Skip to main content

On the Complexity of “Superdetermined” Minrank Instances

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11505))

Included in the following conference series:

Abstract

The Minrank (MR) problem is a computational problem closely related to attacks on code- and multivariate-based schemes. In this paper we revisit the so-called Kipnis-Shamir (KS) approach to this problem. We extend previous complexity analysis by exposing non-trivial syzygies through the analysis of the Jacobian of the resulting system, with respect to a group of variables. We focus on a particular set of instances that yield a very overdetermined system which we refer to as “superdetermined”. We provide a tighter complexity estimate for such instances and discuss its implications for the key recovery attack on some multivariate schemes. For example, in HFE the speedup is roughly a square root.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a formal definition of a trivial syzygy see [13].

  2. 2.

    \(\mathbb {F}[\mathbf x ]_{r}\) denotes the vector space formed by the degree d homogeneous polynomials in \(\mathbb {F}[\mathbf x ]\).

  3. 3.

    \(\textsf {sgn}(\sigma )\) denotes the sign of the permutation \(\sigma \).

  4. 4.

    When \(r+v+a\) is odd the target rank is \(r+a+v-1\).

References

  1. Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic. Des. Codes Crypt. 69(1), 1–52 (2013)

    Article  MathSciNet  Google Scholar 

  2. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical forms. SIGSAM Bull. 10(3), 19–29 (1976)

    Article  MathSciNet  Google Scholar 

  3. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 289–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_17

    Chapter  Google Scholar 

  5. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem, J.: GeMSS: a great multivariate short signature. NIST CSRC (2017). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/GeMSS.zip

  6. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27

    Chapter  Google Scholar 

  7. Courtois, N.T.: Efficient zero-knowledge authentication based on a linear algebra problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 402–421. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_24

    Chapter  Google Scholar 

  8. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow. NIST CSRC (2017). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Rainbow.zip

  9. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_41

    Chapter  Google Scholar 

  10. Ding, J., Kleinjung, T.: Degree of regularity for HFE-. Cryptology ePrint Archive, Report 2011/570 (2011). https://eprint.iacr.org/2011/570

  11. Ding, J., Schmidt, D.: Solving degree and degree of regularity for polynomial systems over a finite fields. In: Fischlin, M., Katzenbeisser, S. (eds.) Number Theory and Cryptography. LNCS, vol. 8260, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42001-6_4

    Chapter  Google Scholar 

  12. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_4

    Chapter  Google Scholar 

  13. Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_32

    Chapter  Google Scholar 

  14. Faugere, J.C.: A new efficient algorithm for computing Grobner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  15. Faugere, J.C.: A new efficient algorithm for computing Grobner bases without reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM Press (2002)

    Google Scholar 

  16. Faugère, J.-C., El Din, M.S., Spaenlehauer, P.J.: Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology. In: Proceedings of Symbolic and Algebraic Computation, International Symposium, ISSAC 2010, 25–28 July 2010, Munich, Germany, pp. 257–264 (2010)

    Google Scholar 

  17. Faugère, J.-C., El Din, M.S., Spaenlehauer, P.J.: Groebner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): algorithms and complexity. J. Symb. Comput. 46(4), 406–437 (2011)

    Article  Google Scholar 

  18. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16

    Chapter  Google Scholar 

  19. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

    Article  MathSciNet  Google Scholar 

  20. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4

    Chapter  Google Scholar 

  21. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2

    Chapter  Google Scholar 

  22. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12868-9_99

    Chapter  Google Scholar 

  23. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_14

    Chapter  Google Scholar 

  24. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_14

    Chapter  Google Scholar 

  25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  26. Vates, J., Smith-Tone, D.: Key recovery attack for all parameters of HFE-. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 272–288. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_16

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Daniel Escudero, Albrecht Petzoldt, Rusydi Makarim, and Karan Khathuria for useful discussions. The author Javier Verbel is supported by “Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas” , Colciencias (Colombia). Some of the experiments were conducted on the Gauss Server, financed by “Proyecto Plan 150x150 Fomento de la cultura de evaluación continua a través del apoyo a planes de mejoramiento de los programas curriculares”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Verbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verbel, J., Baena, J., Cabarcas, D., Perlner, R., Smith-Tone, D. (2019). On the Complexity of “Superdetermined” Minrank Instances. In: Ding, J., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2019. Lecture Notes in Computer Science(), vol 11505. Springer, Cham. https://doi.org/10.1007/978-3-030-25510-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25510-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25509-1

  • Online ISBN: 978-3-030-25510-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics