J. 18, 223ā€“230 (2018)

    ArticleĀ  Google ScholarĀ 

  14. Ozel, S., Keskin, N.A., Khea, D., Onal, C.D.: A precise embedded curvature sensor module for soft-bodied robots. Sens. Actuators A Phys. 236, 349ā€“356 (2015)

    ArticleĀ  Google ScholarĀ 

  15. Luo, M., et al.: Toward modular soft robotics: proprioceptive curvature sensing and sliding-mode control of soft bidirectional bending modules. Soft Robot. 4, 117ā€“125 (2017)

    ArticleĀ  Google ScholarĀ 

  16. Sareh, S., Noh, Y., Li, M., Ranzani, T., Liu, H., Althoefer, K.: Macrobend optical sensing for pose measurement in soft robot arms. Smart Mater. Struct. (2015)

    Google ScholarĀ 

  17. Searle, T.C., Althoefer, K., Seneviratne, L., Liu, H.: An optical curvature sensor for flexible manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (2013)

    Google ScholarĀ 

  18. Zhao, H., Oā€™Brien, K., Li, S., Shepherd, R.F.: Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. (2016)

    Google ScholarĀ 

  19. Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors (2013)

    Google ScholarĀ 

  20. Ozel, S., et al.: A composite soft bending actuation module with integrated curvature sensing. In: Proceedings of IEEE International Conference on Robotics and Automation (2016)

    Google ScholarĀ 

  21. Shintake, J., Piskarev, E., Jeong, S.H., Floreano, D.: Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors. Adv. Mater. Technol. (2018)

    Google ScholarĀ 

  22. Larson, C., et al.: Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science (80) (2016)

    Google ScholarĀ 

  23. Wang, T., et al.: A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. (2018)

    Google ScholarĀ 

  24. Park, J., et al.: Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8, 4689ā€“4697 (2014)

    ArticleĀ  Google ScholarĀ 

  25. Kim, S.Y., Park, S., Park, H.W., Park, D.H., Jeong, Y., Kim, D.H.: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27, 4178ā€“4185 (2015)

    ArticleĀ  Google ScholarĀ 

  26. Totaro, M., Mondini, A., Bellacicca, A., Milani, P., Beccai, L.: Integrated simultaneous detection of tactile and bending cues for soft robotics. Soft Robot. 4, 400ā€“410 (2017)

    ArticleĀ  Google ScholarĀ 

  27. Wurdemann, H., et al.: Integrated soft bending sensor for soft robotic manipulators (2015)

    Google ScholarĀ 

Download references

Acknowledgements

This work was supported in part by the EPSRC National Centre for Nuclear Robotics project (EP/R02572X/1), the Innovate UK WormBot project (104059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Bakar Dawood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dawood, A.B., Godaba, H., Althoefer, K. (2019). Modelling of a Soft Sensor for Exteroception and Proprioception in a Pneumatically Actuated Soft Robot. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham. https://doi.org/10.1007/978-3-030-25332-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25332-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25331-8

  • Online ISBN: 978-3-030-25332-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics